1//===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the DAG Matcher optimizer.
11//
12//===----------------------------------------------------------------------===//
13
14#include "DAGISelMatcher.h"
15#include "CodeGenDAGPatterns.h"
16#include "llvm/ADT/DenseSet.h"
17#include "llvm/ADT/StringSet.h"
18#include "llvm/Support/Debug.h"
19#include "llvm/Support/raw_ostream.h"
20using namespace llvm;
21
22#define DEBUG_TYPE "isel-opt"
23
24/// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record'
25/// into single compound nodes like RecordChild.
26static void ContractNodes(std::unique_ptr<Matcher> &MatcherPtr,
27                          const CodeGenDAGPatterns &CGP) {
28  // If we reached the end of the chain, we're done.
29  Matcher *N = MatcherPtr.get();
30  if (!N) return;
31
32  // If we have a scope node, walk down all of the children.
33  if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
34    for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
35      std::unique_ptr<Matcher> Child(Scope->takeChild(i));
36      ContractNodes(Child, CGP);
37      Scope->resetChild(i, Child.release());
38    }
39    return;
40  }
41
42  // If we found a movechild node with a node that comes in a 'foochild' form,
43  // transform it.
44  if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) {
45    Matcher *New = nullptr;
46    if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext()))
47      if (MC->getChildNo() < 8)  // Only have RecordChild0...7
48        New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(),
49                                     RM->getResultNo());
50
51    if (CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(MC->getNext()))
52      if (MC->getChildNo() < 8 &&  // Only have CheckChildType0...7
53          CT->getResNo() == 0)     // CheckChildType checks res #0
54        New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType());
55
56    if (CheckSameMatcher *CS = dyn_cast<CheckSameMatcher>(MC->getNext()))
57      if (MC->getChildNo() < 4)  // Only have CheckChildSame0...3
58        New = new CheckChildSameMatcher(MC->getChildNo(), CS->getMatchNumber());
59
60    if (CheckIntegerMatcher *CS = dyn_cast<CheckIntegerMatcher>(MC->getNext()))
61      if (MC->getChildNo() < 5)  // Only have CheckChildInteger0...4
62        New = new CheckChildIntegerMatcher(MC->getChildNo(), CS->getValue());
63
64    if (New) {
65      // Insert the new node.
66      New->setNext(MatcherPtr.release());
67      MatcherPtr.reset(New);
68      // Remove the old one.
69      MC->setNext(MC->getNext()->takeNext());
70      return ContractNodes(MatcherPtr, CGP);
71    }
72  }
73
74  // Zap movechild -> moveparent.
75  if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N))
76    if (MoveParentMatcher *MP =
77          dyn_cast<MoveParentMatcher>(MC->getNext())) {
78      MatcherPtr.reset(MP->takeNext());
79      return ContractNodes(MatcherPtr, CGP);
80    }
81
82  // Turn EmitNode->MarkFlagResults->CompleteMatch into
83  // MarkFlagResults->EmitNode->CompleteMatch when we can to encourage
84  // MorphNodeTo formation.  This is safe because MarkFlagResults never refers
85  // to the root of the pattern.
86  if (isa<EmitNodeMatcher>(N) && isa<MarkGlueResultsMatcher>(N->getNext()) &&
87      isa<CompleteMatchMatcher>(N->getNext()->getNext())) {
88    // Unlink the two nodes from the list.
89    Matcher *EmitNode = MatcherPtr.release();
90    Matcher *MFR = EmitNode->takeNext();
91    Matcher *Tail = MFR->takeNext();
92
93    // Relink them.
94    MatcherPtr.reset(MFR);
95    MFR->setNext(EmitNode);
96    EmitNode->setNext(Tail);
97    return ContractNodes(MatcherPtr, CGP);
98  }
99
100  // Turn EmitNode->CompleteMatch into MorphNodeTo if we can.
101  if (EmitNodeMatcher *EN = dyn_cast<EmitNodeMatcher>(N))
102    if (CompleteMatchMatcher *CM =
103          dyn_cast<CompleteMatchMatcher>(EN->getNext())) {
104      // We can only use MorphNodeTo if the result values match up.
105      unsigned RootResultFirst = EN->getFirstResultSlot();
106      bool ResultsMatch = true;
107      for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i)
108        if (CM->getResult(i) != RootResultFirst+i)
109          ResultsMatch = false;
110
111      // If the selected node defines a subset of the glue/chain results, we
112      // can't use MorphNodeTo.  For example, we can't use MorphNodeTo if the
113      // matched pattern has a chain but the root node doesn't.
114      const PatternToMatch &Pattern = CM->getPattern();
115
116      if (!EN->hasChain() &&
117          Pattern.getSrcPattern()->NodeHasProperty(SDNPHasChain, CGP))
118        ResultsMatch = false;
119
120      // If the matched node has glue and the output root doesn't, we can't
121      // use MorphNodeTo.
122      //
123      // NOTE: Strictly speaking, we don't have to check for glue here
124      // because the code in the pattern generator doesn't handle it right.  We
125      // do it anyway for thoroughness.
126      if (!EN->hasOutFlag() &&
127          Pattern.getSrcPattern()->NodeHasProperty(SDNPOutGlue, CGP))
128        ResultsMatch = false;
129
130
131      // If the root result node defines more results than the source root node
132      // *and* has a chain or glue input, then we can't match it because it
133      // would end up replacing the extra result with the chain/glue.
134#if 0
135      if ((EN->hasGlue() || EN->hasChain()) &&
136          EN->getNumNonChainGlueVTs() > ... need to get no results reliably ...)
137        ResultMatch = false;
138#endif
139
140      if (ResultsMatch) {
141        const SmallVectorImpl<MVT::SimpleValueType> &VTs = EN->getVTList();
142        const SmallVectorImpl<unsigned> &Operands = EN->getOperandList();
143        MatcherPtr.reset(new MorphNodeToMatcher(EN->getOpcodeName(),
144                                                VTs, Operands,
145                                                EN->hasChain(), EN->hasInFlag(),
146                                                EN->hasOutFlag(),
147                                                EN->hasMemRefs(),
148                                                EN->getNumFixedArityOperands(),
149                                                Pattern));
150        return;
151      }
152
153      // FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode
154      // variants.
155    }
156
157  ContractNodes(N->getNextPtr(), CGP);
158
159
160  // If we have a CheckType/CheckChildType/Record node followed by a
161  // CheckOpcode, invert the two nodes.  We prefer to do structural checks
162  // before type checks, as this opens opportunities for factoring on targets
163  // like X86 where many operations are valid on multiple types.
164  if ((isa<CheckTypeMatcher>(N) || isa<CheckChildTypeMatcher>(N) ||
165       isa<RecordMatcher>(N)) &&
166      isa<CheckOpcodeMatcher>(N->getNext())) {
167    // Unlink the two nodes from the list.
168    Matcher *CheckType = MatcherPtr.release();
169    Matcher *CheckOpcode = CheckType->takeNext();
170    Matcher *Tail = CheckOpcode->takeNext();
171
172    // Relink them.
173    MatcherPtr.reset(CheckOpcode);
174    CheckOpcode->setNext(CheckType);
175    CheckType->setNext(Tail);
176    return ContractNodes(MatcherPtr, CGP);
177  }
178}
179
180/// SinkPatternPredicates - Pattern predicates can be checked at any level of
181/// the matching tree.  The generator dumps them at the top level of the pattern
182/// though, which prevents factoring from being able to see past them.  This
183/// optimization sinks them as far down into the pattern as possible.
184///
185/// Conceptually, we'd like to sink these predicates all the way to the last
186/// matcher predicate in the series.  However, it turns out that some
187/// ComplexPatterns have side effects on the graph, so we really don't want to
188/// run a the complex pattern if the pattern predicate will fail.  For this
189/// reason, we refuse to sink the pattern predicate past a ComplexPattern.
190///
191static void SinkPatternPredicates(std::unique_ptr<Matcher> &MatcherPtr) {
192  // Recursively scan for a PatternPredicate.
193  // If we reached the end of the chain, we're done.
194  Matcher *N = MatcherPtr.get();
195  if (!N) return;
196
197  // Walk down all members of a scope node.
198  if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
199    for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
200      std::unique_ptr<Matcher> Child(Scope->takeChild(i));
201      SinkPatternPredicates(Child);
202      Scope->resetChild(i, Child.release());
203    }
204    return;
205  }
206
207  // If this node isn't a CheckPatternPredicateMatcher we keep scanning until
208  // we find one.
209  CheckPatternPredicateMatcher *CPPM =dyn_cast<CheckPatternPredicateMatcher>(N);
210  if (!CPPM)
211    return SinkPatternPredicates(N->getNextPtr());
212
213  // Ok, we found one, lets try to sink it. Check if we can sink it past the
214  // next node in the chain.  If not, we won't be able to change anything and
215  // might as well bail.
216  if (!CPPM->getNext()->isSafeToReorderWithPatternPredicate())
217    return;
218
219  // Okay, we know we can sink it past at least one node.  Unlink it from the
220  // chain and scan for the new insertion point.
221  MatcherPtr.release();  // Don't delete CPPM.
222  MatcherPtr.reset(CPPM->takeNext());
223
224  N = MatcherPtr.get();
225  while (N->getNext()->isSafeToReorderWithPatternPredicate())
226    N = N->getNext();
227
228  // At this point, we want to insert CPPM after N.
229  CPPM->setNext(N->takeNext());
230  N->setNext(CPPM);
231}
232
233/// FindNodeWithKind - Scan a series of matchers looking for a matcher with a
234/// specified kind.  Return null if we didn't find one otherwise return the
235/// matcher.
236static Matcher *FindNodeWithKind(Matcher *M, Matcher::KindTy Kind) {
237  for (; M; M = M->getNext())
238    if (M->getKind() == Kind)
239      return M;
240  return nullptr;
241}
242
243
244/// FactorNodes - Turn matches like this:
245///   Scope
246///     OPC_CheckType i32
247///       ABC
248///     OPC_CheckType i32
249///       XYZ
250/// into:
251///   OPC_CheckType i32
252///     Scope
253///       ABC
254///       XYZ
255///
256static void FactorNodes(std::unique_ptr<Matcher> &MatcherPtr) {
257  // If we reached the end of the chain, we're done.
258  Matcher *N = MatcherPtr.get();
259  if (!N) return;
260
261  // If this is not a push node, just scan for one.
262  ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N);
263  if (!Scope)
264    return FactorNodes(N->getNextPtr());
265
266  // Okay, pull together the children of the scope node into a vector so we can
267  // inspect it more easily.  While we're at it, bucket them up by the hash
268  // code of their first predicate.
269  SmallVector<Matcher*, 32> OptionsToMatch;
270
271  for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
272    // Factor the subexpression.
273    std::unique_ptr<Matcher> Child(Scope->takeChild(i));
274    FactorNodes(Child);
275
276    if (Matcher *N = Child.release())
277      OptionsToMatch.push_back(N);
278  }
279
280  SmallVector<Matcher*, 32> NewOptionsToMatch;
281
282  // Loop over options to match, merging neighboring patterns with identical
283  // starting nodes into a shared matcher.
284  for (unsigned OptionIdx = 0, e = OptionsToMatch.size(); OptionIdx != e;) {
285    // Find the set of matchers that start with this node.
286    Matcher *Optn = OptionsToMatch[OptionIdx++];
287
288    if (OptionIdx == e) {
289      NewOptionsToMatch.push_back(Optn);
290      continue;
291    }
292
293    // See if the next option starts with the same matcher.  If the two
294    // neighbors *do* start with the same matcher, we can factor the matcher out
295    // of at least these two patterns.  See what the maximal set we can merge
296    // together is.
297    SmallVector<Matcher*, 8> EqualMatchers;
298    EqualMatchers.push_back(Optn);
299
300    // Factor all of the known-equal matchers after this one into the same
301    // group.
302    while (OptionIdx != e && OptionsToMatch[OptionIdx]->isEqual(Optn))
303      EqualMatchers.push_back(OptionsToMatch[OptionIdx++]);
304
305    // If we found a non-equal matcher, see if it is contradictory with the
306    // current node.  If so, we know that the ordering relation between the
307    // current sets of nodes and this node don't matter.  Look past it to see if
308    // we can merge anything else into this matching group.
309    unsigned Scan = OptionIdx;
310    while (1) {
311      // If we ran out of stuff to scan, we're done.
312      if (Scan == e) break;
313
314      Matcher *ScanMatcher = OptionsToMatch[Scan];
315
316      // If we found an entry that matches out matcher, merge it into the set to
317      // handle.
318      if (Optn->isEqual(ScanMatcher)) {
319        // If is equal after all, add the option to EqualMatchers and remove it
320        // from OptionsToMatch.
321        EqualMatchers.push_back(ScanMatcher);
322        OptionsToMatch.erase(OptionsToMatch.begin()+Scan);
323        --e;
324        continue;
325      }
326
327      // If the option we're checking for contradicts the start of the list,
328      // skip over it.
329      if (Optn->isContradictory(ScanMatcher)) {
330        ++Scan;
331        continue;
332      }
333
334      // If we're scanning for a simple node, see if it occurs later in the
335      // sequence.  If so, and if we can move it up, it might be contradictory
336      // or the same as what we're looking for.  If so, reorder it.
337      if (Optn->isSimplePredicateOrRecordNode()) {
338        Matcher *M2 = FindNodeWithKind(ScanMatcher, Optn->getKind());
339        if (M2 && M2 != ScanMatcher &&
340            M2->canMoveBefore(ScanMatcher) &&
341            (M2->isEqual(Optn) || M2->isContradictory(Optn))) {
342          Matcher *MatcherWithoutM2 = ScanMatcher->unlinkNode(M2);
343          M2->setNext(MatcherWithoutM2);
344          OptionsToMatch[Scan] = M2;
345          continue;
346        }
347      }
348
349      // Otherwise, we don't know how to handle this entry, we have to bail.
350      break;
351    }
352
353    if (Scan != e &&
354        // Don't print it's obvious nothing extra could be merged anyway.
355        Scan+1 != e) {
356      DEBUG(errs() << "Couldn't merge this:\n";
357            Optn->print(errs(), 4);
358            errs() << "into this:\n";
359            OptionsToMatch[Scan]->print(errs(), 4);
360            if (Scan+1 != e)
361              OptionsToMatch[Scan+1]->printOne(errs());
362            if (Scan+2 < e)
363              OptionsToMatch[Scan+2]->printOne(errs());
364            errs() << "\n");
365    }
366
367    // If we only found one option starting with this matcher, no factoring is
368    // possible.
369    if (EqualMatchers.size() == 1) {
370      NewOptionsToMatch.push_back(EqualMatchers[0]);
371      continue;
372    }
373
374    // Factor these checks by pulling the first node off each entry and
375    // discarding it.  Take the first one off the first entry to reuse.
376    Matcher *Shared = Optn;
377    Optn = Optn->takeNext();
378    EqualMatchers[0] = Optn;
379
380    // Remove and delete the first node from the other matchers we're factoring.
381    for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) {
382      Matcher *Tmp = EqualMatchers[i]->takeNext();
383      delete EqualMatchers[i];
384      EqualMatchers[i] = Tmp;
385    }
386
387    Shared->setNext(new ScopeMatcher(EqualMatchers));
388
389    // Recursively factor the newly created node.
390    FactorNodes(Shared->getNextPtr());
391
392    NewOptionsToMatch.push_back(Shared);
393  }
394
395  // If we're down to a single pattern to match, then we don't need this scope
396  // anymore.
397  if (NewOptionsToMatch.size() == 1) {
398    MatcherPtr.reset(NewOptionsToMatch[0]);
399    return;
400  }
401
402  if (NewOptionsToMatch.empty()) {
403    MatcherPtr.reset(nullptr);
404    return;
405  }
406
407  // If our factoring failed (didn't achieve anything) see if we can simplify in
408  // other ways.
409
410  // Check to see if all of the leading entries are now opcode checks.  If so,
411  // we can convert this Scope to be a OpcodeSwitch instead.
412  bool AllOpcodeChecks = true, AllTypeChecks = true;
413  for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
414    // Check to see if this breaks a series of CheckOpcodeMatchers.
415    if (AllOpcodeChecks &&
416        !isa<CheckOpcodeMatcher>(NewOptionsToMatch[i])) {
417#if 0
418      if (i > 3) {
419        errs() << "FAILING OPC #" << i << "\n";
420        NewOptionsToMatch[i]->dump();
421      }
422#endif
423      AllOpcodeChecks = false;
424    }
425
426    // Check to see if this breaks a series of CheckTypeMatcher's.
427    if (AllTypeChecks) {
428      CheckTypeMatcher *CTM =
429        cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i],
430                                                        Matcher::CheckType));
431      if (!CTM ||
432          // iPTR checks could alias any other case without us knowing, don't
433          // bother with them.
434          CTM->getType() == MVT::iPTR ||
435          // SwitchType only works for result #0.
436          CTM->getResNo() != 0 ||
437          // If the CheckType isn't at the start of the list, see if we can move
438          // it there.
439          !CTM->canMoveBefore(NewOptionsToMatch[i])) {
440#if 0
441        if (i > 3 && AllTypeChecks) {
442          errs() << "FAILING TYPE #" << i << "\n";
443          NewOptionsToMatch[i]->dump();
444        }
445#endif
446        AllTypeChecks = false;
447      }
448    }
449  }
450
451  // If all the options are CheckOpcode's, we can form the SwitchOpcode, woot.
452  if (AllOpcodeChecks) {
453    StringSet<> Opcodes;
454    SmallVector<std::pair<const SDNodeInfo*, Matcher*>, 8> Cases;
455    for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
456      CheckOpcodeMatcher *COM = cast<CheckOpcodeMatcher>(NewOptionsToMatch[i]);
457      assert(Opcodes.insert(COM->getOpcode().getEnumName()) &&
458             "Duplicate opcodes not factored?");
459      Cases.push_back(std::make_pair(&COM->getOpcode(), COM->getNext()));
460    }
461
462    MatcherPtr.reset(new SwitchOpcodeMatcher(Cases));
463    return;
464  }
465
466  // If all the options are CheckType's, we can form the SwitchType, woot.
467  if (AllTypeChecks) {
468    DenseMap<unsigned, unsigned> TypeEntry;
469    SmallVector<std::pair<MVT::SimpleValueType, Matcher*>, 8> Cases;
470    for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
471      CheckTypeMatcher *CTM =
472        cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i],
473                                                        Matcher::CheckType));
474      Matcher *MatcherWithoutCTM = NewOptionsToMatch[i]->unlinkNode(CTM);
475      MVT::SimpleValueType CTMTy = CTM->getType();
476      delete CTM;
477
478      unsigned &Entry = TypeEntry[CTMTy];
479      if (Entry != 0) {
480        // If we have unfactored duplicate types, then we should factor them.
481        Matcher *PrevMatcher = Cases[Entry-1].second;
482        if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(PrevMatcher)) {
483          SM->setNumChildren(SM->getNumChildren()+1);
484          SM->resetChild(SM->getNumChildren()-1, MatcherWithoutCTM);
485          continue;
486        }
487
488        Matcher *Entries[2] = { PrevMatcher, MatcherWithoutCTM };
489        Cases[Entry-1].second = new ScopeMatcher(Entries);
490        continue;
491      }
492
493      Entry = Cases.size()+1;
494      Cases.push_back(std::make_pair(CTMTy, MatcherWithoutCTM));
495    }
496
497    if (Cases.size() != 1) {
498      MatcherPtr.reset(new SwitchTypeMatcher(Cases));
499    } else {
500      // If we factored and ended up with one case, create it now.
501      MatcherPtr.reset(new CheckTypeMatcher(Cases[0].first, 0));
502      MatcherPtr->setNext(Cases[0].second);
503    }
504    return;
505  }
506
507
508  // Reassemble the Scope node with the adjusted children.
509  Scope->setNumChildren(NewOptionsToMatch.size());
510  for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i)
511    Scope->resetChild(i, NewOptionsToMatch[i]);
512}
513
514Matcher *llvm::OptimizeMatcher(Matcher *TheMatcher,
515                               const CodeGenDAGPatterns &CGP) {
516  std::unique_ptr<Matcher> MatcherPtr(TheMatcher);
517  ContractNodes(MatcherPtr, CGP);
518  SinkPatternPredicates(MatcherPtr);
519  FactorNodes(MatcherPtr);
520  return MatcherPtr.release();
521}
522