CodeGenRegisters.cpp revision f15fe8195b0a42d0e950f3694c4d6ccd4034804a
1//===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines structures to encapsulate information gleaned from the
11// target register and register class definitions.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CodeGenRegisters.h"
16#include "CodeGenTarget.h"
17#include "llvm/ADT/IntEqClasses.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/ADT/Twine.h"
22#include "llvm/TableGen/Error.h"
23
24using namespace llvm;
25
26//===----------------------------------------------------------------------===//
27//                             CodeGenSubRegIndex
28//===----------------------------------------------------------------------===//
29
30CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
31  : TheDef(R), EnumValue(Enum), LaneMask(0) {
32  Name = R->getName();
33  if (R->getValue("Namespace"))
34    Namespace = R->getValueAsString("Namespace");
35}
36
37CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
38                                       unsigned Enum)
39  : TheDef(0), Name(N), Namespace(Nspace), EnumValue(Enum), LaneMask(0) {
40}
41
42std::string CodeGenSubRegIndex::getQualifiedName() const {
43  std::string N = getNamespace();
44  if (!N.empty())
45    N += "::";
46  N += getName();
47  return N;
48}
49
50void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
51  if (!TheDef)
52    return;
53
54  std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
55  if (!Comps.empty()) {
56    if (Comps.size() != 2)
57      PrintFatalError(TheDef->getLoc(),
58                      "ComposedOf must have exactly two entries");
59    CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
60    CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
61    CodeGenSubRegIndex *X = A->addComposite(B, this);
62    if (X)
63      PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
64  }
65
66  std::vector<Record*> Parts =
67    TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
68  if (!Parts.empty()) {
69    if (Parts.size() < 2)
70      PrintFatalError(TheDef->getLoc(),
71                    "CoveredBySubRegs must have two or more entries");
72    SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
73    for (unsigned i = 0, e = Parts.size(); i != e; ++i)
74      IdxParts.push_back(RegBank.getSubRegIdx(Parts[i]));
75    RegBank.addConcatSubRegIndex(IdxParts, this);
76  }
77}
78
79unsigned CodeGenSubRegIndex::computeLaneMask() {
80  // Already computed?
81  if (LaneMask)
82    return LaneMask;
83
84  // Recursion guard, shouldn't be required.
85  LaneMask = ~0u;
86
87  // The lane mask is simply the union of all sub-indices.
88  unsigned M = 0;
89  for (CompMap::iterator I = Composed.begin(), E = Composed.end(); I != E; ++I)
90    M |= I->second->computeLaneMask();
91  assert(M && "Missing lane mask, sub-register cycle?");
92  LaneMask = M;
93  return LaneMask;
94}
95
96//===----------------------------------------------------------------------===//
97//                              CodeGenRegister
98//===----------------------------------------------------------------------===//
99
100CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
101  : TheDef(R),
102    EnumValue(Enum),
103    CostPerUse(R->getValueAsInt("CostPerUse")),
104    CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
105    NumNativeRegUnits(0),
106    SubRegsComplete(false),
107    SuperRegsComplete(false),
108    TopoSig(~0u)
109{}
110
111void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
112  std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
113  std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
114
115  if (SRIs.size() != SRs.size())
116    PrintFatalError(TheDef->getLoc(),
117                    "SubRegs and SubRegIndices must have the same size");
118
119  for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
120    ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
121    ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
122  }
123
124  // Also compute leading super-registers. Each register has a list of
125  // covered-by-subregs super-registers where it appears as the first explicit
126  // sub-register.
127  //
128  // This is used by computeSecondarySubRegs() to find candidates.
129  if (CoveredBySubRegs && !ExplicitSubRegs.empty())
130    ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
131
132  // Add ad hoc alias links. This is a symmetric relationship between two
133  // registers, so build a symmetric graph by adding links in both ends.
134  std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
135  for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
136    CodeGenRegister *Reg = RegBank.getReg(Aliases[i]);
137    ExplicitAliases.push_back(Reg);
138    Reg->ExplicitAliases.push_back(this);
139  }
140}
141
142const std::string &CodeGenRegister::getName() const {
143  return TheDef->getName();
144}
145
146namespace {
147// Iterate over all register units in a set of registers.
148class RegUnitIterator {
149  CodeGenRegister::Set::const_iterator RegI, RegE;
150  CodeGenRegister::RegUnitList::const_iterator UnitI, UnitE;
151
152public:
153  RegUnitIterator(const CodeGenRegister::Set &Regs):
154    RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() {
155
156    if (RegI != RegE) {
157      UnitI = (*RegI)->getRegUnits().begin();
158      UnitE = (*RegI)->getRegUnits().end();
159      advance();
160    }
161  }
162
163  bool isValid() const { return UnitI != UnitE; }
164
165  unsigned operator* () const { assert(isValid()); return *UnitI; }
166
167  const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
168
169  /// Preincrement.  Move to the next unit.
170  void operator++() {
171    assert(isValid() && "Cannot advance beyond the last operand");
172    ++UnitI;
173    advance();
174  }
175
176protected:
177  void advance() {
178    while (UnitI == UnitE) {
179      if (++RegI == RegE)
180        break;
181      UnitI = (*RegI)->getRegUnits().begin();
182      UnitE = (*RegI)->getRegUnits().end();
183    }
184  }
185};
186} // namespace
187
188// Merge two RegUnitLists maintaining the order and removing duplicates.
189// Overwrites MergedRU in the process.
190static void mergeRegUnits(CodeGenRegister::RegUnitList &MergedRU,
191                          const CodeGenRegister::RegUnitList &RRU) {
192  CodeGenRegister::RegUnitList LRU = MergedRU;
193  MergedRU.clear();
194  std::set_union(LRU.begin(), LRU.end(), RRU.begin(), RRU.end(),
195                 std::back_inserter(MergedRU));
196}
197
198// Return true of this unit appears in RegUnits.
199static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
200  return std::count(RegUnits.begin(), RegUnits.end(), Unit);
201}
202
203// Inherit register units from subregisters.
204// Return true if the RegUnits changed.
205bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
206  unsigned OldNumUnits = RegUnits.size();
207  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
208       I != E; ++I) {
209    CodeGenRegister *SR = I->second;
210    // Merge the subregister's units into this register's RegUnits.
211    mergeRegUnits(RegUnits, SR->RegUnits);
212  }
213  return OldNumUnits != RegUnits.size();
214}
215
216const CodeGenRegister::SubRegMap &
217CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
218  // Only compute this map once.
219  if (SubRegsComplete)
220    return SubRegs;
221  SubRegsComplete = true;
222
223  // First insert the explicit subregs and make sure they are fully indexed.
224  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
225    CodeGenRegister *SR = ExplicitSubRegs[i];
226    CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
227    if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
228      PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
229                      " appears twice in Register " + getName());
230    // Map explicit sub-registers first, so the names take precedence.
231    // The inherited sub-registers are mapped below.
232    SubReg2Idx.insert(std::make_pair(SR, Idx));
233  }
234
235  // Keep track of inherited subregs and how they can be reached.
236  SmallPtrSet<CodeGenRegister*, 8> Orphans;
237
238  // Clone inherited subregs and place duplicate entries in Orphans.
239  // Here the order is important - earlier subregs take precedence.
240  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
241    CodeGenRegister *SR = ExplicitSubRegs[i];
242    const SubRegMap &Map = SR->computeSubRegs(RegBank);
243
244    for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
245         ++SI) {
246      if (!SubRegs.insert(*SI).second)
247        Orphans.insert(SI->second);
248    }
249  }
250
251  // Expand any composed subreg indices.
252  // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
253  // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
254  // expanded subreg indices recursively.
255  SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
256  for (unsigned i = 0; i != Indices.size(); ++i) {
257    CodeGenSubRegIndex *Idx = Indices[i];
258    const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
259    CodeGenRegister *SR = SubRegs[Idx];
260    const SubRegMap &Map = SR->computeSubRegs(RegBank);
261
262    // Look at the possible compositions of Idx.
263    // They may not all be supported by SR.
264    for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
265           E = Comps.end(); I != E; ++I) {
266      SubRegMap::const_iterator SRI = Map.find(I->first);
267      if (SRI == Map.end())
268        continue; // Idx + I->first doesn't exist in SR.
269      // Add I->second as a name for the subreg SRI->second, assuming it is
270      // orphaned, and the name isn't already used for something else.
271      if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
272        continue;
273      // We found a new name for the orphaned sub-register.
274      SubRegs.insert(std::make_pair(I->second, SRI->second));
275      Indices.push_back(I->second);
276    }
277  }
278
279  // Now Orphans contains the inherited subregisters without a direct index.
280  // Create inferred indexes for all missing entries.
281  // Work backwards in the Indices vector in order to compose subregs bottom-up.
282  // Consider this subreg sequence:
283  //
284  //   qsub_1 -> dsub_0 -> ssub_0
285  //
286  // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
287  // can be reached in two different ways:
288  //
289  //   qsub_1 -> ssub_0
290  //   dsub_2 -> ssub_0
291  //
292  // We pick the latter composition because another register may have [dsub_0,
293  // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
294  // dsub_2 -> ssub_0 composition can be shared.
295  while (!Indices.empty() && !Orphans.empty()) {
296    CodeGenSubRegIndex *Idx = Indices.pop_back_val();
297    CodeGenRegister *SR = SubRegs[Idx];
298    const SubRegMap &Map = SR->computeSubRegs(RegBank);
299    for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
300         ++SI)
301      if (Orphans.erase(SI->second))
302        SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second;
303  }
304
305  // Compute the inverse SubReg -> Idx map.
306  for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end();
307       SI != SE; ++SI) {
308    if (SI->second == this) {
309      ArrayRef<SMLoc> Loc;
310      if (TheDef)
311        Loc = TheDef->getLoc();
312      PrintFatalError(Loc, "Register " + getName() +
313                      " has itself as a sub-register");
314    }
315    // Ensure that every sub-register has a unique name.
316    DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
317      SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first;
318    if (Ins->second == SI->first)
319      continue;
320    // Trouble: Two different names for SI->second.
321    ArrayRef<SMLoc> Loc;
322    if (TheDef)
323      Loc = TheDef->getLoc();
324    PrintFatalError(Loc, "Sub-register can't have two names: " +
325                  SI->second->getName() + " available as " +
326                  SI->first->getName() + " and " + Ins->second->getName());
327  }
328
329  // Derive possible names for sub-register concatenations from any explicit
330  // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
331  // that getConcatSubRegIndex() won't invent any concatenated indices that the
332  // user already specified.
333  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
334    CodeGenRegister *SR = ExplicitSubRegs[i];
335    if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1)
336      continue;
337
338    // SR is composed of multiple sub-regs. Find their names in this register.
339    SmallVector<CodeGenSubRegIndex*, 8> Parts;
340    for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j)
341      Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
342
343    // Offer this as an existing spelling for the concatenation of Parts.
344    RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]);
345  }
346
347  // Initialize RegUnitList. Because getSubRegs is called recursively, this
348  // processes the register hierarchy in postorder.
349  //
350  // Inherit all sub-register units. It is good enough to look at the explicit
351  // sub-registers, the other registers won't contribute any more units.
352  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
353    CodeGenRegister *SR = ExplicitSubRegs[i];
354    // Explicit sub-registers are usually disjoint, so this is a good way of
355    // computing the union. We may pick up a few duplicates that will be
356    // eliminated below.
357    unsigned N = RegUnits.size();
358    RegUnits.append(SR->RegUnits.begin(), SR->RegUnits.end());
359    std::inplace_merge(RegUnits.begin(), RegUnits.begin() + N, RegUnits.end());
360  }
361  RegUnits.erase(std::unique(RegUnits.begin(), RegUnits.end()), RegUnits.end());
362
363  // Absent any ad hoc aliasing, we create one register unit per leaf register.
364  // These units correspond to the maximal cliques in the register overlap
365  // graph which is optimal.
366  //
367  // When there is ad hoc aliasing, we simply create one unit per edge in the
368  // undirected ad hoc aliasing graph. Technically, we could do better by
369  // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
370  // are extremely rare anyway (I've never seen one), so we don't bother with
371  // the added complexity.
372  for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
373    CodeGenRegister *AR = ExplicitAliases[i];
374    // Only visit each edge once.
375    if (AR->SubRegsComplete)
376      continue;
377    // Create a RegUnit representing this alias edge, and add it to both
378    // registers.
379    unsigned Unit = RegBank.newRegUnit(this, AR);
380    RegUnits.push_back(Unit);
381    AR->RegUnits.push_back(Unit);
382  }
383
384  // Finally, create units for leaf registers without ad hoc aliases. Note that
385  // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
386  // necessary. This means the aliasing leaf registers can share a single unit.
387  if (RegUnits.empty())
388    RegUnits.push_back(RegBank.newRegUnit(this));
389
390  // We have now computed the native register units. More may be adopted later
391  // for balancing purposes.
392  NumNativeRegUnits = RegUnits.size();
393
394  return SubRegs;
395}
396
397// In a register that is covered by its sub-registers, try to find redundant
398// sub-registers. For example:
399//
400//   QQ0 = {Q0, Q1}
401//   Q0 = {D0, D1}
402//   Q1 = {D2, D3}
403//
404// We can infer that D1_D2 is also a sub-register, even if it wasn't named in
405// the register definition.
406//
407// The explicitly specified registers form a tree. This function discovers
408// sub-register relationships that would force a DAG.
409//
410void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
411  // Collect new sub-registers first, add them later.
412  SmallVector<SubRegMap::value_type, 8> NewSubRegs;
413
414  // Look at the leading super-registers of each sub-register. Those are the
415  // candidates for new sub-registers, assuming they are fully contained in
416  // this register.
417  for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){
418    const CodeGenRegister *SubReg = I->second;
419    const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
420    for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
421      CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
422      // Already got this sub-register?
423      if (Cand == this || getSubRegIndex(Cand))
424        continue;
425      // Check if each component of Cand is already a sub-register.
426      // We know that the first component is I->second, and is present with the
427      // name I->first.
428      SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first);
429      assert(!Cand->ExplicitSubRegs.empty() &&
430             "Super-register has no sub-registers");
431      for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) {
432        if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j]))
433          Parts.push_back(Idx);
434        else {
435          // Sub-register doesn't exist.
436          Parts.clear();
437          break;
438        }
439      }
440      // If some Cand sub-register is not part of this register, or if Cand only
441      // has one sub-register, there is nothing to do.
442      if (Parts.size() <= 1)
443        continue;
444
445      // Each part of Cand is a sub-register of this. Make the full Cand also
446      // a sub-register with a concatenated sub-register index.
447      CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts);
448      NewSubRegs.push_back(std::make_pair(Concat, Cand));
449    }
450  }
451
452  // Now add all the new sub-registers.
453  for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
454    // Don't add Cand if another sub-register is already using the index.
455    if (!SubRegs.insert(NewSubRegs[i]).second)
456      continue;
457
458    CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
459    CodeGenRegister *NewSubReg = NewSubRegs[i].second;
460    SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx));
461  }
462
463  // Create sub-register index composition maps for the synthesized indices.
464  for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
465    CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
466    CodeGenRegister *NewSubReg = NewSubRegs[i].second;
467    for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
468           SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
469      CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
470      if (!SubIdx)
471        PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
472                        SI->second->getName() + " in " + getName());
473      NewIdx->addComposite(SI->first, SubIdx);
474    }
475  }
476}
477
478void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
479  // Only visit each register once.
480  if (SuperRegsComplete)
481    return;
482  SuperRegsComplete = true;
483
484  // Make sure all sub-registers have been visited first, so the super-reg
485  // lists will be topologically ordered.
486  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
487       I != E; ++I)
488    I->second->computeSuperRegs(RegBank);
489
490  // Now add this as a super-register on all sub-registers.
491  // Also compute the TopoSigId in post-order.
492  TopoSigId Id;
493  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
494       I != E; ++I) {
495    // Topological signature computed from SubIdx, TopoId(SubReg).
496    // Loops and idempotent indices have TopoSig = ~0u.
497    Id.push_back(I->first->EnumValue);
498    Id.push_back(I->second->TopoSig);
499
500    // Don't add duplicate entries.
501    if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
502      continue;
503    I->second->SuperRegs.push_back(this);
504  }
505  TopoSig = RegBank.getTopoSig(Id);
506}
507
508void
509CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
510                                    CodeGenRegBank &RegBank) const {
511  assert(SubRegsComplete && "Must precompute sub-registers");
512  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
513    CodeGenRegister *SR = ExplicitSubRegs[i];
514    if (OSet.insert(SR))
515      SR->addSubRegsPreOrder(OSet, RegBank);
516  }
517  // Add any secondary sub-registers that weren't part of the explicit tree.
518  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
519       I != E; ++I)
520    OSet.insert(I->second);
521}
522
523// Compute overlapping registers.
524//
525// The standard set is all super-registers and all sub-registers, but the
526// target description can add arbitrary overlapping registers via the 'Aliases'
527// field. This complicates things, but we can compute overlapping sets using
528// the following rules:
529//
530// 1. The relation overlap(A, B) is reflexive and symmetric but not transitive.
531//
532// 2. overlap(A, B) implies overlap(A, S) for all S in supers(B).
533//
534// Alternatively:
535//
536//    overlap(A, B) iff there exists:
537//    A' in { A, subregs(A) } and B' in { B, subregs(B) } such that:
538//    A' = B' or A' in aliases(B') or B' in aliases(A').
539//
540// Here subregs(A) is the full flattened sub-register set returned by
541// A.getSubRegs() while aliases(A) is simply the special 'Aliases' field in the
542// description of register A.
543//
544// This also implies that registers with a common sub-register are considered
545// overlapping. This can happen when forming register pairs:
546//
547//    P0 = (R0, R1)
548//    P1 = (R1, R2)
549//    P2 = (R2, R3)
550//
551// In this case, we will infer an overlap between P0 and P1 because of the
552// shared sub-register R1. There is no overlap between P0 and P2.
553//
554void CodeGenRegister::computeOverlaps(CodeGenRegister::Set &Overlaps,
555                                      const CodeGenRegBank &RegBank) const {
556  assert(!RegUnits.empty() && "Compute register units before overlaps.");
557
558  // Register units are assigned such that the overlapping registers are the
559  // super-registers of the root registers of the register units.
560  for (unsigned rui = 0, rue = RegUnits.size(); rui != rue; ++rui) {
561    const RegUnit &RU = RegBank.getRegUnit(RegUnits[rui]);
562    ArrayRef<const CodeGenRegister*> Roots = RU.getRoots();
563    for (unsigned ri = 0, re = Roots.size(); ri != re; ++ri) {
564      const CodeGenRegister *Root = Roots[ri];
565      Overlaps.insert(Root);
566      ArrayRef<const CodeGenRegister*> Supers = Root->getSuperRegs();
567      Overlaps.insert(Supers.begin(), Supers.end());
568    }
569  }
570}
571
572// Get the sum of this register's unit weights.
573unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
574  unsigned Weight = 0;
575  for (RegUnitList::const_iterator I = RegUnits.begin(), E = RegUnits.end();
576       I != E; ++I) {
577    Weight += RegBank.getRegUnit(*I).Weight;
578  }
579  return Weight;
580}
581
582//===----------------------------------------------------------------------===//
583//                               RegisterTuples
584//===----------------------------------------------------------------------===//
585
586// A RegisterTuples def is used to generate pseudo-registers from lists of
587// sub-registers. We provide a SetTheory expander class that returns the new
588// registers.
589namespace {
590struct TupleExpander : SetTheory::Expander {
591  void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) {
592    std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
593    unsigned Dim = Indices.size();
594    ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
595    if (Dim != SubRegs->getSize())
596      PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
597    if (Dim < 2)
598      PrintFatalError(Def->getLoc(),
599                      "Tuples must have at least 2 sub-registers");
600
601    // Evaluate the sub-register lists to be zipped.
602    unsigned Length = ~0u;
603    SmallVector<SetTheory::RecSet, 4> Lists(Dim);
604    for (unsigned i = 0; i != Dim; ++i) {
605      ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
606      Length = std::min(Length, unsigned(Lists[i].size()));
607    }
608
609    if (Length == 0)
610      return;
611
612    // Precompute some types.
613    Record *RegisterCl = Def->getRecords().getClass("Register");
614    RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
615    StringInit *BlankName = StringInit::get("");
616
617    // Zip them up.
618    for (unsigned n = 0; n != Length; ++n) {
619      std::string Name;
620      Record *Proto = Lists[0][n];
621      std::vector<Init*> Tuple;
622      unsigned CostPerUse = 0;
623      for (unsigned i = 0; i != Dim; ++i) {
624        Record *Reg = Lists[i][n];
625        if (i) Name += '_';
626        Name += Reg->getName();
627        Tuple.push_back(DefInit::get(Reg));
628        CostPerUse = std::max(CostPerUse,
629                              unsigned(Reg->getValueAsInt("CostPerUse")));
630      }
631
632      // Create a new Record representing the synthesized register. This record
633      // is only for consumption by CodeGenRegister, it is not added to the
634      // RecordKeeper.
635      Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords());
636      Elts.insert(NewReg);
637
638      // Copy Proto super-classes.
639      ArrayRef<Record *> Supers = Proto->getSuperClasses();
640      ArrayRef<SMRange> Ranges = Proto->getSuperClassRanges();
641      for (unsigned i = 0, e = Supers.size(); i != e; ++i)
642        NewReg->addSuperClass(Supers[i], Ranges[i]);
643
644      // Copy Proto fields.
645      for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
646        RecordVal RV = Proto->getValues()[i];
647
648        // Skip existing fields, like NAME.
649        if (NewReg->getValue(RV.getNameInit()))
650          continue;
651
652        StringRef Field = RV.getName();
653
654        // Replace the sub-register list with Tuple.
655        if (Field == "SubRegs")
656          RV.setValue(ListInit::get(Tuple, RegisterRecTy));
657
658        // Provide a blank AsmName. MC hacks are required anyway.
659        if (Field == "AsmName")
660          RV.setValue(BlankName);
661
662        // CostPerUse is aggregated from all Tuple members.
663        if (Field == "CostPerUse")
664          RV.setValue(IntInit::get(CostPerUse));
665
666        // Composite registers are always covered by sub-registers.
667        if (Field == "CoveredBySubRegs")
668          RV.setValue(BitInit::get(true));
669
670        // Copy fields from the RegisterTuples def.
671        if (Field == "SubRegIndices" ||
672            Field == "CompositeIndices") {
673          NewReg->addValue(*Def->getValue(Field));
674          continue;
675        }
676
677        // Some fields get their default uninitialized value.
678        if (Field == "DwarfNumbers" ||
679            Field == "DwarfAlias" ||
680            Field == "Aliases") {
681          if (const RecordVal *DefRV = RegisterCl->getValue(Field))
682            NewReg->addValue(*DefRV);
683          continue;
684        }
685
686        // Everything else is copied from Proto.
687        NewReg->addValue(RV);
688      }
689    }
690  }
691};
692}
693
694//===----------------------------------------------------------------------===//
695//                            CodeGenRegisterClass
696//===----------------------------------------------------------------------===//
697
698CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
699  : TheDef(R),
700    Name(R->getName()),
701    TopoSigs(RegBank.getNumTopoSigs()),
702    EnumValue(-1) {
703  // Rename anonymous register classes.
704  if (R->getName().size() > 9 && R->getName()[9] == '.') {
705    static unsigned AnonCounter = 0;
706    R->setName("AnonRegClass_" + utostr(AnonCounter));
707    // MSVC2012 ICEs if AnonCounter++ is directly passed to utostr.
708    ++AnonCounter;
709  }
710
711  std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
712  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
713    Record *Type = TypeList[i];
714    if (!Type->isSubClassOf("ValueType"))
715      PrintFatalError("RegTypes list member '" + Type->getName() +
716        "' does not derive from the ValueType class!");
717    VTs.push_back(getValueType(Type));
718  }
719  assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
720
721  // Allocation order 0 is the full set. AltOrders provides others.
722  const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
723  ListInit *AltOrders = R->getValueAsListInit("AltOrders");
724  Orders.resize(1 + AltOrders->size());
725
726  // Default allocation order always contains all registers.
727  for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
728    Orders[0].push_back((*Elements)[i]);
729    const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
730    Members.insert(Reg);
731    TopoSigs.set(Reg->getTopoSig());
732  }
733
734  // Alternative allocation orders may be subsets.
735  SetTheory::RecSet Order;
736  for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
737    RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
738    Orders[1 + i].append(Order.begin(), Order.end());
739    // Verify that all altorder members are regclass members.
740    while (!Order.empty()) {
741      CodeGenRegister *Reg = RegBank.getReg(Order.back());
742      Order.pop_back();
743      if (!contains(Reg))
744        PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
745                      " is not a class member");
746    }
747  }
748
749  // Allow targets to override the size in bits of the RegisterClass.
750  unsigned Size = R->getValueAsInt("Size");
751
752  Namespace = R->getValueAsString("Namespace");
753  SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits();
754  SpillAlignment = R->getValueAsInt("Alignment");
755  CopyCost = R->getValueAsInt("CopyCost");
756  Allocatable = R->getValueAsBit("isAllocatable");
757  AltOrderSelect = R->getValueAsString("AltOrderSelect");
758}
759
760// Create an inferred register class that was missing from the .td files.
761// Most properties will be inherited from the closest super-class after the
762// class structure has been computed.
763CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
764                                           StringRef Name, Key Props)
765  : Members(*Props.Members),
766    TheDef(0),
767    Name(Name),
768    TopoSigs(RegBank.getNumTopoSigs()),
769    EnumValue(-1),
770    SpillSize(Props.SpillSize),
771    SpillAlignment(Props.SpillAlignment),
772    CopyCost(0),
773    Allocatable(true) {
774  for (CodeGenRegister::Set::iterator I = Members.begin(), E = Members.end();
775       I != E; ++I)
776    TopoSigs.set((*I)->getTopoSig());
777}
778
779// Compute inherited propertied for a synthesized register class.
780void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
781  assert(!getDef() && "Only synthesized classes can inherit properties");
782  assert(!SuperClasses.empty() && "Synthesized class without super class");
783
784  // The last super-class is the smallest one.
785  CodeGenRegisterClass &Super = *SuperClasses.back();
786
787  // Most properties are copied directly.
788  // Exceptions are members, size, and alignment
789  Namespace = Super.Namespace;
790  VTs = Super.VTs;
791  CopyCost = Super.CopyCost;
792  Allocatable = Super.Allocatable;
793  AltOrderSelect = Super.AltOrderSelect;
794
795  // Copy all allocation orders, filter out foreign registers from the larger
796  // super-class.
797  Orders.resize(Super.Orders.size());
798  for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
799    for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
800      if (contains(RegBank.getReg(Super.Orders[i][j])))
801        Orders[i].push_back(Super.Orders[i][j]);
802}
803
804bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
805  return Members.count(Reg);
806}
807
808namespace llvm {
809  raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
810    OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment;
811    for (CodeGenRegister::Set::const_iterator I = K.Members->begin(),
812         E = K.Members->end(); I != E; ++I)
813      OS << ", " << (*I)->getName();
814    return OS << " }";
815  }
816}
817
818// This is a simple lexicographical order that can be used to search for sets.
819// It is not the same as the topological order provided by TopoOrderRC.
820bool CodeGenRegisterClass::Key::
821operator<(const CodeGenRegisterClass::Key &B) const {
822  assert(Members && B.Members);
823  if (*Members != *B.Members)
824    return *Members < *B.Members;
825  if (SpillSize != B.SpillSize)
826    return SpillSize < B.SpillSize;
827  return SpillAlignment < B.SpillAlignment;
828}
829
830// Returns true if RC is a strict subclass.
831// RC is a sub-class of this class if it is a valid replacement for any
832// instruction operand where a register of this classis required. It must
833// satisfy these conditions:
834//
835// 1. All RC registers are also in this.
836// 2. The RC spill size must not be smaller than our spill size.
837// 3. RC spill alignment must be compatible with ours.
838//
839static bool testSubClass(const CodeGenRegisterClass *A,
840                         const CodeGenRegisterClass *B) {
841  return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 &&
842    A->SpillSize <= B->SpillSize &&
843    std::includes(A->getMembers().begin(), A->getMembers().end(),
844                  B->getMembers().begin(), B->getMembers().end(),
845                  CodeGenRegister::Less());
846}
847
848/// Sorting predicate for register classes.  This provides a topological
849/// ordering that arranges all register classes before their sub-classes.
850///
851/// Register classes with the same registers, spill size, and alignment form a
852/// clique.  They will be ordered alphabetically.
853///
854static int TopoOrderRC(const void *PA, const void *PB) {
855  const CodeGenRegisterClass *A = *(const CodeGenRegisterClass* const*)PA;
856  const CodeGenRegisterClass *B = *(const CodeGenRegisterClass* const*)PB;
857  if (A == B)
858    return 0;
859
860  // Order by ascending spill size.
861  if (A->SpillSize < B->SpillSize)
862    return -1;
863  if (A->SpillSize > B->SpillSize)
864    return 1;
865
866  // Order by ascending spill alignment.
867  if (A->SpillAlignment < B->SpillAlignment)
868    return -1;
869  if (A->SpillAlignment > B->SpillAlignment)
870    return 1;
871
872  // Order by descending set size.  Note that the classes' allocation order may
873  // not have been computed yet.  The Members set is always vaild.
874  if (A->getMembers().size() > B->getMembers().size())
875    return -1;
876  if (A->getMembers().size() < B->getMembers().size())
877    return 1;
878
879  // Finally order by name as a tie breaker.
880  return StringRef(A->getName()).compare(B->getName());
881}
882
883std::string CodeGenRegisterClass::getQualifiedName() const {
884  if (Namespace.empty())
885    return getName();
886  else
887    return Namespace + "::" + getName();
888}
889
890// Compute sub-classes of all register classes.
891// Assume the classes are ordered topologically.
892void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
893  ArrayRef<CodeGenRegisterClass*> RegClasses = RegBank.getRegClasses();
894
895  // Visit backwards so sub-classes are seen first.
896  for (unsigned rci = RegClasses.size(); rci; --rci) {
897    CodeGenRegisterClass &RC = *RegClasses[rci - 1];
898    RC.SubClasses.resize(RegClasses.size());
899    RC.SubClasses.set(RC.EnumValue);
900
901    // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
902    for (unsigned s = rci; s != RegClasses.size(); ++s) {
903      if (RC.SubClasses.test(s))
904        continue;
905      CodeGenRegisterClass *SubRC = RegClasses[s];
906      if (!testSubClass(&RC, SubRC))
907        continue;
908      // SubRC is a sub-class. Grap all its sub-classes so we won't have to
909      // check them again.
910      RC.SubClasses |= SubRC->SubClasses;
911    }
912
913    // Sweep up missed clique members.  They will be immediately preceding RC.
914    for (unsigned s = rci - 1; s && testSubClass(&RC, RegClasses[s - 1]); --s)
915      RC.SubClasses.set(s - 1);
916  }
917
918  // Compute the SuperClasses lists from the SubClasses vectors.
919  for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
920    const BitVector &SC = RegClasses[rci]->getSubClasses();
921    for (int s = SC.find_first(); s >= 0; s = SC.find_next(s)) {
922      if (unsigned(s) == rci)
923        continue;
924      RegClasses[s]->SuperClasses.push_back(RegClasses[rci]);
925    }
926  }
927
928  // With the class hierarchy in place, let synthesized register classes inherit
929  // properties from their closest super-class. The iteration order here can
930  // propagate properties down multiple levels.
931  for (unsigned rci = 0; rci != RegClasses.size(); ++rci)
932    if (!RegClasses[rci]->getDef())
933      RegClasses[rci]->inheritProperties(RegBank);
934}
935
936void
937CodeGenRegisterClass::getSuperRegClasses(CodeGenSubRegIndex *SubIdx,
938                                         BitVector &Out) const {
939  DenseMap<CodeGenSubRegIndex*,
940           SmallPtrSet<CodeGenRegisterClass*, 8> >::const_iterator
941    FindI = SuperRegClasses.find(SubIdx);
942  if (FindI == SuperRegClasses.end())
943    return;
944  for (SmallPtrSet<CodeGenRegisterClass*, 8>::const_iterator I =
945       FindI->second.begin(), E = FindI->second.end(); I != E; ++I)
946    Out.set((*I)->EnumValue);
947}
948
949// Populate a unique sorted list of units from a register set.
950void CodeGenRegisterClass::buildRegUnitSet(
951  std::vector<unsigned> &RegUnits) const {
952  std::vector<unsigned> TmpUnits;
953  for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI)
954    TmpUnits.push_back(*UnitI);
955  std::sort(TmpUnits.begin(), TmpUnits.end());
956  std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
957                   std::back_inserter(RegUnits));
958}
959
960//===----------------------------------------------------------------------===//
961//                               CodeGenRegBank
962//===----------------------------------------------------------------------===//
963
964CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) {
965  // Configure register Sets to understand register classes and tuples.
966  Sets.addFieldExpander("RegisterClass", "MemberList");
967  Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
968  Sets.addExpander("RegisterTuples", new TupleExpander());
969
970  // Read in the user-defined (named) sub-register indices.
971  // More indices will be synthesized later.
972  std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
973  std::sort(SRIs.begin(), SRIs.end(), LessRecord());
974  for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
975    getSubRegIdx(SRIs[i]);
976  // Build composite maps from ComposedOf fields.
977  for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i)
978    SubRegIndices[i]->updateComponents(*this);
979
980  // Read in the register definitions.
981  std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
982  std::sort(Regs.begin(), Regs.end(), LessRecord());
983  Registers.reserve(Regs.size());
984  // Assign the enumeration values.
985  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
986    getReg(Regs[i]);
987
988  // Expand tuples and number the new registers.
989  std::vector<Record*> Tups =
990    Records.getAllDerivedDefinitions("RegisterTuples");
991  for (unsigned i = 0, e = Tups.size(); i != e; ++i) {
992    const std::vector<Record*> *TupRegs = Sets.expand(Tups[i]);
993    for (unsigned j = 0, je = TupRegs->size(); j != je; ++j)
994      getReg((*TupRegs)[j]);
995  }
996
997  // Now all the registers are known. Build the object graph of explicit
998  // register-register references.
999  for (unsigned i = 0, e = Registers.size(); i != e; ++i)
1000    Registers[i]->buildObjectGraph(*this);
1001
1002  // Compute register name map.
1003  for (unsigned i = 0, e = Registers.size(); i != e; ++i)
1004    RegistersByName.GetOrCreateValue(
1005                       Registers[i]->TheDef->getValueAsString("AsmName"),
1006                       Registers[i]);
1007
1008  // Precompute all sub-register maps.
1009  // This will create Composite entries for all inferred sub-register indices.
1010  for (unsigned i = 0, e = Registers.size(); i != e; ++i)
1011    Registers[i]->computeSubRegs(*this);
1012
1013  // Infer even more sub-registers by combining leading super-registers.
1014  for (unsigned i = 0, e = Registers.size(); i != e; ++i)
1015    if (Registers[i]->CoveredBySubRegs)
1016      Registers[i]->computeSecondarySubRegs(*this);
1017
1018  // After the sub-register graph is complete, compute the topologically
1019  // ordered SuperRegs list.
1020  for (unsigned i = 0, e = Registers.size(); i != e; ++i)
1021    Registers[i]->computeSuperRegs(*this);
1022
1023  // Native register units are associated with a leaf register. They've all been
1024  // discovered now.
1025  NumNativeRegUnits = RegUnits.size();
1026
1027  // Read in register class definitions.
1028  std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
1029  if (RCs.empty())
1030    PrintFatalError(std::string("No 'RegisterClass' subclasses defined!"));
1031
1032  // Allocate user-defined register classes.
1033  RegClasses.reserve(RCs.size());
1034  for (unsigned i = 0, e = RCs.size(); i != e; ++i)
1035    addToMaps(new CodeGenRegisterClass(*this, RCs[i]));
1036
1037  // Infer missing classes to create a full algebra.
1038  computeInferredRegisterClasses();
1039
1040  // Order register classes topologically and assign enum values.
1041  array_pod_sort(RegClasses.begin(), RegClasses.end(), TopoOrderRC);
1042  for (unsigned i = 0, e = RegClasses.size(); i != e; ++i)
1043    RegClasses[i]->EnumValue = i;
1044  CodeGenRegisterClass::computeSubClasses(*this);
1045}
1046
1047// Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1048CodeGenSubRegIndex*
1049CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1050  CodeGenSubRegIndex *Idx = new CodeGenSubRegIndex(Name, Namespace,
1051                                                   SubRegIndices.size() + 1);
1052  SubRegIndices.push_back(Idx);
1053  return Idx;
1054}
1055
1056CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1057  CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1058  if (Idx)
1059    return Idx;
1060  Idx = new CodeGenSubRegIndex(Def, SubRegIndices.size() + 1);
1061  SubRegIndices.push_back(Idx);
1062  return Idx;
1063}
1064
1065CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1066  CodeGenRegister *&Reg = Def2Reg[Def];
1067  if (Reg)
1068    return Reg;
1069  Reg = new CodeGenRegister(Def, Registers.size() + 1);
1070  Registers.push_back(Reg);
1071  return Reg;
1072}
1073
1074void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1075  RegClasses.push_back(RC);
1076
1077  if (Record *Def = RC->getDef())
1078    Def2RC.insert(std::make_pair(Def, RC));
1079
1080  // Duplicate classes are rejected by insert().
1081  // That's OK, we only care about the properties handled by CGRC::Key.
1082  CodeGenRegisterClass::Key K(*RC);
1083  Key2RC.insert(std::make_pair(K, RC));
1084}
1085
1086// Create a synthetic sub-class if it is missing.
1087CodeGenRegisterClass*
1088CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1089                                    const CodeGenRegister::Set *Members,
1090                                    StringRef Name) {
1091  // Synthetic sub-class has the same size and alignment as RC.
1092  CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment);
1093  RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1094  if (FoundI != Key2RC.end())
1095    return FoundI->second;
1096
1097  // Sub-class doesn't exist, create a new one.
1098  CodeGenRegisterClass *NewRC = new CodeGenRegisterClass(*this, Name, K);
1099  addToMaps(NewRC);
1100  return NewRC;
1101}
1102
1103CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
1104  if (CodeGenRegisterClass *RC = Def2RC[Def])
1105    return RC;
1106
1107  PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1108}
1109
1110CodeGenSubRegIndex*
1111CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1112                                        CodeGenSubRegIndex *B) {
1113  // Look for an existing entry.
1114  CodeGenSubRegIndex *Comp = A->compose(B);
1115  if (Comp)
1116    return Comp;
1117
1118  // None exists, synthesize one.
1119  std::string Name = A->getName() + "_then_" + B->getName();
1120  Comp = createSubRegIndex(Name, A->getNamespace());
1121  A->addComposite(B, Comp);
1122  return Comp;
1123}
1124
1125CodeGenSubRegIndex *CodeGenRegBank::
1126getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex*, 8> &Parts) {
1127  assert(Parts.size() > 1 && "Need two parts to concatenate");
1128
1129  // Look for an existing entry.
1130  CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1131  if (Idx)
1132    return Idx;
1133
1134  // None exists, synthesize one.
1135  std::string Name = Parts.front()->getName();
1136  for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1137    Name += '_';
1138    Name += Parts[i]->getName();
1139  }
1140  return Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1141}
1142
1143void CodeGenRegBank::computeComposites() {
1144  // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1145  // and many registers will share TopoSigs on regular architectures.
1146  BitVector TopoSigs(getNumTopoSigs());
1147
1148  for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1149    CodeGenRegister *Reg1 = Registers[i];
1150
1151    // Skip identical subreg structures already processed.
1152    if (TopoSigs.test(Reg1->getTopoSig()))
1153      continue;
1154    TopoSigs.set(Reg1->getTopoSig());
1155
1156    const CodeGenRegister::SubRegMap &SRM1 = Reg1->getSubRegs();
1157    for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
1158         e1 = SRM1.end(); i1 != e1; ++i1) {
1159      CodeGenSubRegIndex *Idx1 = i1->first;
1160      CodeGenRegister *Reg2 = i1->second;
1161      // Ignore identity compositions.
1162      if (Reg1 == Reg2)
1163        continue;
1164      const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1165      // Try composing Idx1 with another SubRegIndex.
1166      for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
1167           e2 = SRM2.end(); i2 != e2; ++i2) {
1168        CodeGenSubRegIndex *Idx2 = i2->first;
1169        CodeGenRegister *Reg3 = i2->second;
1170        // Ignore identity compositions.
1171        if (Reg2 == Reg3)
1172          continue;
1173        // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1174        CodeGenSubRegIndex *Idx3 = Reg1->getSubRegIndex(Reg3);
1175        assert(Idx3 && "Sub-register doesn't have an index");
1176
1177        // Conflicting composition? Emit a warning but allow it.
1178        if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3))
1179          PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1180                       " and " + Idx2->getQualifiedName() +
1181                       " compose ambiguously as " + Prev->getQualifiedName() +
1182                       " or " + Idx3->getQualifiedName());
1183      }
1184    }
1185  }
1186}
1187
1188// Compute lane masks. This is similar to register units, but at the
1189// sub-register index level. Each bit in the lane mask is like a register unit
1190// class, and two lane masks will have a bit in common if two sub-register
1191// indices overlap in some register.
1192//
1193// Conservatively share a lane mask bit if two sub-register indices overlap in
1194// some registers, but not in others. That shouldn't happen a lot.
1195void CodeGenRegBank::computeSubRegIndexLaneMasks() {
1196  // First assign individual bits to all the leaf indices.
1197  unsigned Bit = 0;
1198  for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) {
1199    CodeGenSubRegIndex *Idx = SubRegIndices[i];
1200    if (Idx->getComposites().empty()) {
1201      Idx->LaneMask = 1u << Bit;
1202      // Share bit 31 in the unlikely case there are more than 32 leafs.
1203      //
1204      // Sharing bits is harmless; it allows graceful degradation in targets
1205      // with more than 32 vector lanes. They simply get a limited resolution
1206      // view of lanes beyond the 32nd.
1207      //
1208      // See also the comment for getSubRegIndexLaneMask().
1209      if (Bit < 31) ++Bit;
1210    } else {
1211      Idx->LaneMask = 0;
1212    }
1213  }
1214
1215  // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1216  // by the sub-register graph? This doesn't occur in any known targets.
1217
1218  // Inherit lanes from composites.
1219  for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i)
1220    SubRegIndices[i]->computeLaneMask();
1221}
1222
1223namespace {
1224// UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1225// the transitive closure of the union of overlapping register
1226// classes. Together, the UberRegSets form a partition of the registers. If we
1227// consider overlapping register classes to be connected, then each UberRegSet
1228// is a set of connected components.
1229//
1230// An UberRegSet will likely be a horizontal slice of register names of
1231// the same width. Nontrivial subregisters should then be in a separate
1232// UberRegSet. But this property isn't required for valid computation of
1233// register unit weights.
1234//
1235// A Weight field caches the max per-register unit weight in each UberRegSet.
1236//
1237// A set of SingularDeterminants flags single units of some register in this set
1238// for which the unit weight equals the set weight. These units should not have
1239// their weight increased.
1240struct UberRegSet {
1241  CodeGenRegister::Set Regs;
1242  unsigned Weight;
1243  CodeGenRegister::RegUnitList SingularDeterminants;
1244
1245  UberRegSet(): Weight(0) {}
1246};
1247} // namespace
1248
1249// Partition registers into UberRegSets, where each set is the transitive
1250// closure of the union of overlapping register classes.
1251//
1252// UberRegSets[0] is a special non-allocatable set.
1253static void computeUberSets(std::vector<UberRegSet> &UberSets,
1254                            std::vector<UberRegSet*> &RegSets,
1255                            CodeGenRegBank &RegBank) {
1256
1257  const std::vector<CodeGenRegister*> &Registers = RegBank.getRegisters();
1258
1259  // The Register EnumValue is one greater than its index into Registers.
1260  assert(Registers.size() == Registers[Registers.size()-1]->EnumValue &&
1261         "register enum value mismatch");
1262
1263  // For simplicitly make the SetID the same as EnumValue.
1264  IntEqClasses UberSetIDs(Registers.size()+1);
1265  std::set<unsigned> AllocatableRegs;
1266  for (unsigned i = 0, e = RegBank.getRegClasses().size(); i != e; ++i) {
1267
1268    CodeGenRegisterClass *RegClass = RegBank.getRegClasses()[i];
1269    if (!RegClass->Allocatable)
1270      continue;
1271
1272    const CodeGenRegister::Set &Regs = RegClass->getMembers();
1273    if (Regs.empty())
1274      continue;
1275
1276    unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1277    assert(USetID && "register number 0 is invalid");
1278
1279    AllocatableRegs.insert((*Regs.begin())->EnumValue);
1280    for (CodeGenRegister::Set::const_iterator I = llvm::next(Regs.begin()),
1281           E = Regs.end(); I != E; ++I) {
1282      AllocatableRegs.insert((*I)->EnumValue);
1283      UberSetIDs.join(USetID, (*I)->EnumValue);
1284    }
1285  }
1286  // Combine non-allocatable regs.
1287  for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1288    unsigned RegNum = Registers[i]->EnumValue;
1289    if (AllocatableRegs.count(RegNum))
1290      continue;
1291
1292    UberSetIDs.join(0, RegNum);
1293  }
1294  UberSetIDs.compress();
1295
1296  // Make the first UberSet a special unallocatable set.
1297  unsigned ZeroID = UberSetIDs[0];
1298
1299  // Insert Registers into the UberSets formed by union-find.
1300  // Do not resize after this.
1301  UberSets.resize(UberSetIDs.getNumClasses());
1302  for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1303    const CodeGenRegister *Reg = Registers[i];
1304    unsigned USetID = UberSetIDs[Reg->EnumValue];
1305    if (!USetID)
1306      USetID = ZeroID;
1307    else if (USetID == ZeroID)
1308      USetID = 0;
1309
1310    UberRegSet *USet = &UberSets[USetID];
1311    USet->Regs.insert(Reg);
1312    RegSets[i] = USet;
1313  }
1314}
1315
1316// Recompute each UberSet weight after changing unit weights.
1317static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1318                               CodeGenRegBank &RegBank) {
1319  // Skip the first unallocatable set.
1320  for (std::vector<UberRegSet>::iterator I = llvm::next(UberSets.begin()),
1321         E = UberSets.end(); I != E; ++I) {
1322
1323    // Initialize all unit weights in this set, and remember the max units/reg.
1324    const CodeGenRegister *Reg = 0;
1325    unsigned MaxWeight = 0, Weight = 0;
1326    for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1327      if (Reg != UnitI.getReg()) {
1328        if (Weight > MaxWeight)
1329          MaxWeight = Weight;
1330        Reg = UnitI.getReg();
1331        Weight = 0;
1332      }
1333      unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1334      if (!UWeight) {
1335        UWeight = 1;
1336        RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1337      }
1338      Weight += UWeight;
1339    }
1340    if (Weight > MaxWeight)
1341      MaxWeight = Weight;
1342
1343    // Update the set weight.
1344    I->Weight = MaxWeight;
1345
1346    // Find singular determinants.
1347    for (CodeGenRegister::Set::iterator RegI = I->Regs.begin(),
1348           RegE = I->Regs.end(); RegI != RegE; ++RegI) {
1349      if ((*RegI)->getRegUnits().size() == 1
1350          && (*RegI)->getWeight(RegBank) == I->Weight)
1351        mergeRegUnits(I->SingularDeterminants, (*RegI)->getRegUnits());
1352    }
1353  }
1354}
1355
1356// normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1357// a register and its subregisters so that they have the same weight as their
1358// UberSet. Self-recursion processes the subregister tree in postorder so
1359// subregisters are normalized first.
1360//
1361// Side effects:
1362// - creates new adopted register units
1363// - causes superregisters to inherit adopted units
1364// - increases the weight of "singular" units
1365// - induces recomputation of UberWeights.
1366static bool normalizeWeight(CodeGenRegister *Reg,
1367                            std::vector<UberRegSet> &UberSets,
1368                            std::vector<UberRegSet*> &RegSets,
1369                            std::set<unsigned> &NormalRegs,
1370                            CodeGenRegister::RegUnitList &NormalUnits,
1371                            CodeGenRegBank &RegBank) {
1372  bool Changed = false;
1373  if (!NormalRegs.insert(Reg->EnumValue).second)
1374    return Changed;
1375
1376  const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1377  for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
1378         SRE = SRM.end(); SRI != SRE; ++SRI) {
1379    if (SRI->second == Reg)
1380      continue; // self-cycles happen
1381
1382    Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
1383                               NormalRegs, NormalUnits, RegBank);
1384  }
1385  // Postorder register normalization.
1386
1387  // Inherit register units newly adopted by subregisters.
1388  if (Reg->inheritRegUnits(RegBank))
1389    computeUberWeights(UberSets, RegBank);
1390
1391  // Check if this register is too skinny for its UberRegSet.
1392  UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1393
1394  unsigned RegWeight = Reg->getWeight(RegBank);
1395  if (UberSet->Weight > RegWeight) {
1396    // A register unit's weight can be adjusted only if it is the singular unit
1397    // for this register, has not been used to normalize a subregister's set,
1398    // and has not already been used to singularly determine this UberRegSet.
1399    unsigned AdjustUnit = Reg->getRegUnits().front();
1400    if (Reg->getRegUnits().size() != 1
1401        || hasRegUnit(NormalUnits, AdjustUnit)
1402        || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1403      // We don't have an adjustable unit, so adopt a new one.
1404      AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1405      Reg->adoptRegUnit(AdjustUnit);
1406      // Adopting a unit does not immediately require recomputing set weights.
1407    }
1408    else {
1409      // Adjust the existing single unit.
1410      RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1411      // The unit may be shared among sets and registers within this set.
1412      computeUberWeights(UberSets, RegBank);
1413    }
1414    Changed = true;
1415  }
1416
1417  // Mark these units normalized so superregisters can't change their weights.
1418  mergeRegUnits(NormalUnits, Reg->getRegUnits());
1419
1420  return Changed;
1421}
1422
1423// Compute a weight for each register unit created during getSubRegs.
1424//
1425// The goal is that two registers in the same class will have the same weight,
1426// where each register's weight is defined as sum of its units' weights.
1427void CodeGenRegBank::computeRegUnitWeights() {
1428  std::vector<UberRegSet> UberSets;
1429  std::vector<UberRegSet*> RegSets(Registers.size());
1430  computeUberSets(UberSets, RegSets, *this);
1431  // UberSets and RegSets are now immutable.
1432
1433  computeUberWeights(UberSets, *this);
1434
1435  // Iterate over each Register, normalizing the unit weights until reaching
1436  // a fix point.
1437  unsigned NumIters = 0;
1438  for (bool Changed = true; Changed; ++NumIters) {
1439    assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1440    Changed = false;
1441    for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1442      CodeGenRegister::RegUnitList NormalUnits;
1443      std::set<unsigned> NormalRegs;
1444      Changed |= normalizeWeight(Registers[i], UberSets, RegSets,
1445                                 NormalRegs, NormalUnits, *this);
1446    }
1447  }
1448}
1449
1450// Find a set in UniqueSets with the same elements as Set.
1451// Return an iterator into UniqueSets.
1452static std::vector<RegUnitSet>::const_iterator
1453findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1454               const RegUnitSet &Set) {
1455  std::vector<RegUnitSet>::const_iterator
1456    I = UniqueSets.begin(), E = UniqueSets.end();
1457  for(;I != E; ++I) {
1458    if (I->Units == Set.Units)
1459      break;
1460  }
1461  return I;
1462}
1463
1464// Return true if the RUSubSet is a subset of RUSuperSet.
1465static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1466                            const std::vector<unsigned> &RUSuperSet) {
1467  return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1468                       RUSubSet.begin(), RUSubSet.end());
1469}
1470
1471// Iteratively prune unit sets.
1472void CodeGenRegBank::pruneUnitSets() {
1473  assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1474
1475  // Form an equivalence class of UnitSets with no significant difference.
1476  std::vector<unsigned> SuperSetIDs;
1477  for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1478       SubIdx != EndIdx; ++SubIdx) {
1479    const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1480    unsigned SuperIdx = 0;
1481    for (; SuperIdx != EndIdx; ++SuperIdx) {
1482      if (SuperIdx == SubIdx)
1483        continue;
1484
1485      const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1486      if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1487          && (SubSet.Units.size() + 3 > SuperSet.Units.size())) {
1488        break;
1489      }
1490    }
1491    if (SuperIdx == EndIdx)
1492      SuperSetIDs.push_back(SubIdx);
1493  }
1494  // Populate PrunedUnitSets with each equivalence class's superset.
1495  std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1496  for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1497    unsigned SuperIdx = SuperSetIDs[i];
1498    PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1499    PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1500  }
1501  RegUnitSets.swap(PrunedUnitSets);
1502}
1503
1504// Create a RegUnitSet for each RegClass that contains all units in the class
1505// including adopted units that are necessary to model register pressure. Then
1506// iteratively compute RegUnitSets such that the union of any two overlapping
1507// RegUnitSets is repreresented.
1508//
1509// RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1510// RegUnitSet that is a superset of that RegUnitClass.
1511void CodeGenRegBank::computeRegUnitSets() {
1512
1513  // Compute a unique RegUnitSet for each RegClass.
1514  const ArrayRef<CodeGenRegisterClass*> &RegClasses = getRegClasses();
1515  unsigned NumRegClasses = RegClasses.size();
1516  for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) {
1517    if (!RegClasses[RCIdx]->Allocatable)
1518      continue;
1519
1520    // Speculatively grow the RegUnitSets to hold the new set.
1521    RegUnitSets.resize(RegUnitSets.size() + 1);
1522    RegUnitSets.back().Name = RegClasses[RCIdx]->getName();
1523
1524    // Compute a sorted list of units in this class.
1525    RegClasses[RCIdx]->buildRegUnitSet(RegUnitSets.back().Units);
1526
1527    // Find an existing RegUnitSet.
1528    std::vector<RegUnitSet>::const_iterator SetI =
1529      findRegUnitSet(RegUnitSets, RegUnitSets.back());
1530    if (SetI != llvm::prior(RegUnitSets.end()))
1531      RegUnitSets.pop_back();
1532  }
1533
1534  // Iteratively prune unit sets.
1535  pruneUnitSets();
1536
1537  // Iterate over all unit sets, including new ones added by this loop.
1538  unsigned NumRegUnitSubSets = RegUnitSets.size();
1539  for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1540    // In theory, this is combinatorial. In practice, it needs to be bounded
1541    // by a small number of sets for regpressure to be efficient.
1542    // If the assert is hit, we need to implement pruning.
1543    assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1544
1545    // Compare new sets with all original classes.
1546    for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
1547         SearchIdx != EndIdx; ++SearchIdx) {
1548      std::set<unsigned> Intersection;
1549      std::set_intersection(RegUnitSets[Idx].Units.begin(),
1550                            RegUnitSets[Idx].Units.end(),
1551                            RegUnitSets[SearchIdx].Units.begin(),
1552                            RegUnitSets[SearchIdx].Units.end(),
1553                            std::inserter(Intersection, Intersection.begin()));
1554      if (Intersection.empty())
1555        continue;
1556
1557      // Speculatively grow the RegUnitSets to hold the new set.
1558      RegUnitSets.resize(RegUnitSets.size() + 1);
1559      RegUnitSets.back().Name =
1560        RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name;
1561
1562      std::set_union(RegUnitSets[Idx].Units.begin(),
1563                     RegUnitSets[Idx].Units.end(),
1564                     RegUnitSets[SearchIdx].Units.begin(),
1565                     RegUnitSets[SearchIdx].Units.end(),
1566                     std::inserter(RegUnitSets.back().Units,
1567                                   RegUnitSets.back().Units.begin()));
1568
1569      // Find an existing RegUnitSet, or add the union to the unique sets.
1570      std::vector<RegUnitSet>::const_iterator SetI =
1571        findRegUnitSet(RegUnitSets, RegUnitSets.back());
1572      if (SetI != llvm::prior(RegUnitSets.end()))
1573        RegUnitSets.pop_back();
1574    }
1575  }
1576
1577  // Iteratively prune unit sets after inferring supersets.
1578  pruneUnitSets();
1579
1580  // For each register class, list the UnitSets that are supersets.
1581  RegClassUnitSets.resize(NumRegClasses);
1582  for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) {
1583    if (!RegClasses[RCIdx]->Allocatable)
1584      continue;
1585
1586    // Recompute the sorted list of units in this class.
1587    std::vector<unsigned> RegUnits;
1588    RegClasses[RCIdx]->buildRegUnitSet(RegUnits);
1589
1590    // Don't increase pressure for unallocatable regclasses.
1591    if (RegUnits.empty())
1592      continue;
1593
1594    // Find all supersets.
1595    for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1596         USIdx != USEnd; ++USIdx) {
1597      if (isRegUnitSubSet(RegUnits, RegUnitSets[USIdx].Units))
1598        RegClassUnitSets[RCIdx].push_back(USIdx);
1599    }
1600    assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
1601  }
1602
1603  // For each register unit, ensure that we have the list of UnitSets that
1604  // contain the unit. Normally, this matches an existing list of UnitSets for a
1605  // register class. If not, we create a new entry in RegClassUnitSets as a
1606  // "fake" register class.
1607  for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
1608       UnitIdx < UnitEnd; ++UnitIdx) {
1609    std::vector<unsigned> RUSets;
1610    for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
1611      RegUnitSet &RUSet = RegUnitSets[i];
1612      if (std::find(RUSet.Units.begin(), RUSet.Units.end(), UnitIdx)
1613          == RUSet.Units.end())
1614        continue;
1615      RUSets.push_back(i);
1616    }
1617    unsigned RCUnitSetsIdx = 0;
1618    for (unsigned e = RegClassUnitSets.size();
1619         RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
1620      if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
1621        break;
1622      }
1623    }
1624    RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
1625    if (RCUnitSetsIdx == RegClassUnitSets.size()) {
1626      // Create a new list of UnitSets as a "fake" register class.
1627      RegClassUnitSets.resize(RCUnitSetsIdx + 1);
1628      RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
1629    }
1630  }
1631}
1632
1633void CodeGenRegBank::computeDerivedInfo() {
1634  computeComposites();
1635  computeSubRegIndexLaneMasks();
1636
1637  // Compute a weight for each register unit created during getSubRegs.
1638  // This may create adopted register units (with unit # >= NumNativeRegUnits).
1639  computeRegUnitWeights();
1640
1641  // Compute a unique set of RegUnitSets. One for each RegClass and inferred
1642  // supersets for the union of overlapping sets.
1643  computeRegUnitSets();
1644}
1645
1646//
1647// Synthesize missing register class intersections.
1648//
1649// Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
1650// returns a maximal register class for all X.
1651//
1652void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
1653  for (unsigned rci = 0, rce = RegClasses.size(); rci != rce; ++rci) {
1654    CodeGenRegisterClass *RC1 = RC;
1655    CodeGenRegisterClass *RC2 = RegClasses[rci];
1656    if (RC1 == RC2)
1657      continue;
1658
1659    // Compute the set intersection of RC1 and RC2.
1660    const CodeGenRegister::Set &Memb1 = RC1->getMembers();
1661    const CodeGenRegister::Set &Memb2 = RC2->getMembers();
1662    CodeGenRegister::Set Intersection;
1663    std::set_intersection(Memb1.begin(), Memb1.end(),
1664                          Memb2.begin(), Memb2.end(),
1665                          std::inserter(Intersection, Intersection.begin()),
1666                          CodeGenRegister::Less());
1667
1668    // Skip disjoint class pairs.
1669    if (Intersection.empty())
1670      continue;
1671
1672    // If RC1 and RC2 have different spill sizes or alignments, use the
1673    // larger size for sub-classing.  If they are equal, prefer RC1.
1674    if (RC2->SpillSize > RC1->SpillSize ||
1675        (RC2->SpillSize == RC1->SpillSize &&
1676         RC2->SpillAlignment > RC1->SpillAlignment))
1677      std::swap(RC1, RC2);
1678
1679    getOrCreateSubClass(RC1, &Intersection,
1680                        RC1->getName() + "_and_" + RC2->getName());
1681  }
1682}
1683
1684//
1685// Synthesize missing sub-classes for getSubClassWithSubReg().
1686//
1687// Make sure that the set of registers in RC with a given SubIdx sub-register
1688// form a register class.  Update RC->SubClassWithSubReg.
1689//
1690void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
1691  // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
1692  typedef std::map<CodeGenSubRegIndex*, CodeGenRegister::Set,
1693                   CodeGenSubRegIndex::Less> SubReg2SetMap;
1694
1695  // Compute the set of registers supporting each SubRegIndex.
1696  SubReg2SetMap SRSets;
1697  for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
1698       RE = RC->getMembers().end(); RI != RE; ++RI) {
1699    const CodeGenRegister::SubRegMap &SRM = (*RI)->getSubRegs();
1700    for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
1701         E = SRM.end(); I != E; ++I)
1702      SRSets[I->first].insert(*RI);
1703  }
1704
1705  // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
1706  // numerical order to visit synthetic indices last.
1707  for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
1708    CodeGenSubRegIndex *SubIdx = SubRegIndices[sri];
1709    SubReg2SetMap::const_iterator I = SRSets.find(SubIdx);
1710    // Unsupported SubRegIndex. Skip it.
1711    if (I == SRSets.end())
1712      continue;
1713    // In most cases, all RC registers support the SubRegIndex.
1714    if (I->second.size() == RC->getMembers().size()) {
1715      RC->setSubClassWithSubReg(SubIdx, RC);
1716      continue;
1717    }
1718    // This is a real subset.  See if we have a matching class.
1719    CodeGenRegisterClass *SubRC =
1720      getOrCreateSubClass(RC, &I->second,
1721                          RC->getName() + "_with_" + I->first->getName());
1722    RC->setSubClassWithSubReg(SubIdx, SubRC);
1723  }
1724}
1725
1726//
1727// Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
1728//
1729// Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
1730// has a maximal result for any SubIdx and any X >= FirstSubRegRC.
1731//
1732
1733void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
1734                                                unsigned FirstSubRegRC) {
1735  SmallVector<std::pair<const CodeGenRegister*,
1736                        const CodeGenRegister*>, 16> SSPairs;
1737  BitVector TopoSigs(getNumTopoSigs());
1738
1739  // Iterate in SubRegIndex numerical order to visit synthetic indices last.
1740  for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
1741    CodeGenSubRegIndex *SubIdx = SubRegIndices[sri];
1742    // Skip indexes that aren't fully supported by RC's registers. This was
1743    // computed by inferSubClassWithSubReg() above which should have been
1744    // called first.
1745    if (RC->getSubClassWithSubReg(SubIdx) != RC)
1746      continue;
1747
1748    // Build list of (Super, Sub) pairs for this SubIdx.
1749    SSPairs.clear();
1750    TopoSigs.reset();
1751    for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
1752         RE = RC->getMembers().end(); RI != RE; ++RI) {
1753      const CodeGenRegister *Super = *RI;
1754      const CodeGenRegister *Sub = Super->getSubRegs().find(SubIdx)->second;
1755      assert(Sub && "Missing sub-register");
1756      SSPairs.push_back(std::make_pair(Super, Sub));
1757      TopoSigs.set(Sub->getTopoSig());
1758    }
1759
1760    // Iterate over sub-register class candidates.  Ignore classes created by
1761    // this loop. They will never be useful.
1762    for (unsigned rci = FirstSubRegRC, rce = RegClasses.size(); rci != rce;
1763         ++rci) {
1764      CodeGenRegisterClass *SubRC = RegClasses[rci];
1765      // Topological shortcut: SubRC members have the wrong shape.
1766      if (!TopoSigs.anyCommon(SubRC->getTopoSigs()))
1767        continue;
1768      // Compute the subset of RC that maps into SubRC.
1769      CodeGenRegister::Set SubSet;
1770      for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
1771        if (SubRC->contains(SSPairs[i].second))
1772          SubSet.insert(SSPairs[i].first);
1773      if (SubSet.empty())
1774        continue;
1775      // RC injects completely into SubRC.
1776      if (SubSet.size() == SSPairs.size()) {
1777        SubRC->addSuperRegClass(SubIdx, RC);
1778        continue;
1779      }
1780      // Only a subset of RC maps into SubRC. Make sure it is represented by a
1781      // class.
1782      getOrCreateSubClass(RC, &SubSet, RC->getName() +
1783                          "_with_" + SubIdx->getName() +
1784                          "_in_" + SubRC->getName());
1785    }
1786  }
1787}
1788
1789
1790//
1791// Infer missing register classes.
1792//
1793void CodeGenRegBank::computeInferredRegisterClasses() {
1794  // When this function is called, the register classes have not been sorted
1795  // and assigned EnumValues yet.  That means getSubClasses(),
1796  // getSuperClasses(), and hasSubClass() functions are defunct.
1797  unsigned FirstNewRC = RegClasses.size();
1798
1799  // Visit all register classes, including the ones being added by the loop.
1800  for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
1801    CodeGenRegisterClass *RC = RegClasses[rci];
1802
1803    // Synthesize answers for getSubClassWithSubReg().
1804    inferSubClassWithSubReg(RC);
1805
1806    // Synthesize answers for getCommonSubClass().
1807    inferCommonSubClass(RC);
1808
1809    // Synthesize answers for getMatchingSuperRegClass().
1810    inferMatchingSuperRegClass(RC);
1811
1812    // New register classes are created while this loop is running, and we need
1813    // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
1814    // to match old super-register classes with sub-register classes created
1815    // after inferMatchingSuperRegClass was called.  At this point,
1816    // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
1817    // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
1818    if (rci + 1 == FirstNewRC) {
1819      unsigned NextNewRC = RegClasses.size();
1820      for (unsigned rci2 = 0; rci2 != FirstNewRC; ++rci2)
1821        inferMatchingSuperRegClass(RegClasses[rci2], FirstNewRC);
1822      FirstNewRC = NextNewRC;
1823    }
1824  }
1825}
1826
1827/// getRegisterClassForRegister - Find the register class that contains the
1828/// specified physical register.  If the register is not in a register class,
1829/// return null. If the register is in multiple classes, and the classes have a
1830/// superset-subset relationship and the same set of types, return the
1831/// superclass.  Otherwise return null.
1832const CodeGenRegisterClass*
1833CodeGenRegBank::getRegClassForRegister(Record *R) {
1834  const CodeGenRegister *Reg = getReg(R);
1835  ArrayRef<CodeGenRegisterClass*> RCs = getRegClasses();
1836  const CodeGenRegisterClass *FoundRC = 0;
1837  for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
1838    const CodeGenRegisterClass &RC = *RCs[i];
1839    if (!RC.contains(Reg))
1840      continue;
1841
1842    // If this is the first class that contains the register,
1843    // make a note of it and go on to the next class.
1844    if (!FoundRC) {
1845      FoundRC = &RC;
1846      continue;
1847    }
1848
1849    // If a register's classes have different types, return null.
1850    if (RC.getValueTypes() != FoundRC->getValueTypes())
1851      return 0;
1852
1853    // Check to see if the previously found class that contains
1854    // the register is a subclass of the current class. If so,
1855    // prefer the superclass.
1856    if (RC.hasSubClass(FoundRC)) {
1857      FoundRC = &RC;
1858      continue;
1859    }
1860
1861    // Check to see if the previously found class that contains
1862    // the register is a superclass of the current class. If so,
1863    // prefer the superclass.
1864    if (FoundRC->hasSubClass(&RC))
1865      continue;
1866
1867    // Multiple classes, and neither is a superclass of the other.
1868    // Return null.
1869    return 0;
1870  }
1871  return FoundRC;
1872}
1873
1874BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
1875  SetVector<const CodeGenRegister*> Set;
1876
1877  // First add Regs with all sub-registers.
1878  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
1879    CodeGenRegister *Reg = getReg(Regs[i]);
1880    if (Set.insert(Reg))
1881      // Reg is new, add all sub-registers.
1882      // The pre-ordering is not important here.
1883      Reg->addSubRegsPreOrder(Set, *this);
1884  }
1885
1886  // Second, find all super-registers that are completely covered by the set.
1887  for (unsigned i = 0; i != Set.size(); ++i) {
1888    const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
1889    for (unsigned j = 0, e = SR.size(); j != e; ++j) {
1890      const CodeGenRegister *Super = SR[j];
1891      if (!Super->CoveredBySubRegs || Set.count(Super))
1892        continue;
1893      // This new super-register is covered by its sub-registers.
1894      bool AllSubsInSet = true;
1895      const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
1896      for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
1897             E = SRM.end(); I != E; ++I)
1898        if (!Set.count(I->second)) {
1899          AllSubsInSet = false;
1900          break;
1901        }
1902      // All sub-registers in Set, add Super as well.
1903      // We will visit Super later to recheck its super-registers.
1904      if (AllSubsInSet)
1905        Set.insert(Super);
1906    }
1907  }
1908
1909  // Convert to BitVector.
1910  BitVector BV(Registers.size() + 1);
1911  for (unsigned i = 0, e = Set.size(); i != e; ++i)
1912    BV.set(Set[i]->EnumValue);
1913  return BV;
1914}
1915