1// Copyright 2005, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8//     * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10//     * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14//     * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29//
30// Authors: wan@google.com (Zhanyong Wan), eefacm@gmail.com (Sean Mcafee)
31//
32// The Google C++ Testing Framework (Google Test)
33//
34// This header file declares functions and macros used internally by
35// Google Test.  They are subject to change without notice.
36
37#ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
38#define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
39
40#include "gtest/internal/gtest-port.h"
41
42#if GTEST_OS_LINUX
43# include <stdlib.h>
44# include <sys/types.h>
45# include <sys/wait.h>
46# include <unistd.h>
47#endif  // GTEST_OS_LINUX
48
49#include <ctype.h>
50#include <string.h>
51#include <iomanip>
52#include <limits>
53#include <set>
54
55#include "gtest/internal/gtest-string.h"
56#include "gtest/internal/gtest-filepath.h"
57#include "gtest/internal/gtest-type-util.h"
58
59#if !GTEST_NO_LLVM_RAW_OSTREAM
60#include "llvm/Support/raw_os_ostream.h"
61#endif
62
63// Due to C++ preprocessor weirdness, we need double indirection to
64// concatenate two tokens when one of them is __LINE__.  Writing
65//
66//   foo ## __LINE__
67//
68// will result in the token foo__LINE__, instead of foo followed by
69// the current line number.  For more details, see
70// http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
71#define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
72#define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
73
74// Google Test defines the testing::Message class to allow construction of
75// test messages via the << operator.  The idea is that anything
76// streamable to std::ostream can be streamed to a testing::Message.
77// This allows a user to use his own types in Google Test assertions by
78// overloading the << operator.
79//
80// util/gtl/stl_logging-inl.h overloads << for STL containers.  These
81// overloads cannot be defined in the std namespace, as that will be
82// undefined behavior.  Therefore, they are defined in the global
83// namespace instead.
84//
85// C++'s symbol lookup rule (i.e. Koenig lookup) says that these
86// overloads are visible in either the std namespace or the global
87// namespace, but not other namespaces, including the testing
88// namespace which Google Test's Message class is in.
89//
90// To allow STL containers (and other types that has a << operator
91// defined in the global namespace) to be used in Google Test assertions,
92// testing::Message must access the custom << operator from the global
93// namespace.  Hence this helper function.
94//
95// Note: Jeffrey Yasskin suggested an alternative fix by "using
96// ::operator<<;" in the definition of Message's operator<<.  That fix
97// doesn't require a helper function, but unfortunately doesn't
98// compile with MSVC.
99
100// LLVM INTERNAL CHANGE: To allow operator<< to work with both
101// std::ostreams and LLVM's raw_ostreams, we define a special
102// std::ostream with an implicit conversion to raw_ostream& and stream
103// to that.  This causes the compiler to prefer std::ostream overloads
104// but still find raw_ostream& overloads.
105#if !GTEST_NO_LLVM_RAW_OSTREAM
106namespace llvm {
107class convertible_fwd_ostream : public std::ostream {
108  virtual void anchor();
109  raw_os_ostream ros_;
110
111public:
112  convertible_fwd_ostream(std::ostream& os)
113    : std::ostream(os.rdbuf()), ros_(*this) {}
114  operator raw_ostream&() { return ros_; }
115};
116}
117template <typename T>
118inline void GTestStreamToHelper(std::ostream* os, const T& val) {
119  llvm::convertible_fwd_ostream cos(*os);
120  cos << val;
121}
122#else
123template <typename T>
124inline void GTestStreamToHelper(std::ostream* os, const T& val) {
125  *os << val;
126}
127#endif
128
129class ProtocolMessage;
130namespace proto2 { class Message; }
131
132namespace testing {
133
134// Forward declarations.
135
136class AssertionResult;                 // Result of an assertion.
137class Message;                         // Represents a failure message.
138class Test;                            // Represents a test.
139class TestInfo;                        // Information about a test.
140class TestPartResult;                  // Result of a test part.
141class UnitTest;                        // A collection of test cases.
142
143template <typename T>
144::std::string PrintToString(const T& value);
145
146namespace internal {
147
148struct TraceInfo;                      // Information about a trace point.
149class ScopedTrace;                     // Implements scoped trace.
150class TestInfoImpl;                    // Opaque implementation of TestInfo
151class UnitTestImpl;                    // Opaque implementation of UnitTest
152
153// How many times InitGoogleTest() has been called.
154extern int g_init_gtest_count;
155
156// The text used in failure messages to indicate the start of the
157// stack trace.
158GTEST_API_ extern const char kStackTraceMarker[];
159
160// A secret type that Google Test users don't know about.  It has no
161// definition on purpose.  Therefore it's impossible to create a
162// Secret object, which is what we want.
163class Secret;
164
165// Two overloaded helpers for checking at compile time whether an
166// expression is a null pointer literal (i.e. NULL or any 0-valued
167// compile-time integral constant).  Their return values have
168// different sizes, so we can use sizeof() to test which version is
169// picked by the compiler.  These helpers have no implementations, as
170// we only need their signatures.
171//
172// Given IsNullLiteralHelper(x), the compiler will pick the first
173// version if x can be implicitly converted to Secret*, and pick the
174// second version otherwise.  Since Secret is a secret and incomplete
175// type, the only expression a user can write that has type Secret* is
176// a null pointer literal.  Therefore, we know that x is a null
177// pointer literal if and only if the first version is picked by the
178// compiler.
179char IsNullLiteralHelper(Secret* p);
180char (&IsNullLiteralHelper(...))[2];  // NOLINT
181
182// A compile-time bool constant that is true if and only if x is a
183// null pointer literal (i.e. NULL or any 0-valued compile-time
184// integral constant).
185#ifdef GTEST_ELLIPSIS_NEEDS_POD_
186// We lose support for NULL detection where the compiler doesn't like
187// passing non-POD classes through ellipsis (...).
188# define GTEST_IS_NULL_LITERAL_(x) false
189#else
190# define GTEST_IS_NULL_LITERAL_(x) \
191    (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
192#endif  // GTEST_ELLIPSIS_NEEDS_POD_
193
194// Appends the user-supplied message to the Google-Test-generated message.
195GTEST_API_ String AppendUserMessage(const String& gtest_msg,
196                                    const Message& user_msg);
197
198// A helper class for creating scoped traces in user programs.
199class GTEST_API_ ScopedTrace {
200 public:
201  // The c'tor pushes the given source file location and message onto
202  // a trace stack maintained by Google Test.
203  ScopedTrace(const char* file, int line, const Message& message);
204
205  // The d'tor pops the info pushed by the c'tor.
206  //
207  // Note that the d'tor is not virtual in order to be efficient.
208  // Don't inherit from ScopedTrace!
209  ~ScopedTrace();
210
211 private:
212  GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace);
213} GTEST_ATTRIBUTE_UNUSED_;  // A ScopedTrace object does its job in its
214                            // c'tor and d'tor.  Therefore it doesn't
215                            // need to be used otherwise.
216
217// Converts a streamable value to a String.  A NULL pointer is
218// converted to "(null)".  When the input value is a ::string,
219// ::std::string, ::wstring, or ::std::wstring object, each NUL
220// character in it is replaced with "\\0".
221// Declared here but defined in gtest.h, so that it has access
222// to the definition of the Message class, required by the ARM
223// compiler.
224template <typename T>
225String StreamableToString(const T& streamable);
226
227// The Symbian compiler has a bug that prevents it from selecting the
228// correct overload of FormatForComparisonFailureMessage (see below)
229// unless we pass the first argument by reference.  If we do that,
230// however, Visual Age C++ 10.1 generates a compiler error.  Therefore
231// we only apply the work-around for Symbian.
232#if defined(__SYMBIAN32__)
233# define GTEST_CREF_WORKAROUND_ const&
234#else
235# define GTEST_CREF_WORKAROUND_
236#endif
237
238// When this operand is a const char* or char*, if the other operand
239// is a ::std::string or ::string, we print this operand as a C string
240// rather than a pointer (we do the same for wide strings); otherwise
241// we print it as a pointer to be safe.
242
243// This internal macro is used to avoid duplicated code.
244#define GTEST_FORMAT_IMPL_(operand2_type, operand1_printer)\
245inline String FormatForComparisonFailureMessage(\
246    operand2_type::value_type* GTEST_CREF_WORKAROUND_ str, \
247    const operand2_type& /*operand2*/) {\
248  return operand1_printer(str);\
249}\
250inline String FormatForComparisonFailureMessage(\
251    const operand2_type::value_type* GTEST_CREF_WORKAROUND_ str, \
252    const operand2_type& /*operand2*/) {\
253  return operand1_printer(str);\
254}
255
256GTEST_FORMAT_IMPL_(::std::string, String::ShowCStringQuoted)
257#if GTEST_HAS_STD_WSTRING
258GTEST_FORMAT_IMPL_(::std::wstring, String::ShowWideCStringQuoted)
259#endif  // GTEST_HAS_STD_WSTRING
260
261#if GTEST_HAS_GLOBAL_STRING
262GTEST_FORMAT_IMPL_(::string, String::ShowCStringQuoted)
263#endif  // GTEST_HAS_GLOBAL_STRING
264#if GTEST_HAS_GLOBAL_WSTRING
265GTEST_FORMAT_IMPL_(::wstring, String::ShowWideCStringQuoted)
266#endif  // GTEST_HAS_GLOBAL_WSTRING
267
268#undef GTEST_FORMAT_IMPL_
269
270// The next four overloads handle the case where the operand being
271// printed is a char/wchar_t pointer and the other operand is not a
272// string/wstring object.  In such cases, we just print the operand as
273// a pointer to be safe.
274#define GTEST_FORMAT_CHAR_PTR_IMPL_(CharType)                       \
275  template <typename T>                                             \
276  String FormatForComparisonFailureMessage(CharType* GTEST_CREF_WORKAROUND_ p, \
277                                           const T&) { \
278    return PrintToString(static_cast<const void*>(p));              \
279  }
280
281GTEST_FORMAT_CHAR_PTR_IMPL_(char)
282GTEST_FORMAT_CHAR_PTR_IMPL_(const char)
283GTEST_FORMAT_CHAR_PTR_IMPL_(wchar_t)
284GTEST_FORMAT_CHAR_PTR_IMPL_(const wchar_t)
285
286#undef GTEST_FORMAT_CHAR_PTR_IMPL_
287
288// Constructs and returns the message for an equality assertion
289// (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
290//
291// The first four parameters are the expressions used in the assertion
292// and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
293// where foo is 5 and bar is 6, we have:
294//
295//   expected_expression: "foo"
296//   actual_expression:   "bar"
297//   expected_value:      "5"
298//   actual_value:        "6"
299//
300// The ignoring_case parameter is true iff the assertion is a
301// *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
302// be inserted into the message.
303GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
304                                     const char* actual_expression,
305                                     const String& expected_value,
306                                     const String& actual_value,
307                                     bool ignoring_case);
308
309// Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
310GTEST_API_ String GetBoolAssertionFailureMessage(
311    const AssertionResult& assertion_result,
312    const char* expression_text,
313    const char* actual_predicate_value,
314    const char* expected_predicate_value);
315
316// This template class represents an IEEE floating-point number
317// (either single-precision or double-precision, depending on the
318// template parameters).
319//
320// The purpose of this class is to do more sophisticated number
321// comparison.  (Due to round-off error, etc, it's very unlikely that
322// two floating-points will be equal exactly.  Hence a naive
323// comparison by the == operation often doesn't work.)
324//
325// Format of IEEE floating-point:
326//
327//   The most-significant bit being the leftmost, an IEEE
328//   floating-point looks like
329//
330//     sign_bit exponent_bits fraction_bits
331//
332//   Here, sign_bit is a single bit that designates the sign of the
333//   number.
334//
335//   For float, there are 8 exponent bits and 23 fraction bits.
336//
337//   For double, there are 11 exponent bits and 52 fraction bits.
338//
339//   More details can be found at
340//   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
341//
342// Template parameter:
343//
344//   RawType: the raw floating-point type (either float or double)
345template <typename RawType>
346class FloatingPoint {
347 public:
348  // Defines the unsigned integer type that has the same size as the
349  // floating point number.
350  typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
351
352  // Constants.
353
354  // # of bits in a number.
355  static const size_t kBitCount = 8*sizeof(RawType);
356
357  // # of fraction bits in a number.
358  static const size_t kFractionBitCount =
359    std::numeric_limits<RawType>::digits - 1;
360
361  // # of exponent bits in a number.
362  static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
363
364  // The mask for the sign bit.
365  static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
366
367  // The mask for the fraction bits.
368  static const Bits kFractionBitMask =
369    ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
370
371  // The mask for the exponent bits.
372  static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
373
374  // How many ULP's (Units in the Last Place) we want to tolerate when
375  // comparing two numbers.  The larger the value, the more error we
376  // allow.  A 0 value means that two numbers must be exactly the same
377  // to be considered equal.
378  //
379  // The maximum error of a single floating-point operation is 0.5
380  // units in the last place.  On Intel CPU's, all floating-point
381  // calculations are done with 80-bit precision, while double has 64
382  // bits.  Therefore, 4 should be enough for ordinary use.
383  //
384  // See the following article for more details on ULP:
385  // http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm.
386  static const size_t kMaxUlps = 4;
387
388  // Constructs a FloatingPoint from a raw floating-point number.
389  //
390  // On an Intel CPU, passing a non-normalized NAN (Not a Number)
391  // around may change its bits, although the new value is guaranteed
392  // to be also a NAN.  Therefore, don't expect this constructor to
393  // preserve the bits in x when x is a NAN.
394  explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
395
396  // Static methods
397
398  // Reinterprets a bit pattern as a floating-point number.
399  //
400  // This function is needed to test the AlmostEquals() method.
401  static RawType ReinterpretBits(const Bits bits) {
402    FloatingPoint fp(0);
403    fp.u_.bits_ = bits;
404    return fp.u_.value_;
405  }
406
407  // Returns the floating-point number that represent positive infinity.
408  static RawType Infinity() {
409    return ReinterpretBits(kExponentBitMask);
410  }
411
412  // Non-static methods
413
414  // Returns the bits that represents this number.
415  const Bits &bits() const { return u_.bits_; }
416
417  // Returns the exponent bits of this number.
418  Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
419
420  // Returns the fraction bits of this number.
421  Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
422
423  // Returns the sign bit of this number.
424  Bits sign_bit() const { return kSignBitMask & u_.bits_; }
425
426  // Returns true iff this is NAN (not a number).
427  bool is_nan() const {
428    // It's a NAN if the exponent bits are all ones and the fraction
429    // bits are not entirely zeros.
430    return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
431  }
432
433  // Returns true iff this number is at most kMaxUlps ULP's away from
434  // rhs.  In particular, this function:
435  //
436  //   - returns false if either number is (or both are) NAN.
437  //   - treats really large numbers as almost equal to infinity.
438  //   - thinks +0.0 and -0.0 are 0 DLP's apart.
439  bool AlmostEquals(const FloatingPoint& rhs) const {
440    // The IEEE standard says that any comparison operation involving
441    // a NAN must return false.
442    if (is_nan() || rhs.is_nan()) return false;
443
444    return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
445        <= kMaxUlps;
446  }
447
448 private:
449  // The data type used to store the actual floating-point number.
450  union FloatingPointUnion {
451    RawType value_;  // The raw floating-point number.
452    Bits bits_;      // The bits that represent the number.
453  };
454
455  // Converts an integer from the sign-and-magnitude representation to
456  // the biased representation.  More precisely, let N be 2 to the
457  // power of (kBitCount - 1), an integer x is represented by the
458  // unsigned number x + N.
459  //
460  // For instance,
461  //
462  //   -N + 1 (the most negative number representable using
463  //          sign-and-magnitude) is represented by 1;
464  //   0      is represented by N; and
465  //   N - 1  (the biggest number representable using
466  //          sign-and-magnitude) is represented by 2N - 1.
467  //
468  // Read http://en.wikipedia.org/wiki/Signed_number_representations
469  // for more details on signed number representations.
470  static Bits SignAndMagnitudeToBiased(const Bits &sam) {
471    if (kSignBitMask & sam) {
472      // sam represents a negative number.
473      return ~sam + 1;
474    } else {
475      // sam represents a positive number.
476      return kSignBitMask | sam;
477    }
478  }
479
480  // Given two numbers in the sign-and-magnitude representation,
481  // returns the distance between them as an unsigned number.
482  static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
483                                                     const Bits &sam2) {
484    const Bits biased1 = SignAndMagnitudeToBiased(sam1);
485    const Bits biased2 = SignAndMagnitudeToBiased(sam2);
486    return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
487  }
488
489  FloatingPointUnion u_;
490};
491
492// Typedefs the instances of the FloatingPoint template class that we
493// care to use.
494typedef FloatingPoint<float> Float;
495typedef FloatingPoint<double> Double;
496
497// In order to catch the mistake of putting tests that use different
498// test fixture classes in the same test case, we need to assign
499// unique IDs to fixture classes and compare them.  The TypeId type is
500// used to hold such IDs.  The user should treat TypeId as an opaque
501// type: the only operation allowed on TypeId values is to compare
502// them for equality using the == operator.
503typedef const void* TypeId;
504
505template <typename T>
506class TypeIdHelper {
507 public:
508  // dummy_ must not have a const type.  Otherwise an overly eager
509  // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
510  // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
511  static bool dummy_;
512};
513
514template <typename T>
515bool TypeIdHelper<T>::dummy_ = false;
516
517// GetTypeId<T>() returns the ID of type T.  Different values will be
518// returned for different types.  Calling the function twice with the
519// same type argument is guaranteed to return the same ID.
520template <typename T>
521TypeId GetTypeId() {
522  // The compiler is required to allocate a different
523  // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
524  // the template.  Therefore, the address of dummy_ is guaranteed to
525  // be unique.
526  return &(TypeIdHelper<T>::dummy_);
527}
528
529// Returns the type ID of ::testing::Test.  Always call this instead
530// of GetTypeId< ::testing::Test>() to get the type ID of
531// ::testing::Test, as the latter may give the wrong result due to a
532// suspected linker bug when compiling Google Test as a Mac OS X
533// framework.
534GTEST_API_ TypeId GetTestTypeId();
535
536// Defines the abstract factory interface that creates instances
537// of a Test object.
538class TestFactoryBase {
539 public:
540  virtual ~TestFactoryBase();
541
542  // Creates a test instance to run. The instance is both created and destroyed
543  // within TestInfoImpl::Run()
544  virtual Test* CreateTest() = 0;
545
546 protected:
547  TestFactoryBase() {}
548
549 private:
550  GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
551};
552
553// This class provides implementation of TeastFactoryBase interface.
554// It is used in TEST and TEST_F macros.
555template <class TestClass>
556class TestFactoryImpl : public TestFactoryBase {
557 public:
558  virtual Test* CreateTest() { return new TestClass; }
559};
560
561#if GTEST_OS_WINDOWS
562
563// Predicate-formatters for implementing the HRESULT checking macros
564// {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
565// We pass a long instead of HRESULT to avoid causing an
566// include dependency for the HRESULT type.
567GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
568                                            long hr);  // NOLINT
569GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
570                                            long hr);  // NOLINT
571
572#endif  // GTEST_OS_WINDOWS
573
574// Types of SetUpTestCase() and TearDownTestCase() functions.
575typedef void (*SetUpTestCaseFunc)();
576typedef void (*TearDownTestCaseFunc)();
577
578// Creates a new TestInfo object and registers it with Google Test;
579// returns the created object.
580//
581// Arguments:
582//
583//   test_case_name:   name of the test case
584//   name:             name of the test
585//   type_param        the name of the test's type parameter, or NULL if
586//                     this is not  a typed or a type-parameterized test.
587//   value_param       text representation of the test's value parameter,
588//                     or NULL if this is not a type-parameterized test.
589//   fixture_class_id: ID of the test fixture class
590//   set_up_tc:        pointer to the function that sets up the test case
591//   tear_down_tc:     pointer to the function that tears down the test case
592//   factory:          pointer to the factory that creates a test object.
593//                     The newly created TestInfo instance will assume
594//                     ownership of the factory object.
595GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
596    const char* test_case_name, const char* name,
597    const char* type_param,
598    const char* value_param,
599    TypeId fixture_class_id,
600    SetUpTestCaseFunc set_up_tc,
601    TearDownTestCaseFunc tear_down_tc,
602    TestFactoryBase* factory);
603
604// If *pstr starts with the given prefix, modifies *pstr to be right
605// past the prefix and returns true; otherwise leaves *pstr unchanged
606// and returns false.  None of pstr, *pstr, and prefix can be NULL.
607GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
608
609#if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
610
611// State of the definition of a type-parameterized test case.
612class GTEST_API_ TypedTestCasePState {
613 public:
614  TypedTestCasePState() : registered_(false) {}
615
616  // Adds the given test name to defined_test_names_ and return true
617  // if the test case hasn't been registered; otherwise aborts the
618  // program.
619  bool AddTestName(const char* file, int line, const char* case_name,
620                   const char* test_name) {
621    if (registered_) {
622      fprintf(stderr, "%s Test %s must be defined before "
623              "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
624              FormatFileLocation(file, line).c_str(), test_name, case_name);
625      fflush(stderr);
626      posix::Abort();
627    }
628    defined_test_names_.insert(test_name);
629    return true;
630  }
631
632  // Verifies that registered_tests match the test names in
633  // defined_test_names_; returns registered_tests if successful, or
634  // aborts the program otherwise.
635  const char* VerifyRegisteredTestNames(
636      const char* file, int line, const char* registered_tests);
637
638 private:
639  bool registered_;
640  ::std::set<const char*> defined_test_names_;
641};
642
643// Skips to the first non-space char after the first comma in 'str';
644// returns NULL if no comma is found in 'str'.
645inline const char* SkipComma(const char* str) {
646  const char* comma = strchr(str, ',');
647  if (comma == NULL) {
648    return NULL;
649  }
650  while (IsSpace(*(++comma))) {}
651  return comma;
652}
653
654// Returns the prefix of 'str' before the first comma in it; returns
655// the entire string if it contains no comma.
656inline String GetPrefixUntilComma(const char* str) {
657  const char* comma = strchr(str, ',');
658  return comma == NULL ? String(str) : String(str, comma - str);
659}
660
661// TypeParameterizedTest<Fixture, TestSel, Types>::Register()
662// registers a list of type-parameterized tests with Google Test.  The
663// return value is insignificant - we just need to return something
664// such that we can call this function in a namespace scope.
665//
666// Implementation note: The GTEST_TEMPLATE_ macro declares a template
667// template parameter.  It's defined in gtest-type-util.h.
668template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
669class TypeParameterizedTest {
670 public:
671  // 'index' is the index of the test in the type list 'Types'
672  // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
673  // Types).  Valid values for 'index' are [0, N - 1] where N is the
674  // length of Types.
675  static bool Register(const char* prefix, const char* case_name,
676                       const char* test_names, int index) {
677    typedef typename Types::Head Type;
678    typedef Fixture<Type> FixtureClass;
679    typedef typename GTEST_BIND_(TestSel, Type) TestClass;
680
681    // First, registers the first type-parameterized test in the type
682    // list.
683    MakeAndRegisterTestInfo(
684        String::Format("%s%s%s/%d", prefix, prefix[0] == '\0' ? "" : "/",
685                       case_name, index).c_str(),
686        GetPrefixUntilComma(test_names).c_str(),
687        GetTypeName<Type>().c_str(),
688        NULL,  // No value parameter.
689        GetTypeId<FixtureClass>(),
690        TestClass::SetUpTestCase,
691        TestClass::TearDownTestCase,
692        new TestFactoryImpl<TestClass>);
693
694    // Next, recurses (at compile time) with the tail of the type list.
695    return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>
696        ::Register(prefix, case_name, test_names, index + 1);
697  }
698};
699
700// The base case for the compile time recursion.
701template <GTEST_TEMPLATE_ Fixture, class TestSel>
702class TypeParameterizedTest<Fixture, TestSel, Types0> {
703 public:
704  static bool Register(const char* /*prefix*/, const char* /*case_name*/,
705                       const char* /*test_names*/, int /*index*/) {
706    return true;
707  }
708};
709
710// TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
711// registers *all combinations* of 'Tests' and 'Types' with Google
712// Test.  The return value is insignificant - we just need to return
713// something such that we can call this function in a namespace scope.
714template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
715class TypeParameterizedTestCase {
716 public:
717  static bool Register(const char* prefix, const char* case_name,
718                       const char* test_names) {
719    typedef typename Tests::Head Head;
720
721    // First, register the first test in 'Test' for each type in 'Types'.
722    TypeParameterizedTest<Fixture, Head, Types>::Register(
723        prefix, case_name, test_names, 0);
724
725    // Next, recurses (at compile time) with the tail of the test list.
726    return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types>
727        ::Register(prefix, case_name, SkipComma(test_names));
728  }
729};
730
731// The base case for the compile time recursion.
732template <GTEST_TEMPLATE_ Fixture, typename Types>
733class TypeParameterizedTestCase<Fixture, Templates0, Types> {
734 public:
735  static bool Register(const char* /*prefix*/, const char* /*case_name*/,
736                       const char* /*test_names*/) {
737    return true;
738  }
739};
740
741#endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
742
743// Returns the current OS stack trace as a String.
744//
745// The maximum number of stack frames to be included is specified by
746// the gtest_stack_trace_depth flag.  The skip_count parameter
747// specifies the number of top frames to be skipped, which doesn't
748// count against the number of frames to be included.
749//
750// For example, if Foo() calls Bar(), which in turn calls
751// GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
752// the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
753GTEST_API_ String GetCurrentOsStackTraceExceptTop(UnitTest* unit_test,
754                                                  int skip_count);
755
756// Helpers for suppressing warnings on unreachable code or constant
757// condition.
758
759// Always returns true.
760GTEST_API_ bool AlwaysTrue();
761
762// Always returns false.
763inline bool AlwaysFalse() { return !AlwaysTrue(); }
764
765// Helper for suppressing false warning from Clang on a const char*
766// variable declared in a conditional expression always being NULL in
767// the else branch.
768struct GTEST_API_ ConstCharPtr {
769  ConstCharPtr(const char* str) : value(str) {}
770  operator bool() const { return true; }
771  const char* value;
772};
773
774// A simple Linear Congruential Generator for generating random
775// numbers with a uniform distribution.  Unlike rand() and srand(), it
776// doesn't use global state (and therefore can't interfere with user
777// code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
778// but it's good enough for our purposes.
779class GTEST_API_ Random {
780 public:
781  static const UInt32 kMaxRange = 1u << 31;
782
783  explicit Random(UInt32 seed) : state_(seed) {}
784
785  void Reseed(UInt32 seed) { state_ = seed; }
786
787  // Generates a random number from [0, range).  Crashes if 'range' is
788  // 0 or greater than kMaxRange.
789  UInt32 Generate(UInt32 range);
790
791 private:
792  UInt32 state_;
793  GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
794};
795
796// Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
797// compiler error iff T1 and T2 are different types.
798template <typename T1, typename T2>
799struct CompileAssertTypesEqual;
800
801template <typename T>
802struct CompileAssertTypesEqual<T, T> {
803};
804
805// Removes the reference from a type if it is a reference type,
806// otherwise leaves it unchanged.  This is the same as
807// tr1::remove_reference, which is not widely available yet.
808template <typename T>
809struct RemoveReference { typedef T type; };  // NOLINT
810template <typename T>
811struct RemoveReference<T&> { typedef T type; };  // NOLINT
812
813// A handy wrapper around RemoveReference that works when the argument
814// T depends on template parameters.
815#define GTEST_REMOVE_REFERENCE_(T) \
816    typename ::testing::internal::RemoveReference<T>::type
817
818// Removes const from a type if it is a const type, otherwise leaves
819// it unchanged.  This is the same as tr1::remove_const, which is not
820// widely available yet.
821template <typename T>
822struct RemoveConst { typedef T type; };  // NOLINT
823template <typename T>
824struct RemoveConst<const T> { typedef T type; };  // NOLINT
825
826// MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
827// definition to fail to remove the const in 'const int[3]' and 'const
828// char[3][4]'.  The following specialization works around the bug.
829// However, it causes trouble with GCC and thus needs to be
830// conditionally compiled.
831#if defined(_MSC_VER) || defined(__SUNPRO_CC) || defined(__IBMCPP__)
832template <typename T, size_t N>
833struct RemoveConst<const T[N]> {
834  typedef typename RemoveConst<T>::type type[N];
835};
836#endif
837
838// A handy wrapper around RemoveConst that works when the argument
839// T depends on template parameters.
840#define GTEST_REMOVE_CONST_(T) \
841    typename ::testing::internal::RemoveConst<T>::type
842
843// Turns const U&, U&, const U, and U all into U.
844#define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
845    GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
846
847// Adds reference to a type if it is not a reference type,
848// otherwise leaves it unchanged.  This is the same as
849// tr1::add_reference, which is not widely available yet.
850template <typename T>
851struct AddReference { typedef T& type; };  // NOLINT
852template <typename T>
853struct AddReference<T&> { typedef T& type; };  // NOLINT
854
855// A handy wrapper around AddReference that works when the argument T
856// depends on template parameters.
857#define GTEST_ADD_REFERENCE_(T) \
858    typename ::testing::internal::AddReference<T>::type
859
860// Adds a reference to const on top of T as necessary.  For example,
861// it transforms
862//
863//   char         ==> const char&
864//   const char   ==> const char&
865//   char&        ==> const char&
866//   const char&  ==> const char&
867//
868// The argument T must depend on some template parameters.
869#define GTEST_REFERENCE_TO_CONST_(T) \
870    GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T))
871
872// ImplicitlyConvertible<From, To>::value is a compile-time bool
873// constant that's true iff type From can be implicitly converted to
874// type To.
875template <typename From, typename To>
876class ImplicitlyConvertible {
877 private:
878  // We need the following helper functions only for their types.
879  // They have no implementations.
880
881  // MakeFrom() is an expression whose type is From.  We cannot simply
882  // use From(), as the type From may not have a public default
883  // constructor.
884  static From MakeFrom();
885
886  // These two functions are overloaded.  Given an expression
887  // Helper(x), the compiler will pick the first version if x can be
888  // implicitly converted to type To; otherwise it will pick the
889  // second version.
890  //
891  // The first version returns a value of size 1, and the second
892  // version returns a value of size 2.  Therefore, by checking the
893  // size of Helper(x), which can be done at compile time, we can tell
894  // which version of Helper() is used, and hence whether x can be
895  // implicitly converted to type To.
896  static char Helper(To);
897  static char (&Helper(...))[2];  // NOLINT
898
899  // We have to put the 'public' section after the 'private' section,
900  // or MSVC refuses to compile the code.
901 public:
902  // MSVC warns about implicitly converting from double to int for
903  // possible loss of data, so we need to temporarily disable the
904  // warning.
905#ifdef _MSC_VER
906# pragma warning(push)          // Saves the current warning state.
907# pragma warning(disable:4244)  // Temporarily disables warning 4244.
908
909  static const bool value =
910      sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
911# pragma warning(pop)           // Restores the warning state.
912#elif defined(__BORLANDC__)
913  // C++Builder cannot use member overload resolution during template
914  // instantiation.  The simplest workaround is to use its C++0x type traits
915  // functions (C++Builder 2009 and above only).
916  static const bool value = __is_convertible(From, To);
917#else
918  static const bool value =
919      sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
920#endif  // _MSV_VER
921};
922template <typename From, typename To>
923const bool ImplicitlyConvertible<From, To>::value;
924
925// IsAProtocolMessage<T>::value is a compile-time bool constant that's
926// true iff T is type ProtocolMessage, proto2::Message, or a subclass
927// of those.
928template <typename T>
929struct IsAProtocolMessage
930    : public bool_constant<
931  ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
932  ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
933};
934
935// When the compiler sees expression IsContainerTest<C>(0), if C is an
936// STL-style container class, the first overload of IsContainerTest
937// will be viable (since both C::iterator* and C::const_iterator* are
938// valid types and NULL can be implicitly converted to them).  It will
939// be picked over the second overload as 'int' is a perfect match for
940// the type of argument 0.  If C::iterator or C::const_iterator is not
941// a valid type, the first overload is not viable, and the second
942// overload will be picked.  Therefore, we can determine whether C is
943// a container class by checking the type of IsContainerTest<C>(0).
944// The value of the expression is insignificant.
945//
946// Note that we look for both C::iterator and C::const_iterator.  The
947// reason is that C++ injects the name of a class as a member of the
948// class itself (e.g. you can refer to class iterator as either
949// 'iterator' or 'iterator::iterator').  If we look for C::iterator
950// only, for example, we would mistakenly think that a class named
951// iterator is an STL container.
952//
953// Also note that the simpler approach of overloading
954// IsContainerTest(typename C::const_iterator*) and
955// IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
956typedef int IsContainer;
957template <class C>
958IsContainer IsContainerTest(int /* dummy */,
959                            typename C::iterator* /* it */ = NULL,
960                            typename C::const_iterator* /* const_it */ = NULL) {
961  return 0;
962}
963
964typedef char IsNotContainer;
965template <class C>
966IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
967
968// EnableIf<condition>::type is void when 'Cond' is true, and
969// undefined when 'Cond' is false.  To use SFINAE to make a function
970// overload only apply when a particular expression is true, add
971// "typename EnableIf<expression>::type* = 0" as the last parameter.
972template<bool> struct EnableIf;
973template<> struct EnableIf<true> { typedef void type; };  // NOLINT
974
975// Utilities for native arrays.
976
977// ArrayEq() compares two k-dimensional native arrays using the
978// elements' operator==, where k can be any integer >= 0.  When k is
979// 0, ArrayEq() degenerates into comparing a single pair of values.
980
981template <typename T, typename U>
982bool ArrayEq(const T* lhs, size_t size, const U* rhs);
983
984// This generic version is used when k is 0.
985template <typename T, typename U>
986inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
987
988// This overload is used when k >= 1.
989template <typename T, typename U, size_t N>
990inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
991  return internal::ArrayEq(lhs, N, rhs);
992}
993
994// This helper reduces code bloat.  If we instead put its logic inside
995// the previous ArrayEq() function, arrays with different sizes would
996// lead to different copies of the template code.
997template <typename T, typename U>
998bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
999  for (size_t i = 0; i != size; i++) {
1000    if (!internal::ArrayEq(lhs[i], rhs[i]))
1001      return false;
1002  }
1003  return true;
1004}
1005
1006// Finds the first element in the iterator range [begin, end) that
1007// equals elem.  Element may be a native array type itself.
1008template <typename Iter, typename Element>
1009Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
1010  for (Iter it = begin; it != end; ++it) {
1011    if (internal::ArrayEq(*it, elem))
1012      return it;
1013  }
1014  return end;
1015}
1016
1017// CopyArray() copies a k-dimensional native array using the elements'
1018// operator=, where k can be any integer >= 0.  When k is 0,
1019// CopyArray() degenerates into copying a single value.
1020
1021template <typename T, typename U>
1022void CopyArray(const T* from, size_t size, U* to);
1023
1024// This generic version is used when k is 0.
1025template <typename T, typename U>
1026inline void CopyArray(const T& from, U* to) { *to = from; }
1027
1028// This overload is used when k >= 1.
1029template <typename T, typename U, size_t N>
1030inline void CopyArray(const T(&from)[N], U(*to)[N]) {
1031  internal::CopyArray(from, N, *to);
1032}
1033
1034// This helper reduces code bloat.  If we instead put its logic inside
1035// the previous CopyArray() function, arrays with different sizes
1036// would lead to different copies of the template code.
1037template <typename T, typename U>
1038void CopyArray(const T* from, size_t size, U* to) {
1039  for (size_t i = 0; i != size; i++) {
1040    internal::CopyArray(from[i], to + i);
1041  }
1042}
1043
1044// The relation between an NativeArray object (see below) and the
1045// native array it represents.
1046enum RelationToSource {
1047  kReference,  // The NativeArray references the native array.
1048  kCopy        // The NativeArray makes a copy of the native array and
1049               // owns the copy.
1050};
1051
1052// Adapts a native array to a read-only STL-style container.  Instead
1053// of the complete STL container concept, this adaptor only implements
1054// members useful for Google Mock's container matchers.  New members
1055// should be added as needed.  To simplify the implementation, we only
1056// support Element being a raw type (i.e. having no top-level const or
1057// reference modifier).  It's the client's responsibility to satisfy
1058// this requirement.  Element can be an array type itself (hence
1059// multi-dimensional arrays are supported).
1060template <typename Element>
1061class NativeArray {
1062 public:
1063  // STL-style container typedefs.
1064  typedef Element value_type;
1065  typedef Element* iterator;
1066  typedef const Element* const_iterator;
1067
1068  // Constructs from a native array.
1069  NativeArray(const Element* array, size_t count, RelationToSource relation) {
1070    Init(array, count, relation);
1071  }
1072
1073  // Copy constructor.
1074  NativeArray(const NativeArray& rhs) {
1075    Init(rhs.array_, rhs.size_, rhs.relation_to_source_);
1076  }
1077
1078  ~NativeArray() {
1079    // Ensures that the user doesn't instantiate NativeArray with a
1080    // const or reference type.
1081    static_cast<void>(StaticAssertTypeEqHelper<Element,
1082        GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>());
1083    if (relation_to_source_ == kCopy)
1084      delete[] array_;
1085  }
1086
1087  // STL-style container methods.
1088  size_t size() const { return size_; }
1089  const_iterator begin() const { return array_; }
1090  const_iterator end() const { return array_ + size_; }
1091  bool operator==(const NativeArray& rhs) const {
1092    return size() == rhs.size() &&
1093        ArrayEq(begin(), size(), rhs.begin());
1094  }
1095
1096 private:
1097  // Initializes this object; makes a copy of the input array if
1098  // 'relation' is kCopy.
1099  void Init(const Element* array, size_t a_size, RelationToSource relation) {
1100    if (relation == kReference) {
1101      array_ = array;
1102    } else {
1103      Element* const copy = new Element[a_size];
1104      CopyArray(array, a_size, copy);
1105      array_ = copy;
1106    }
1107    size_ = a_size;
1108    relation_to_source_ = relation;
1109  }
1110
1111  const Element* array_;
1112  size_t size_;
1113  RelationToSource relation_to_source_;
1114
1115  GTEST_DISALLOW_ASSIGN_(NativeArray);
1116};
1117
1118}  // namespace internal
1119}  // namespace testing
1120
1121#define GTEST_MESSAGE_AT_(file, line, message, result_type) \
1122  ::testing::internal::AssertHelper(result_type, file, line, message) \
1123    = ::testing::Message()
1124
1125#define GTEST_MESSAGE_(message, result_type) \
1126  GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1127
1128#define GTEST_FATAL_FAILURE_(message) \
1129  return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1130
1131#define GTEST_NONFATAL_FAILURE_(message) \
1132  GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1133
1134#define GTEST_SUCCESS_(message) \
1135  GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1136
1137// Suppresses MSVC warnings 4072 (unreachable code) for the code following
1138// statement if it returns or throws (or doesn't return or throw in some
1139// situations).
1140#define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1141  if (::testing::internal::AlwaysTrue()) { statement; }
1142
1143#define GTEST_TEST_THROW_(statement, expected_exception, fail) \
1144  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1145  if (::testing::internal::ConstCharPtr gtest_msg = "") { \
1146    bool gtest_caught_expected = false; \
1147    try { \
1148      GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1149    } \
1150    catch (expected_exception const&) { \
1151      gtest_caught_expected = true; \
1152    } \
1153    catch (...) { \
1154      gtest_msg.value = \
1155          "Expected: " #statement " throws an exception of type " \
1156          #expected_exception ".\n  Actual: it throws a different type."; \
1157      goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1158    } \
1159    if (!gtest_caught_expected) { \
1160      gtest_msg.value = \
1161          "Expected: " #statement " throws an exception of type " \
1162          #expected_exception ".\n  Actual: it throws nothing."; \
1163      goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1164    } \
1165  } else \
1166    GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
1167      fail(gtest_msg.value)
1168
1169#define GTEST_TEST_NO_THROW_(statement, fail) \
1170  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1171  if (::testing::internal::AlwaysTrue()) { \
1172    try { \
1173      GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1174    } \
1175    catch (...) { \
1176      goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1177    } \
1178  } else \
1179    GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
1180      fail("Expected: " #statement " doesn't throw an exception.\n" \
1181           "  Actual: it throws.")
1182
1183#define GTEST_TEST_ANY_THROW_(statement, fail) \
1184  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1185  if (::testing::internal::AlwaysTrue()) { \
1186    bool gtest_caught_any = false; \
1187    try { \
1188      GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1189    } \
1190    catch (...) { \
1191      gtest_caught_any = true; \
1192    } \
1193    if (!gtest_caught_any) { \
1194      goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1195    } \
1196  } else \
1197    GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
1198      fail("Expected: " #statement " throws an exception.\n" \
1199           "  Actual: it doesn't.")
1200
1201
1202// Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1203// either a boolean expression or an AssertionResult. text is a textual
1204// represenation of expression as it was passed into the EXPECT_TRUE.
1205#define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1206  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1207  if (const ::testing::AssertionResult gtest_ar_ = \
1208      ::testing::AssertionResult(expression)) \
1209    ; \
1210  else \
1211    fail(::testing::internal::GetBoolAssertionFailureMessage(\
1212        gtest_ar_, text, #actual, #expected).c_str())
1213
1214#define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
1215  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1216  if (::testing::internal::AlwaysTrue()) { \
1217    ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
1218    GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1219    if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
1220      goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1221    } \
1222  } else \
1223    GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
1224      fail("Expected: " #statement " doesn't generate new fatal " \
1225           "failures in the current thread.\n" \
1226           "  Actual: it does.")
1227
1228// Expands to the name of the class that implements the given test.
1229#define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
1230  test_case_name##_##test_name##_Test
1231
1232// Helper macro for defining tests.
1233#define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
1234class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
1235 public:\
1236  GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
1237 private:\
1238  virtual void TestBody();\
1239  static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
1240  GTEST_DISALLOW_COPY_AND_ASSIGN_(\
1241      GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
1242};\
1243\
1244::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
1245  ::test_info_ =\
1246    ::testing::internal::MakeAndRegisterTestInfo(\
1247        #test_case_name, #test_name, NULL, NULL, \
1248        (parent_id), \
1249        parent_class::SetUpTestCase, \
1250        parent_class::TearDownTestCase, \
1251        new ::testing::internal::TestFactoryImpl<\
1252            GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
1253void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
1254
1255#endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
1256