DAGISelMatcherOpt.cpp revision e9eeda878beb8d36507a69a2be2fe08fcc968fef
1//===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the DAG Matcher optimizer.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel-opt"
15#include "DAGISelMatcher.h"
16#include "CodeGenDAGPatterns.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/Support/Debug.h"
19#include "llvm/Support/raw_ostream.h"
20#include <vector>
21using namespace llvm;
22
23/// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record'
24/// into single compound nodes like RecordChild.
25static void ContractNodes(OwningPtr<Matcher> &MatcherPtr,
26                          const CodeGenDAGPatterns &CGP) {
27  // If we reached the end of the chain, we're done.
28  Matcher *N = MatcherPtr.get();
29  if (N == 0) return;
30
31  // If we have a scope node, walk down all of the children.
32  if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
33    for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
34      OwningPtr<Matcher> Child(Scope->takeChild(i));
35      ContractNodes(Child, CGP);
36      Scope->resetChild(i, Child.take());
37    }
38    return;
39  }
40
41  // If we found a movechild node with a node that comes in a 'foochild' form,
42  // transform it.
43  if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) {
44    Matcher *New = 0;
45    if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext()))
46      New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor());
47
48    if (CheckTypeMatcher *CT= dyn_cast<CheckTypeMatcher>(MC->getNext()))
49      New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType());
50
51    if (New) {
52      // Insert the new node.
53      New->setNext(MatcherPtr.take());
54      MatcherPtr.reset(New);
55      // Remove the old one.
56      MC->setNext(MC->getNext()->takeNext());
57      return ContractNodes(MatcherPtr, CGP);
58    }
59  }
60
61  // Zap movechild -> moveparent.
62  if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N))
63    if (MoveParentMatcher *MP =
64          dyn_cast<MoveParentMatcher>(MC->getNext())) {
65      MatcherPtr.reset(MP->takeNext());
66      return ContractNodes(MatcherPtr, CGP);
67    }
68
69  // FIXME: Handle OPC_MarkFlagResults.
70
71  // Turn EmitNode->CompleteMatch into MorphNodeTo if we can.
72  if (EmitNodeMatcher *EN = dyn_cast<EmitNodeMatcher>(N))
73    if (CompleteMatchMatcher *CM =
74          dyn_cast<CompleteMatchMatcher>(EN->getNext())) {
75      // We can only use MorphNodeTo if the result values match up.
76      unsigned RootResultFirst = EN->getFirstResultSlot();
77      bool ResultsMatch = true;
78      for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i)
79        if (CM->getResult(i) != RootResultFirst+i)
80          ResultsMatch = false;
81
82      // If the selected node defines a subset of the flag/chain results, we
83      // can't use MorphNodeTo.  For example, we can't use MorphNodeTo if the
84      // matched pattern has a chain but the root node doesn't.
85      const PatternToMatch &Pattern = CM->getPattern();
86
87      if (!EN->hasChain() &&
88          Pattern.getSrcPattern()->NodeHasProperty(SDNPHasChain, CGP))
89        ResultsMatch = false;
90
91      // If the matched node has a flag and the output root doesn't, we can't
92      // use MorphNodeTo.
93      //
94      // NOTE: Strictly speaking, we don't have to check for the flag here
95      // because the code in the pattern generator doesn't handle it right.  We
96      // do it anyway for thoroughness.
97      if (!EN->hasOutFlag() &&
98          Pattern.getSrcPattern()->NodeHasProperty(SDNPOutFlag, CGP))
99        ResultsMatch = false;
100
101
102      // If the root result node defines more results than the source root node
103      // *and* has a chain or flag input, then we can't match it because it
104      // would end up replacing the extra result with the chain/flag.
105#if 0
106      if ((EN->hasFlag() || EN->hasChain()) &&
107          EN->getNumNonChainFlagVTs() > ... need to get no results reliably ...)
108        ResultMatch = false;
109#endif
110
111      if (ResultsMatch) {
112        const SmallVectorImpl<MVT::SimpleValueType> &VTs = EN->getVTList();
113        const SmallVectorImpl<unsigned> &Operands = EN->getOperandList();
114        MatcherPtr.reset(new MorphNodeToMatcher(EN->getOpcodeName(),
115                                                VTs.data(), VTs.size(),
116                                                Operands.data(),Operands.size(),
117                                                EN->hasChain(), EN->hasInFlag(),
118                                                EN->hasOutFlag(),
119                                                EN->hasMemRefs(),
120                                                EN->getNumFixedArityOperands(),
121                                                Pattern));
122        return;
123      }
124
125      // FIXME2: Kill off all the SelectionDAG::MorphNodeTo and getMachineNode
126      // variants.
127    }
128
129  ContractNodes(N->getNextPtr(), CGP);
130
131
132  // If we have a CheckType/CheckChildType/Record node followed by a
133  // CheckOpcode, invert the two nodes.  We prefer to do structural checks
134  // before type checks, as this opens opportunities for factoring on targets
135  // like X86 where many operations are valid on multiple types.
136  if ((isa<CheckTypeMatcher>(N) || isa<CheckChildTypeMatcher>(N) ||
137       isa<RecordMatcher>(N)) &&
138      isa<CheckOpcodeMatcher>(N->getNext())) {
139    // Unlink the two nodes from the list.
140    Matcher *CheckType = MatcherPtr.take();
141    Matcher *CheckOpcode = CheckType->takeNext();
142    Matcher *Tail = CheckOpcode->takeNext();
143
144    // Relink them.
145    MatcherPtr.reset(CheckOpcode);
146    CheckOpcode->setNext(CheckType);
147    CheckType->setNext(Tail);
148    return ContractNodes(MatcherPtr, CGP);
149  }
150}
151
152/// SinkPatternPredicates - Pattern predicates can be checked at any level of
153/// the matching tree.  The generator dumps them at the top level of the pattern
154/// though, which prevents factoring from being able to see past them.  This
155/// optimization sinks them as far down into the pattern as possible.
156///
157/// Conceptually, we'd like to sink these predicates all the way to the last
158/// matcher predicate in the series.  However, it turns out that some
159/// ComplexPatterns have side effects on the graph, so we really don't want to
160/// run a the complex pattern if the pattern predicate will fail.  For this
161/// reason, we refuse to sink the pattern predicate past a ComplexPattern.
162///
163static void SinkPatternPredicates(OwningPtr<Matcher> &MatcherPtr) {
164  // Recursively scan for a PatternPredicate.
165  // If we reached the end of the chain, we're done.
166  Matcher *N = MatcherPtr.get();
167  if (N == 0) return;
168
169  // Walk down all members of a scope node.
170  if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
171    for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
172      OwningPtr<Matcher> Child(Scope->takeChild(i));
173      SinkPatternPredicates(Child);
174      Scope->resetChild(i, Child.take());
175    }
176    return;
177  }
178
179  // If this node isn't a CheckPatternPredicateMatcher we keep scanning until
180  // we find one.
181  CheckPatternPredicateMatcher *CPPM =dyn_cast<CheckPatternPredicateMatcher>(N);
182  if (CPPM == 0)
183    return SinkPatternPredicates(N->getNextPtr());
184
185  // Ok, we found one, lets try to sink it. Check if we can sink it past the
186  // next node in the chain.  If not, we won't be able to change anything and
187  // might as well bail.
188  if (!CPPM->getNext()->isSafeToReorderWithPatternPredicate())
189    return;
190
191  // Okay, we know we can sink it past at least one node.  Unlink it from the
192  // chain and scan for the new insertion point.
193  MatcherPtr.take();  // Don't delete CPPM.
194  MatcherPtr.reset(CPPM->takeNext());
195
196  N = MatcherPtr.get();
197  while (N->getNext()->isSafeToReorderWithPatternPredicate())
198    N = N->getNext();
199
200  // At this point, we want to insert CPPM after N.
201  CPPM->setNext(N->takeNext());
202  N->setNext(CPPM);
203}
204
205/// FactorNodes - Turn matches like this:
206///   Scope
207///     OPC_CheckType i32
208///       ABC
209///     OPC_CheckType i32
210///       XYZ
211/// into:
212///   OPC_CheckType i32
213///     Scope
214///       ABC
215///       XYZ
216///
217static void FactorNodes(OwningPtr<Matcher> &MatcherPtr) {
218  // If we reached the end of the chain, we're done.
219  Matcher *N = MatcherPtr.get();
220  if (N == 0) return;
221
222  // If this is not a push node, just scan for one.
223  ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N);
224  if (Scope == 0)
225    return FactorNodes(N->getNextPtr());
226
227  // Okay, pull together the children of the scope node into a vector so we can
228  // inspect it more easily.  While we're at it, bucket them up by the hash
229  // code of their first predicate.
230  SmallVector<Matcher*, 32> OptionsToMatch;
231
232  for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
233    // Factor the subexpression.
234    OwningPtr<Matcher> Child(Scope->takeChild(i));
235    FactorNodes(Child);
236
237    if (Matcher *N = Child.take())
238      OptionsToMatch.push_back(N);
239  }
240
241  SmallVector<Matcher*, 32> NewOptionsToMatch;
242
243  // Loop over options to match, merging neighboring patterns with identical
244  // starting nodes into a shared matcher.
245  for (unsigned OptionIdx = 0, e = OptionsToMatch.size(); OptionIdx != e;) {
246    // Find the set of matchers that start with this node.
247    Matcher *Optn = OptionsToMatch[OptionIdx++];
248
249    if (OptionIdx == e) {
250      NewOptionsToMatch.push_back(Optn);
251      continue;
252    }
253
254    // See if the next option starts with the same matcher.  If the two
255    // neighbors *do* start with the same matcher, we can factor the matcher out
256    // of at least these two patterns.  See what the maximal set we can merge
257    // together is.
258    SmallVector<Matcher*, 8> EqualMatchers;
259    EqualMatchers.push_back(Optn);
260
261    // Factor all of the known-equal matchers after this one into the same
262    // group.
263    while (OptionIdx != e && OptionsToMatch[OptionIdx]->isEqual(Optn))
264      EqualMatchers.push_back(OptionsToMatch[OptionIdx++]);
265
266    // If we found a non-equal matcher, see if it is contradictory with the
267    // current node.  If so, we know that the ordering relation between the
268    // current sets of nodes and this node don't matter.  Look past it to see if
269    // we can merge anything else into this matching group.
270    unsigned Scan = OptionIdx;
271    while (1) {
272      while (Scan != e && Optn->isContradictory(OptionsToMatch[Scan]))
273        ++Scan;
274
275      // Ok, we found something that isn't known to be contradictory.  If it is
276      // equal, we can merge it into the set of nodes to factor, if not, we have
277      // to cease factoring.
278      if (Scan == e || !Optn->isEqual(OptionsToMatch[Scan])) break;
279
280      // If is equal after all, add the option to EqualMatchers and remove it
281      // from OptionsToMatch.
282      EqualMatchers.push_back(OptionsToMatch[Scan]);
283      OptionsToMatch.erase(OptionsToMatch.begin()+Scan);
284      --e;
285    }
286
287    if (Scan != e &&
288        // Don't print it's obvious nothing extra could be merged anyway.
289        Scan+1 != e) {
290      DEBUG(errs() << "Couldn't merge this:\n";
291            Optn->print(errs(), 4);
292            errs() << "into this:\n";
293            OptionsToMatch[Scan]->print(errs(), 4);
294            if (Scan+1 != e)
295              OptionsToMatch[Scan+1]->printOne(errs());
296            if (Scan+2 < e)
297              OptionsToMatch[Scan+2]->printOne(errs());
298            errs() << "\n");
299    }
300
301    // If we only found one option starting with this matcher, no factoring is
302    // possible.
303    if (EqualMatchers.size() == 1) {
304      NewOptionsToMatch.push_back(EqualMatchers[0]);
305      continue;
306    }
307
308    // Factor these checks by pulling the first node off each entry and
309    // discarding it.  Take the first one off the first entry to reuse.
310    Matcher *Shared = Optn;
311    Optn = Optn->takeNext();
312    EqualMatchers[0] = Optn;
313
314    // Remove and delete the first node from the other matchers we're factoring.
315    for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) {
316      Matcher *Tmp = EqualMatchers[i]->takeNext();
317      delete EqualMatchers[i];
318      EqualMatchers[i] = Tmp;
319    }
320
321    Shared->setNext(new ScopeMatcher(&EqualMatchers[0], EqualMatchers.size()));
322
323    // Recursively factor the newly created node.
324    FactorNodes(Shared->getNextPtr());
325
326    NewOptionsToMatch.push_back(Shared);
327  }
328
329  // Reassemble a new Scope node.
330  assert(!NewOptionsToMatch.empty() && "where'd all our children go?");
331  if (NewOptionsToMatch.empty())
332    MatcherPtr.reset(0);
333  if (NewOptionsToMatch.size() == 1)
334    MatcherPtr.reset(NewOptionsToMatch[0]);
335  else {
336    Scope->setNumChildren(NewOptionsToMatch.size());
337    for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i)
338      Scope->resetChild(i, NewOptionsToMatch[i]);
339  }
340}
341
342Matcher *llvm::OptimizeMatcher(Matcher *TheMatcher,
343                               const CodeGenDAGPatterns &CGP) {
344  OwningPtr<Matcher> MatcherPtr(TheMatcher);
345  ContractNodes(MatcherPtr, CGP);
346  SinkPatternPredicates(MatcherPtr);
347  FactorNodes(MatcherPtr);
348  return MatcherPtr.take();
349}
350