u_gen_mipmap.c revision eafb7f234d11a290b00dcaf5492b9bdad1cf5148
1/**************************************************************************
2 *
3 * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 * Copyright 2008  VMware, Inc.  All rights reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29/**
30 * @file
31 * Mipmap generation utility
32 *
33 * @author Brian Paul
34 */
35
36
37#include "pipe/p_context.h"
38#include "util/u_debug.h"
39#include "pipe/p_defines.h"
40#include "util/u_inlines.h"
41#include "pipe/p_shader_tokens.h"
42#include "pipe/p_state.h"
43
44#include "util/u_format.h"
45#include "util/u_memory.h"
46#include "util/u_draw_quad.h"
47#include "util/u_gen_mipmap.h"
48#include "util/u_simple_shaders.h"
49#include "util/u_math.h"
50#include "util/u_texture.h"
51#include "util/u_half.h"
52#include "util/u_surface.h"
53
54#include "cso_cache/cso_context.h"
55
56
57struct gen_mipmap_state
58{
59   struct pipe_context *pipe;
60   struct cso_context *cso;
61
62   struct pipe_blend_state blend;
63   struct pipe_depth_stencil_alpha_state depthstencil;
64   struct pipe_rasterizer_state rasterizer;
65   struct pipe_sampler_state sampler;
66   struct pipe_clip_state clip;
67   struct pipe_vertex_element velem[2];
68
69   void *vs;
70   void *fs1d, *fs2d, *fs3d, *fsCube;
71
72   struct pipe_resource *vbuf;  /**< quad vertices */
73   unsigned vbuf_slot;
74
75   float vertices[4][2][4];   /**< vertex/texcoords for quad */
76};
77
78
79
80enum dtype
81{
82   DTYPE_UBYTE,
83   DTYPE_UBYTE_3_3_2,
84   DTYPE_USHORT,
85   DTYPE_USHORT_4_4_4_4,
86   DTYPE_USHORT_5_6_5,
87   DTYPE_USHORT_1_5_5_5_REV,
88   DTYPE_UINT,
89   DTYPE_FLOAT,
90   DTYPE_HALF_FLOAT
91};
92
93
94typedef uint16_t half_float;
95
96
97/**
98 * \name Support macros for do_row and do_row_3d
99 *
100 * The macro madness is here for two reasons.  First, it compacts the code
101 * slightly.  Second, it makes it much easier to adjust the specifics of the
102 * filter to tune the rounding characteristics.
103 */
104/*@{*/
105#define DECLARE_ROW_POINTERS(t, e) \
106      const t(*rowA)[e] = (const t(*)[e]) srcRowA; \
107      const t(*rowB)[e] = (const t(*)[e]) srcRowB; \
108      const t(*rowC)[e] = (const t(*)[e]) srcRowC; \
109      const t(*rowD)[e] = (const t(*)[e]) srcRowD; \
110      t(*dst)[e] = (t(*)[e]) dstRow
111
112#define DECLARE_ROW_POINTERS0(t) \
113      const t *rowA = (const t *) srcRowA; \
114      const t *rowB = (const t *) srcRowB; \
115      const t *rowC = (const t *) srcRowC; \
116      const t *rowD = (const t *) srcRowD; \
117      t *dst = (t *) dstRow
118
119#define FILTER_SUM_3D(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
120   ((unsigned) Aj + (unsigned) Ak \
121    + (unsigned) Bj + (unsigned) Bk \
122    + (unsigned) Cj + (unsigned) Ck \
123    + (unsigned) Dj + (unsigned) Dk \
124    + 4) >> 3
125
126#define FILTER_3D(e) \
127   do { \
128      dst[i][e] = FILTER_SUM_3D(rowA[j][e], rowA[k][e], \
129                                rowB[j][e], rowB[k][e], \
130                                rowC[j][e], rowC[k][e], \
131                                rowD[j][e], rowD[k][e]); \
132   } while(0)
133
134#define FILTER_F_3D(e) \
135   do { \
136      dst[i][e] = (rowA[j][e] + rowA[k][e] \
137                   + rowB[j][e] + rowB[k][e] \
138                   + rowC[j][e] + rowC[k][e] \
139                   + rowD[j][e] + rowD[k][e]) * 0.125F; \
140   } while(0)
141
142#define FILTER_HF_3D(e) \
143   do { \
144      const float aj = util_half_to_float(rowA[j][e]); \
145      const float ak = util_half_to_float(rowA[k][e]); \
146      const float bj = util_half_to_float(rowB[j][e]); \
147      const float bk = util_half_to_float(rowB[k][e]); \
148      const float cj = util_half_to_float(rowC[j][e]); \
149      const float ck = util_half_to_float(rowC[k][e]); \
150      const float dj = util_half_to_float(rowD[j][e]); \
151      const float dk = util_half_to_float(rowD[k][e]); \
152      dst[i][e] = util_float_to_half((aj + ak + bj + bk + cj + ck + dj + dk) \
153                                      * 0.125F); \
154   } while(0)
155/*@}*/
156
157
158/**
159 * Average together two rows of a source image to produce a single new
160 * row in the dest image.  It's legal for the two source rows to point
161 * to the same data.  The source width must be equal to either the
162 * dest width or two times the dest width.
163 * \param datatype  GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc.
164 * \param comps  number of components per pixel (1..4)
165 */
166static void
167do_row(enum dtype datatype, uint comps, int srcWidth,
168       const void *srcRowA, const void *srcRowB,
169       int dstWidth, void *dstRow)
170{
171   const uint k0 = (srcWidth == dstWidth) ? 0 : 1;
172   const uint colStride = (srcWidth == dstWidth) ? 1 : 2;
173
174   assert(comps >= 1);
175   assert(comps <= 4);
176
177   /* This assertion is no longer valid with non-power-of-2 textures
178   assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth);
179   */
180
181   if (datatype == DTYPE_UBYTE && comps == 4) {
182      uint i, j, k;
183      const ubyte(*rowA)[4] = (const ubyte(*)[4]) srcRowA;
184      const ubyte(*rowB)[4] = (const ubyte(*)[4]) srcRowB;
185      ubyte(*dst)[4] = (ubyte(*)[4]) dstRow;
186      for (i = j = 0, k = k0; i < (uint) dstWidth;
187           i++, j += colStride, k += colStride) {
188         dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
189         dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
190         dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
191         dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
192      }
193   }
194   else if (datatype == DTYPE_UBYTE && comps == 3) {
195      uint i, j, k;
196      const ubyte(*rowA)[3] = (const ubyte(*)[3]) srcRowA;
197      const ubyte(*rowB)[3] = (const ubyte(*)[3]) srcRowB;
198      ubyte(*dst)[3] = (ubyte(*)[3]) dstRow;
199      for (i = j = 0, k = k0; i < (uint) dstWidth;
200           i++, j += colStride, k += colStride) {
201         dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
202         dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
203         dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
204      }
205   }
206   else if (datatype == DTYPE_UBYTE && comps == 2) {
207      uint i, j, k;
208      const ubyte(*rowA)[2] = (const ubyte(*)[2]) srcRowA;
209      const ubyte(*rowB)[2] = (const ubyte(*)[2]) srcRowB;
210      ubyte(*dst)[2] = (ubyte(*)[2]) dstRow;
211      for (i = j = 0, k = k0; i < (uint) dstWidth;
212           i++, j += colStride, k += colStride) {
213         dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2;
214         dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2;
215      }
216   }
217   else if (datatype == DTYPE_UBYTE && comps == 1) {
218      uint i, j, k;
219      const ubyte *rowA = (const ubyte *) srcRowA;
220      const ubyte *rowB = (const ubyte *) srcRowB;
221      ubyte *dst = (ubyte *) dstRow;
222      for (i = j = 0, k = k0; i < (uint) dstWidth;
223           i++, j += colStride, k += colStride) {
224         dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2;
225      }
226   }
227
228   else if (datatype == DTYPE_USHORT && comps == 4) {
229      uint i, j, k;
230      const ushort(*rowA)[4] = (const ushort(*)[4]) srcRowA;
231      const ushort(*rowB)[4] = (const ushort(*)[4]) srcRowB;
232      ushort(*dst)[4] = (ushort(*)[4]) dstRow;
233      for (i = j = 0, k = k0; i < (uint) dstWidth;
234           i++, j += colStride, k += colStride) {
235         dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
236         dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
237         dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
238         dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
239      }
240   }
241   else if (datatype == DTYPE_USHORT && comps == 3) {
242      uint i, j, k;
243      const ushort(*rowA)[3] = (const ushort(*)[3]) srcRowA;
244      const ushort(*rowB)[3] = (const ushort(*)[3]) srcRowB;
245      ushort(*dst)[3] = (ushort(*)[3]) dstRow;
246      for (i = j = 0, k = k0; i < (uint) dstWidth;
247           i++, j += colStride, k += colStride) {
248         dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
249         dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
250         dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
251      }
252   }
253   else if (datatype == DTYPE_USHORT && comps == 2) {
254      uint i, j, k;
255      const ushort(*rowA)[2] = (const ushort(*)[2]) srcRowA;
256      const ushort(*rowB)[2] = (const ushort(*)[2]) srcRowB;
257      ushort(*dst)[2] = (ushort(*)[2]) dstRow;
258      for (i = j = 0, k = k0; i < (uint) dstWidth;
259           i++, j += colStride, k += colStride) {
260         dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
261         dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
262      }
263   }
264   else if (datatype == DTYPE_USHORT && comps == 1) {
265      uint i, j, k;
266      const ushort *rowA = (const ushort *) srcRowA;
267      const ushort *rowB = (const ushort *) srcRowB;
268      ushort *dst = (ushort *) dstRow;
269      for (i = j = 0, k = k0; i < (uint) dstWidth;
270           i++, j += colStride, k += colStride) {
271         dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
272      }
273   }
274
275   else if (datatype == DTYPE_FLOAT && comps == 4) {
276      uint i, j, k;
277      const float(*rowA)[4] = (const float(*)[4]) srcRowA;
278      const float(*rowB)[4] = (const float(*)[4]) srcRowB;
279      float(*dst)[4] = (float(*)[4]) dstRow;
280      for (i = j = 0, k = k0; i < (uint) dstWidth;
281           i++, j += colStride, k += colStride) {
282         dst[i][0] = (rowA[j][0] + rowA[k][0] +
283                      rowB[j][0] + rowB[k][0]) * 0.25F;
284         dst[i][1] = (rowA[j][1] + rowA[k][1] +
285                      rowB[j][1] + rowB[k][1]) * 0.25F;
286         dst[i][2] = (rowA[j][2] + rowA[k][2] +
287                      rowB[j][2] + rowB[k][2]) * 0.25F;
288         dst[i][3] = (rowA[j][3] + rowA[k][3] +
289                      rowB[j][3] + rowB[k][3]) * 0.25F;
290      }
291   }
292   else if (datatype == DTYPE_FLOAT && comps == 3) {
293      uint i, j, k;
294      const float(*rowA)[3] = (const float(*)[3]) srcRowA;
295      const float(*rowB)[3] = (const float(*)[3]) srcRowB;
296      float(*dst)[3] = (float(*)[3]) dstRow;
297      for (i = j = 0, k = k0; i < (uint) dstWidth;
298           i++, j += colStride, k += colStride) {
299         dst[i][0] = (rowA[j][0] + rowA[k][0] +
300                      rowB[j][0] + rowB[k][0]) * 0.25F;
301         dst[i][1] = (rowA[j][1] + rowA[k][1] +
302                      rowB[j][1] + rowB[k][1]) * 0.25F;
303         dst[i][2] = (rowA[j][2] + rowA[k][2] +
304                      rowB[j][2] + rowB[k][2]) * 0.25F;
305      }
306   }
307   else if (datatype == DTYPE_FLOAT && comps == 2) {
308      uint i, j, k;
309      const float(*rowA)[2] = (const float(*)[2]) srcRowA;
310      const float(*rowB)[2] = (const float(*)[2]) srcRowB;
311      float(*dst)[2] = (float(*)[2]) dstRow;
312      for (i = j = 0, k = k0; i < (uint) dstWidth;
313           i++, j += colStride, k += colStride) {
314         dst[i][0] = (rowA[j][0] + rowA[k][0] +
315                      rowB[j][0] + rowB[k][0]) * 0.25F;
316         dst[i][1] = (rowA[j][1] + rowA[k][1] +
317                      rowB[j][1] + rowB[k][1]) * 0.25F;
318      }
319   }
320   else if (datatype == DTYPE_FLOAT && comps == 1) {
321      uint i, j, k;
322      const float *rowA = (const float *) srcRowA;
323      const float *rowB = (const float *) srcRowB;
324      float *dst = (float *) dstRow;
325      for (i = j = 0, k = k0; i < (uint) dstWidth;
326           i++, j += colStride, k += colStride) {
327         dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F;
328      }
329   }
330
331   else if (datatype == DTYPE_HALF_FLOAT && comps == 4) {
332      uint i, j, k, comp;
333      const half_float(*rowA)[4] = (const half_float(*)[4]) srcRowA;
334      const half_float(*rowB)[4] = (const half_float(*)[4]) srcRowB;
335      half_float(*dst)[4] = (half_float(*)[4]) dstRow;
336      for (i = j = 0, k = k0; i < (uint) dstWidth;
337           i++, j += colStride, k += colStride) {
338         for (comp = 0; comp < 4; comp++) {
339            float aj, ak, bj, bk;
340            aj = util_half_to_float(rowA[j][comp]);
341            ak = util_half_to_float(rowA[k][comp]);
342            bj = util_half_to_float(rowB[j][comp]);
343            bk = util_half_to_float(rowB[k][comp]);
344            dst[i][comp] = util_float_to_half((aj + ak + bj + bk) * 0.25F);
345         }
346      }
347   }
348   else if (datatype == DTYPE_HALF_FLOAT && comps == 3) {
349      uint i, j, k, comp;
350      const half_float(*rowA)[3] = (const half_float(*)[3]) srcRowA;
351      const half_float(*rowB)[3] = (const half_float(*)[3]) srcRowB;
352      half_float(*dst)[3] = (half_float(*)[3]) dstRow;
353      for (i = j = 0, k = k0; i < (uint) dstWidth;
354           i++, j += colStride, k += colStride) {
355         for (comp = 0; comp < 3; comp++) {
356            float aj, ak, bj, bk;
357            aj = util_half_to_float(rowA[j][comp]);
358            ak = util_half_to_float(rowA[k][comp]);
359            bj = util_half_to_float(rowB[j][comp]);
360            bk = util_half_to_float(rowB[k][comp]);
361            dst[i][comp] = util_float_to_half((aj + ak + bj + bk) * 0.25F);
362         }
363      }
364   }
365   else if (datatype == DTYPE_HALF_FLOAT && comps == 2) {
366      uint i, j, k, comp;
367      const half_float(*rowA)[2] = (const half_float(*)[2]) srcRowA;
368      const half_float(*rowB)[2] = (const half_float(*)[2]) srcRowB;
369      half_float(*dst)[2] = (half_float(*)[2]) dstRow;
370      for (i = j = 0, k = k0; i < (uint) dstWidth;
371           i++, j += colStride, k += colStride) {
372         for (comp = 0; comp < 2; comp++) {
373            float aj, ak, bj, bk;
374            aj = util_half_to_float(rowA[j][comp]);
375            ak = util_half_to_float(rowA[k][comp]);
376            bj = util_half_to_float(rowB[j][comp]);
377            bk = util_half_to_float(rowB[k][comp]);
378            dst[i][comp] = util_float_to_half((aj + ak + bj + bk) * 0.25F);
379         }
380      }
381   }
382   else if (datatype == DTYPE_HALF_FLOAT && comps == 1) {
383      uint i, j, k;
384      const half_float *rowA = (const half_float *) srcRowA;
385      const half_float *rowB = (const half_float *) srcRowB;
386      half_float *dst = (half_float *) dstRow;
387      for (i = j = 0, k = k0; i < (uint) dstWidth;
388           i++, j += colStride, k += colStride) {
389         float aj, ak, bj, bk;
390         aj = util_half_to_float(rowA[j]);
391         ak = util_half_to_float(rowA[k]);
392         bj = util_half_to_float(rowB[j]);
393         bk = util_half_to_float(rowB[k]);
394         dst[i] = util_float_to_half((aj + ak + bj + bk) * 0.25F);
395      }
396   }
397
398   else if (datatype == DTYPE_UINT && comps == 1) {
399      uint i, j, k;
400      const uint *rowA = (const uint *) srcRowA;
401      const uint *rowB = (const uint *) srcRowB;
402      uint *dst = (uint *) dstRow;
403      for (i = j = 0, k = k0; i < (uint) dstWidth;
404           i++, j += colStride, k += colStride) {
405         dst[i] = rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4;
406      }
407   }
408
409   else if (datatype == DTYPE_USHORT_5_6_5 && comps == 3) {
410      uint i, j, k;
411      const ushort *rowA = (const ushort *) srcRowA;
412      const ushort *rowB = (const ushort *) srcRowB;
413      ushort *dst = (ushort *) dstRow;
414      for (i = j = 0, k = k0; i < (uint) dstWidth;
415           i++, j += colStride, k += colStride) {
416         const int rowAr0 = rowA[j] & 0x1f;
417         const int rowAr1 = rowA[k] & 0x1f;
418         const int rowBr0 = rowB[j] & 0x1f;
419         const int rowBr1 = rowB[k] & 0x1f;
420         const int rowAg0 = (rowA[j] >> 5) & 0x3f;
421         const int rowAg1 = (rowA[k] >> 5) & 0x3f;
422         const int rowBg0 = (rowB[j] >> 5) & 0x3f;
423         const int rowBg1 = (rowB[k] >> 5) & 0x3f;
424         const int rowAb0 = (rowA[j] >> 11) & 0x1f;
425         const int rowAb1 = (rowA[k] >> 11) & 0x1f;
426         const int rowBb0 = (rowB[j] >> 11) & 0x1f;
427         const int rowBb1 = (rowB[k] >> 11) & 0x1f;
428         const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
429         const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
430         const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
431         dst[i] = (blue << 11) | (green << 5) | red;
432      }
433   }
434   else if (datatype == DTYPE_USHORT_4_4_4_4 && comps == 4) {
435      uint i, j, k;
436      const ushort *rowA = (const ushort *) srcRowA;
437      const ushort *rowB = (const ushort *) srcRowB;
438      ushort *dst = (ushort *) dstRow;
439      for (i = j = 0, k = k0; i < (uint) dstWidth;
440           i++, j += colStride, k += colStride) {
441         const int rowAr0 = rowA[j] & 0xf;
442         const int rowAr1 = rowA[k] & 0xf;
443         const int rowBr0 = rowB[j] & 0xf;
444         const int rowBr1 = rowB[k] & 0xf;
445         const int rowAg0 = (rowA[j] >> 4) & 0xf;
446         const int rowAg1 = (rowA[k] >> 4) & 0xf;
447         const int rowBg0 = (rowB[j] >> 4) & 0xf;
448         const int rowBg1 = (rowB[k] >> 4) & 0xf;
449         const int rowAb0 = (rowA[j] >> 8) & 0xf;
450         const int rowAb1 = (rowA[k] >> 8) & 0xf;
451         const int rowBb0 = (rowB[j] >> 8) & 0xf;
452         const int rowBb1 = (rowB[k] >> 8) & 0xf;
453         const int rowAa0 = (rowA[j] >> 12) & 0xf;
454         const int rowAa1 = (rowA[k] >> 12) & 0xf;
455         const int rowBa0 = (rowB[j] >> 12) & 0xf;
456         const int rowBa1 = (rowB[k] >> 12) & 0xf;
457         const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
458         const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
459         const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
460         const int alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
461         dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red;
462      }
463   }
464   else if (datatype == DTYPE_USHORT_1_5_5_5_REV && comps == 4) {
465      uint i, j, k;
466      const ushort *rowA = (const ushort *) srcRowA;
467      const ushort *rowB = (const ushort *) srcRowB;
468      ushort *dst = (ushort *) dstRow;
469      for (i = j = 0, k = k0; i < (uint) dstWidth;
470           i++, j += colStride, k += colStride) {
471         const int rowAr0 = rowA[j] & 0x1f;
472         const int rowAr1 = rowA[k] & 0x1f;
473         const int rowBr0 = rowB[j] & 0x1f;
474         const int rowBr1 = rowB[k] & 0x1f;
475         const int rowAg0 = (rowA[j] >> 5) & 0x1f;
476         const int rowAg1 = (rowA[k] >> 5) & 0x1f;
477         const int rowBg0 = (rowB[j] >> 5) & 0x1f;
478         const int rowBg1 = (rowB[k] >> 5) & 0x1f;
479         const int rowAb0 = (rowA[j] >> 10) & 0x1f;
480         const int rowAb1 = (rowA[k] >> 10) & 0x1f;
481         const int rowBb0 = (rowB[j] >> 10) & 0x1f;
482         const int rowBb1 = (rowB[k] >> 10) & 0x1f;
483         const int rowAa0 = (rowA[j] >> 15) & 0x1;
484         const int rowAa1 = (rowA[k] >> 15) & 0x1;
485         const int rowBa0 = (rowB[j] >> 15) & 0x1;
486         const int rowBa1 = (rowB[k] >> 15) & 0x1;
487         const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
488         const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
489         const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
490         const int alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
491         dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red;
492      }
493   }
494   else if (datatype == DTYPE_UBYTE_3_3_2 && comps == 3) {
495      uint i, j, k;
496      const ubyte *rowA = (const ubyte *) srcRowA;
497      const ubyte *rowB = (const ubyte *) srcRowB;
498      ubyte *dst = (ubyte *) dstRow;
499      for (i = j = 0, k = k0; i < (uint) dstWidth;
500           i++, j += colStride, k += colStride) {
501         const int rowAr0 = rowA[j] & 0x3;
502         const int rowAr1 = rowA[k] & 0x3;
503         const int rowBr0 = rowB[j] & 0x3;
504         const int rowBr1 = rowB[k] & 0x3;
505         const int rowAg0 = (rowA[j] >> 2) & 0x7;
506         const int rowAg1 = (rowA[k] >> 2) & 0x7;
507         const int rowBg0 = (rowB[j] >> 2) & 0x7;
508         const int rowBg1 = (rowB[k] >> 2) & 0x7;
509         const int rowAb0 = (rowA[j] >> 5) & 0x7;
510         const int rowAb1 = (rowA[k] >> 5) & 0x7;
511         const int rowBb0 = (rowB[j] >> 5) & 0x7;
512         const int rowBb1 = (rowB[k] >> 5) & 0x7;
513         const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
514         const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
515         const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
516         dst[i] = (blue << 5) | (green << 2) | red;
517      }
518   }
519   else {
520      debug_printf("bad format in do_row()");
521   }
522}
523
524
525/**
526 * Average together four rows of a source image to produce a single new
527 * row in the dest image.  It's legal for the two source rows to point
528 * to the same data.  The source width must be equal to either the
529 * dest width or two times the dest width.
530 *
531 * \param datatype  GL pixel type \c GL_UNSIGNED_BYTE, \c GL_UNSIGNED_SHORT,
532 *                  \c GL_FLOAT, etc.
533 * \param comps     number of components per pixel (1..4)
534 * \param srcWidth  Width of a row in the source data
535 * \param srcRowA   Pointer to one of the rows of source data
536 * \param srcRowB   Pointer to one of the rows of source data
537 * \param srcRowC   Pointer to one of the rows of source data
538 * \param srcRowD   Pointer to one of the rows of source data
539 * \param dstWidth  Width of a row in the destination data
540 * \param srcRowA   Pointer to the row of destination data
541 */
542static void
543do_row_3D(enum dtype datatype, uint comps, int srcWidth,
544          const void *srcRowA, const void *srcRowB,
545          const void *srcRowC, const void *srcRowD,
546          int dstWidth, void *dstRow)
547{
548   const uint k0 = (srcWidth == dstWidth) ? 0 : 1;
549   const uint colStride = (srcWidth == dstWidth) ? 1 : 2;
550   uint i, j, k;
551
552   assert(comps >= 1);
553   assert(comps <= 4);
554
555   if ((datatype == DTYPE_UBYTE) && (comps == 4)) {
556      DECLARE_ROW_POINTERS(ubyte, 4);
557
558      for (i = j = 0, k = k0; i < (uint) dstWidth;
559           i++, j += colStride, k += colStride) {
560         FILTER_3D(0);
561         FILTER_3D(1);
562         FILTER_3D(2);
563         FILTER_3D(3);
564      }
565   }
566   else if ((datatype == DTYPE_UBYTE) && (comps == 3)) {
567      DECLARE_ROW_POINTERS(ubyte, 3);
568
569      for (i = j = 0, k = k0; i < (uint) dstWidth;
570           i++, j += colStride, k += colStride) {
571         FILTER_3D(0);
572         FILTER_3D(1);
573         FILTER_3D(2);
574      }
575   }
576   else if ((datatype == DTYPE_UBYTE) && (comps == 2)) {
577      DECLARE_ROW_POINTERS(ubyte, 2);
578
579      for (i = j = 0, k = k0; i < (uint) dstWidth;
580           i++, j += colStride, k += colStride) {
581         FILTER_3D(0);
582         FILTER_3D(1);
583      }
584   }
585   else if ((datatype == DTYPE_UBYTE) && (comps == 1)) {
586      DECLARE_ROW_POINTERS(ubyte, 1);
587
588      for (i = j = 0, k = k0; i < (uint) dstWidth;
589           i++, j += colStride, k += colStride) {
590         FILTER_3D(0);
591      }
592   }
593   else if ((datatype == DTYPE_USHORT) && (comps == 4)) {
594      DECLARE_ROW_POINTERS(ushort, 4);
595
596      for (i = j = 0, k = k0; i < (uint) dstWidth;
597           i++, j += colStride, k += colStride) {
598         FILTER_3D(0);
599         FILTER_3D(1);
600         FILTER_3D(2);
601         FILTER_3D(3);
602      }
603   }
604   else if ((datatype == DTYPE_USHORT) && (comps == 3)) {
605      DECLARE_ROW_POINTERS(ushort, 3);
606
607      for (i = j = 0, k = k0; i < (uint) dstWidth;
608           i++, j += colStride, k += colStride) {
609         FILTER_3D(0);
610         FILTER_3D(1);
611         FILTER_3D(2);
612      }
613   }
614   else if ((datatype == DTYPE_USHORT) && (comps == 2)) {
615      DECLARE_ROW_POINTERS(ushort, 2);
616
617      for (i = j = 0, k = k0; i < (uint) dstWidth;
618           i++, j += colStride, k += colStride) {
619         FILTER_3D(0);
620         FILTER_3D(1);
621      }
622   }
623   else if ((datatype == DTYPE_USHORT) && (comps == 1)) {
624      DECLARE_ROW_POINTERS(ushort, 1);
625
626      for (i = j = 0, k = k0; i < (uint) dstWidth;
627           i++, j += colStride, k += colStride) {
628         FILTER_3D(0);
629      }
630   }
631   else if ((datatype == DTYPE_FLOAT) && (comps == 4)) {
632      DECLARE_ROW_POINTERS(float, 4);
633
634      for (i = j = 0, k = k0; i < (uint) dstWidth;
635           i++, j += colStride, k += colStride) {
636         FILTER_F_3D(0);
637         FILTER_F_3D(1);
638         FILTER_F_3D(2);
639         FILTER_F_3D(3);
640      }
641   }
642   else if ((datatype == DTYPE_FLOAT) && (comps == 3)) {
643      DECLARE_ROW_POINTERS(float, 3);
644
645      for (i = j = 0, k = k0; i < (uint) dstWidth;
646           i++, j += colStride, k += colStride) {
647         FILTER_F_3D(0);
648         FILTER_F_3D(1);
649         FILTER_F_3D(2);
650      }
651   }
652   else if ((datatype == DTYPE_FLOAT) && (comps == 2)) {
653      DECLARE_ROW_POINTERS(float, 2);
654
655      for (i = j = 0, k = k0; i < (uint) dstWidth;
656           i++, j += colStride, k += colStride) {
657         FILTER_F_3D(0);
658         FILTER_F_3D(1);
659      }
660   }
661   else if ((datatype == DTYPE_FLOAT) && (comps == 1)) {
662      DECLARE_ROW_POINTERS(float, 1);
663
664      for (i = j = 0, k = k0; i < (uint) dstWidth;
665           i++, j += colStride, k += colStride) {
666         FILTER_F_3D(0);
667      }
668   }
669   else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 4)) {
670      DECLARE_ROW_POINTERS(half_float, 4);
671
672      for (i = j = 0, k = k0; i < (uint) dstWidth;
673           i++, j += colStride, k += colStride) {
674         FILTER_HF_3D(0);
675         FILTER_HF_3D(1);
676         FILTER_HF_3D(2);
677         FILTER_HF_3D(3);
678      }
679   }
680   else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 3)) {
681      DECLARE_ROW_POINTERS(half_float, 4);
682
683      for (i = j = 0, k = k0; i < (uint) dstWidth;
684           i++, j += colStride, k += colStride) {
685         FILTER_HF_3D(0);
686         FILTER_HF_3D(1);
687         FILTER_HF_3D(2);
688      }
689   }
690   else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 2)) {
691      DECLARE_ROW_POINTERS(half_float, 4);
692
693      for (i = j = 0, k = k0; i < (uint) dstWidth;
694           i++, j += colStride, k += colStride) {
695         FILTER_HF_3D(0);
696         FILTER_HF_3D(1);
697      }
698   }
699   else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 1)) {
700      DECLARE_ROW_POINTERS(half_float, 4);
701
702      for (i = j = 0, k = k0; i < (uint) dstWidth;
703           i++, j += colStride, k += colStride) {
704         FILTER_HF_3D(0);
705      }
706   }
707   else if ((datatype == DTYPE_UINT) && (comps == 1)) {
708      const uint *rowA = (const uint *) srcRowA;
709      const uint *rowB = (const uint *) srcRowB;
710      const uint *rowC = (const uint *) srcRowC;
711      const uint *rowD = (const uint *) srcRowD;
712      float *dst = (float *) dstRow;
713
714      for (i = j = 0, k = k0; i < (uint) dstWidth;
715           i++, j += colStride, k += colStride) {
716         const uint64_t tmp = (((uint64_t) rowA[j] + (uint64_t) rowA[k])
717                               + ((uint64_t) rowB[j] + (uint64_t) rowB[k])
718                               + ((uint64_t) rowC[j] + (uint64_t) rowC[k])
719                               + ((uint64_t) rowD[j] + (uint64_t) rowD[k]));
720         dst[i] = (float)((double) tmp * 0.125);
721      }
722   }
723   else if ((datatype == DTYPE_USHORT_5_6_5) && (comps == 3)) {
724      DECLARE_ROW_POINTERS0(ushort);
725
726      for (i = j = 0, k = k0; i < (uint) dstWidth;
727           i++, j += colStride, k += colStride) {
728         const int rowAr0 = rowA[j] & 0x1f;
729         const int rowAr1 = rowA[k] & 0x1f;
730         const int rowBr0 = rowB[j] & 0x1f;
731         const int rowBr1 = rowB[k] & 0x1f;
732         const int rowCr0 = rowC[j] & 0x1f;
733         const int rowCr1 = rowC[k] & 0x1f;
734         const int rowDr0 = rowD[j] & 0x1f;
735         const int rowDr1 = rowD[k] & 0x1f;
736         const int rowAg0 = (rowA[j] >> 5) & 0x3f;
737         const int rowAg1 = (rowA[k] >> 5) & 0x3f;
738         const int rowBg0 = (rowB[j] >> 5) & 0x3f;
739         const int rowBg1 = (rowB[k] >> 5) & 0x3f;
740         const int rowCg0 = (rowC[j] >> 5) & 0x3f;
741         const int rowCg1 = (rowC[k] >> 5) & 0x3f;
742         const int rowDg0 = (rowD[j] >> 5) & 0x3f;
743         const int rowDg1 = (rowD[k] >> 5) & 0x3f;
744         const int rowAb0 = (rowA[j] >> 11) & 0x1f;
745         const int rowAb1 = (rowA[k] >> 11) & 0x1f;
746         const int rowBb0 = (rowB[j] >> 11) & 0x1f;
747         const int rowBb1 = (rowB[k] >> 11) & 0x1f;
748         const int rowCb0 = (rowC[j] >> 11) & 0x1f;
749         const int rowCb1 = (rowC[k] >> 11) & 0x1f;
750         const int rowDb0 = (rowD[j] >> 11) & 0x1f;
751         const int rowDb1 = (rowD[k] >> 11) & 0x1f;
752         const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
753                                       rowCr0, rowCr1, rowDr0, rowDr1);
754         const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
755                                       rowCg0, rowCg1, rowDg0, rowDg1);
756         const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
757                                       rowCb0, rowCb1, rowDb0, rowDb1);
758         dst[i] = (b << 11) | (g << 5) | r;
759      }
760   }
761   else if ((datatype == DTYPE_USHORT_4_4_4_4) && (comps == 4)) {
762      DECLARE_ROW_POINTERS0(ushort);
763
764      for (i = j = 0, k = k0; i < (uint) dstWidth;
765           i++, j += colStride, k += colStride) {
766         const int rowAr0 = rowA[j] & 0xf;
767         const int rowAr1 = rowA[k] & 0xf;
768         const int rowBr0 = rowB[j] & 0xf;
769         const int rowBr1 = rowB[k] & 0xf;
770         const int rowCr0 = rowC[j] & 0xf;
771         const int rowCr1 = rowC[k] & 0xf;
772         const int rowDr0 = rowD[j] & 0xf;
773         const int rowDr1 = rowD[k] & 0xf;
774         const int rowAg0 = (rowA[j] >> 4) & 0xf;
775         const int rowAg1 = (rowA[k] >> 4) & 0xf;
776         const int rowBg0 = (rowB[j] >> 4) & 0xf;
777         const int rowBg1 = (rowB[k] >> 4) & 0xf;
778         const int rowCg0 = (rowC[j] >> 4) & 0xf;
779         const int rowCg1 = (rowC[k] >> 4) & 0xf;
780         const int rowDg0 = (rowD[j] >> 4) & 0xf;
781         const int rowDg1 = (rowD[k] >> 4) & 0xf;
782         const int rowAb0 = (rowA[j] >> 8) & 0xf;
783         const int rowAb1 = (rowA[k] >> 8) & 0xf;
784         const int rowBb0 = (rowB[j] >> 8) & 0xf;
785         const int rowBb1 = (rowB[k] >> 8) & 0xf;
786         const int rowCb0 = (rowC[j] >> 8) & 0xf;
787         const int rowCb1 = (rowC[k] >> 8) & 0xf;
788         const int rowDb0 = (rowD[j] >> 8) & 0xf;
789         const int rowDb1 = (rowD[k] >> 8) & 0xf;
790         const int rowAa0 = (rowA[j] >> 12) & 0xf;
791         const int rowAa1 = (rowA[k] >> 12) & 0xf;
792         const int rowBa0 = (rowB[j] >> 12) & 0xf;
793         const int rowBa1 = (rowB[k] >> 12) & 0xf;
794         const int rowCa0 = (rowC[j] >> 12) & 0xf;
795         const int rowCa1 = (rowC[k] >> 12) & 0xf;
796         const int rowDa0 = (rowD[j] >> 12) & 0xf;
797         const int rowDa1 = (rowD[k] >> 12) & 0xf;
798         const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
799                                       rowCr0, rowCr1, rowDr0, rowDr1);
800         const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
801                                       rowCg0, rowCg1, rowDg0, rowDg1);
802         const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
803                                       rowCb0, rowCb1, rowDb0, rowDb1);
804         const int a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
805                                       rowCa0, rowCa1, rowDa0, rowDa1);
806
807         dst[i] = (a << 12) | (b << 8) | (g << 4) | r;
808      }
809   }
810   else if ((datatype == DTYPE_USHORT_1_5_5_5_REV) && (comps == 4)) {
811      DECLARE_ROW_POINTERS0(ushort);
812
813      for (i = j = 0, k = k0; i < (uint) dstWidth;
814           i++, j += colStride, k += colStride) {
815         const int rowAr0 = rowA[j] & 0x1f;
816         const int rowAr1 = rowA[k] & 0x1f;
817         const int rowBr0 = rowB[j] & 0x1f;
818         const int rowBr1 = rowB[k] & 0x1f;
819         const int rowCr0 = rowC[j] & 0x1f;
820         const int rowCr1 = rowC[k] & 0x1f;
821         const int rowDr0 = rowD[j] & 0x1f;
822         const int rowDr1 = rowD[k] & 0x1f;
823         const int rowAg0 = (rowA[j] >> 5) & 0x1f;
824         const int rowAg1 = (rowA[k] >> 5) & 0x1f;
825         const int rowBg0 = (rowB[j] >> 5) & 0x1f;
826         const int rowBg1 = (rowB[k] >> 5) & 0x1f;
827         const int rowCg0 = (rowC[j] >> 5) & 0x1f;
828         const int rowCg1 = (rowC[k] >> 5) & 0x1f;
829         const int rowDg0 = (rowD[j] >> 5) & 0x1f;
830         const int rowDg1 = (rowD[k] >> 5) & 0x1f;
831         const int rowAb0 = (rowA[j] >> 10) & 0x1f;
832         const int rowAb1 = (rowA[k] >> 10) & 0x1f;
833         const int rowBb0 = (rowB[j] >> 10) & 0x1f;
834         const int rowBb1 = (rowB[k] >> 10) & 0x1f;
835         const int rowCb0 = (rowC[j] >> 10) & 0x1f;
836         const int rowCb1 = (rowC[k] >> 10) & 0x1f;
837         const int rowDb0 = (rowD[j] >> 10) & 0x1f;
838         const int rowDb1 = (rowD[k] >> 10) & 0x1f;
839         const int rowAa0 = (rowA[j] >> 15) & 0x1;
840         const int rowAa1 = (rowA[k] >> 15) & 0x1;
841         const int rowBa0 = (rowB[j] >> 15) & 0x1;
842         const int rowBa1 = (rowB[k] >> 15) & 0x1;
843         const int rowCa0 = (rowC[j] >> 15) & 0x1;
844         const int rowCa1 = (rowC[k] >> 15) & 0x1;
845         const int rowDa0 = (rowD[j] >> 15) & 0x1;
846         const int rowDa1 = (rowD[k] >> 15) & 0x1;
847         const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
848                                       rowCr0, rowCr1, rowDr0, rowDr1);
849         const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
850                                       rowCg0, rowCg1, rowDg0, rowDg1);
851         const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
852                                       rowCb0, rowCb1, rowDb0, rowDb1);
853         const int a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
854                                       rowCa0, rowCa1, rowDa0, rowDa1);
855
856         dst[i] = (a << 15) | (b << 10) | (g << 5) | r;
857      }
858   }
859   else if ((datatype == DTYPE_UBYTE_3_3_2) && (comps == 3)) {
860      DECLARE_ROW_POINTERS0(ushort);
861
862      for (i = j = 0, k = k0; i < (uint) dstWidth;
863           i++, j += colStride, k += colStride) {
864         const int rowAr0 = rowA[j] & 0x3;
865         const int rowAr1 = rowA[k] & 0x3;
866         const int rowBr0 = rowB[j] & 0x3;
867         const int rowBr1 = rowB[k] & 0x3;
868         const int rowCr0 = rowC[j] & 0x3;
869         const int rowCr1 = rowC[k] & 0x3;
870         const int rowDr0 = rowD[j] & 0x3;
871         const int rowDr1 = rowD[k] & 0x3;
872         const int rowAg0 = (rowA[j] >> 2) & 0x7;
873         const int rowAg1 = (rowA[k] >> 2) & 0x7;
874         const int rowBg0 = (rowB[j] >> 2) & 0x7;
875         const int rowBg1 = (rowB[k] >> 2) & 0x7;
876         const int rowCg0 = (rowC[j] >> 2) & 0x7;
877         const int rowCg1 = (rowC[k] >> 2) & 0x7;
878         const int rowDg0 = (rowD[j] >> 2) & 0x7;
879         const int rowDg1 = (rowD[k] >> 2) & 0x7;
880         const int rowAb0 = (rowA[j] >> 5) & 0x7;
881         const int rowAb1 = (rowA[k] >> 5) & 0x7;
882         const int rowBb0 = (rowB[j] >> 5) & 0x7;
883         const int rowBb1 = (rowB[k] >> 5) & 0x7;
884         const int rowCb0 = (rowC[j] >> 5) & 0x7;
885         const int rowCb1 = (rowC[k] >> 5) & 0x7;
886         const int rowDb0 = (rowD[j] >> 5) & 0x7;
887         const int rowDb1 = (rowD[k] >> 5) & 0x7;
888         const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
889                                       rowCr0, rowCr1, rowDr0, rowDr1);
890         const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
891                                       rowCg0, rowCg1, rowDg0, rowDg1);
892         const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
893                                       rowCb0, rowCb1, rowDb0, rowDb1);
894         dst[i] = (b << 5) | (g << 2) | r;
895      }
896   }
897   else {
898      debug_printf("bad format in do_row_3D()");
899   }
900}
901
902
903
904static void
905format_to_type_comps(enum pipe_format pformat,
906                     enum dtype *datatype, uint *comps)
907{
908   /* XXX I think this could be implemented in terms of the pf_*() functions */
909   switch (pformat) {
910   case PIPE_FORMAT_B8G8R8A8_UNORM:
911   case PIPE_FORMAT_B8G8R8X8_UNORM:
912   case PIPE_FORMAT_A8R8G8B8_UNORM:
913   case PIPE_FORMAT_X8R8G8B8_UNORM:
914   case PIPE_FORMAT_A8B8G8R8_SRGB:
915   case PIPE_FORMAT_X8B8G8R8_SRGB:
916   case PIPE_FORMAT_B8G8R8A8_SRGB:
917   case PIPE_FORMAT_B8G8R8X8_SRGB:
918   case PIPE_FORMAT_A8R8G8B8_SRGB:
919   case PIPE_FORMAT_X8R8G8B8_SRGB:
920   case PIPE_FORMAT_R8G8B8_SRGB:
921      *datatype = DTYPE_UBYTE;
922      *comps = 4;
923      return;
924   case PIPE_FORMAT_B5G5R5X1_UNORM:
925   case PIPE_FORMAT_B5G5R5A1_UNORM:
926      *datatype = DTYPE_USHORT_1_5_5_5_REV;
927      *comps = 4;
928      return;
929   case PIPE_FORMAT_B4G4R4A4_UNORM:
930      *datatype = DTYPE_USHORT_4_4_4_4;
931      *comps = 4;
932      return;
933   case PIPE_FORMAT_B5G6R5_UNORM:
934      *datatype = DTYPE_USHORT_5_6_5;
935      *comps = 3;
936      return;
937   case PIPE_FORMAT_L8_UNORM:
938   case PIPE_FORMAT_L8_SRGB:
939   case PIPE_FORMAT_A8_UNORM:
940   case PIPE_FORMAT_I8_UNORM:
941      *datatype = DTYPE_UBYTE;
942      *comps = 1;
943      return;
944   case PIPE_FORMAT_L8A8_UNORM:
945   case PIPE_FORMAT_L8A8_SRGB:
946      *datatype = DTYPE_UBYTE;
947      *comps = 2;
948      return;
949   default:
950      assert(0);
951      *datatype = DTYPE_UBYTE;
952      *comps = 0;
953      break;
954   }
955}
956
957
958static void
959reduce_1d(enum pipe_format pformat,
960          int srcWidth, const ubyte *srcPtr,
961          int dstWidth, ubyte *dstPtr)
962{
963   enum dtype datatype;
964   uint comps;
965
966   format_to_type_comps(pformat, &datatype, &comps);
967
968   /* we just duplicate the input row, kind of hack, saves code */
969   do_row(datatype, comps,
970          srcWidth, srcPtr, srcPtr,
971          dstWidth, dstPtr);
972}
973
974
975/**
976 * Strides are in bytes.  If zero, it'll be computed as width * bpp.
977 */
978static void
979reduce_2d(enum pipe_format pformat,
980          int srcWidth, int srcHeight,
981          int srcRowStride, const ubyte *srcPtr,
982          int dstWidth, int dstHeight,
983          int dstRowStride, ubyte *dstPtr)
984{
985   enum dtype datatype;
986   uint comps;
987   const int bpt = util_format_get_blocksize(pformat);
988   const ubyte *srcA, *srcB;
989   ubyte *dst;
990   int row;
991
992   format_to_type_comps(pformat, &datatype, &comps);
993
994   if (!srcRowStride)
995      srcRowStride = bpt * srcWidth;
996
997   if (!dstRowStride)
998      dstRowStride = bpt * dstWidth;
999
1000   /* Compute src and dst pointers */
1001   srcA = srcPtr;
1002   if (srcHeight > 1)
1003      srcB = srcA + srcRowStride;
1004   else
1005      srcB = srcA;
1006   dst = dstPtr;
1007
1008   for (row = 0; row < dstHeight; row++) {
1009      do_row(datatype, comps,
1010             srcWidth, srcA, srcB,
1011             dstWidth, dst);
1012      srcA += 2 * srcRowStride;
1013      srcB += 2 * srcRowStride;
1014      dst += dstRowStride;
1015   }
1016}
1017
1018
1019static void
1020reduce_3d(enum pipe_format pformat,
1021          int srcWidth, int srcHeight, int srcDepth,
1022          int srcRowStride, int srcImageStride, const ubyte *srcPtr,
1023          int dstWidth, int dstHeight, int dstDepth,
1024          int dstRowStride, int dstImageStride, ubyte *dstPtr)
1025{
1026   const int bpt = util_format_get_blocksize(pformat);
1027   int img, row;
1028   int srcImageOffset, srcRowOffset;
1029   enum dtype datatype;
1030   uint comps;
1031
1032   format_to_type_comps(pformat, &datatype, &comps);
1033
1034   /* XXX I think we should rather assert those strides */
1035   if (!srcImageStride)
1036      srcImageStride = srcWidth * srcHeight * bpt;
1037   if (!dstImageStride)
1038      dstImageStride = dstWidth * dstHeight * bpt;
1039
1040   if (!srcRowStride)
1041      srcRowStride = srcWidth * bpt;
1042   if (!dstRowStride)
1043      dstRowStride = dstWidth * bpt;
1044
1045   /* Offset between adjacent src images to be averaged together */
1046   srcImageOffset = (srcDepth == dstDepth) ? 0 : srcImageStride;
1047
1048   /* Offset between adjacent src rows to be averaged together */
1049   srcRowOffset = (srcHeight == dstHeight) ? 0 : srcRowStride;
1050
1051   /*
1052    * Need to average together up to 8 src pixels for each dest pixel.
1053    * Break that down into 3 operations:
1054    *   1. take two rows from source image and average them together.
1055    *   2. take two rows from next source image and average them together.
1056    *   3. take the two averaged rows and average them for the final dst row.
1057    */
1058
1059   /*
1060   printf("mip3d %d x %d x %d  ->  %d x %d x %d\n",
1061          srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth);
1062   */
1063
1064   for (img = 0; img < dstDepth; img++) {
1065      /* first source image pointer */
1066      const ubyte *imgSrcA = srcPtr
1067         + img * (srcImageStride + srcImageOffset);
1068      /* second source image pointer */
1069      const ubyte *imgSrcB = imgSrcA + srcImageOffset;
1070      /* address of the dest image */
1071      ubyte *imgDst = dstPtr + img * dstImageStride;
1072
1073      /* setup the four source row pointers and the dest row pointer */
1074      const ubyte *srcImgARowA = imgSrcA;
1075      const ubyte *srcImgARowB = imgSrcA + srcRowOffset;
1076      const ubyte *srcImgBRowA = imgSrcB;
1077      const ubyte *srcImgBRowB = imgSrcB + srcRowOffset;
1078      ubyte *dstImgRow = imgDst;
1079
1080      for (row = 0; row < dstHeight; row++) {
1081         do_row_3D(datatype, comps, srcWidth,
1082                   srcImgARowA, srcImgARowB,
1083                   srcImgBRowA, srcImgBRowB,
1084                   dstWidth, dstImgRow);
1085
1086         /* advance to next rows */
1087         srcImgARowA += srcRowStride + srcRowOffset;
1088         srcImgARowB += srcRowStride + srcRowOffset;
1089         srcImgBRowA += srcRowStride + srcRowOffset;
1090         srcImgBRowB += srcRowStride + srcRowOffset;
1091         dstImgRow += dstImageStride;
1092      }
1093   }
1094}
1095
1096
1097
1098
1099static void
1100make_1d_mipmap(struct gen_mipmap_state *ctx,
1101               struct pipe_resource *pt,
1102               uint layer, uint baseLevel, uint lastLevel)
1103{
1104   struct pipe_context *pipe = ctx->pipe;
1105   uint dstLevel;
1106
1107   for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1108      const uint srcLevel = dstLevel - 1;
1109      struct pipe_transfer *srcTrans, *dstTrans;
1110      void *srcMap, *dstMap;
1111
1112      srcTrans = pipe_get_transfer(pipe, pt, srcLevel, layer,
1113                                   PIPE_TRANSFER_READ, 0, 0,
1114                                   u_minify(pt->width0, srcLevel),
1115                                   u_minify(pt->height0, srcLevel));
1116      dstTrans = pipe_get_transfer(pipe, pt, dstLevel, layer,
1117                                   PIPE_TRANSFER_WRITE, 0, 0,
1118                                   u_minify(pt->width0, dstLevel),
1119                                   u_minify(pt->height0, dstLevel));
1120
1121      srcMap = (ubyte *) pipe->transfer_map(pipe, srcTrans);
1122      dstMap = (ubyte *) pipe->transfer_map(pipe, dstTrans);
1123
1124      reduce_1d(pt->format,
1125                srcTrans->box.width, srcMap,
1126                dstTrans->box.width, dstMap);
1127
1128      pipe->transfer_unmap(pipe, srcTrans);
1129      pipe->transfer_unmap(pipe, dstTrans);
1130
1131      pipe->transfer_destroy(pipe, srcTrans);
1132      pipe->transfer_destroy(pipe, dstTrans);
1133   }
1134}
1135
1136
1137static void
1138make_2d_mipmap(struct gen_mipmap_state *ctx,
1139               struct pipe_resource *pt,
1140               uint layer, uint baseLevel, uint lastLevel)
1141{
1142   struct pipe_context *pipe = ctx->pipe;
1143   uint dstLevel;
1144
1145   assert(util_format_get_blockwidth(pt->format) == 1);
1146   assert(util_format_get_blockheight(pt->format) == 1);
1147
1148   for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1149      const uint srcLevel = dstLevel - 1;
1150      struct pipe_transfer *srcTrans, *dstTrans;
1151      ubyte *srcMap, *dstMap;
1152
1153      srcTrans = pipe_get_transfer(pipe, pt, srcLevel, layer,
1154                                   PIPE_TRANSFER_READ, 0, 0,
1155                                   u_minify(pt->width0, srcLevel),
1156                                   u_minify(pt->height0, srcLevel));
1157      dstTrans = pipe_get_transfer(pipe, pt, dstLevel, layer,
1158                                   PIPE_TRANSFER_WRITE, 0, 0,
1159                                   u_minify(pt->width0, dstLevel),
1160                                   u_minify(pt->height0, dstLevel));
1161
1162      srcMap = (ubyte *) pipe->transfer_map(pipe, srcTrans);
1163      dstMap = (ubyte *) pipe->transfer_map(pipe, dstTrans);
1164
1165      reduce_2d(pt->format,
1166                srcTrans->box.width, srcTrans->box.height,
1167                srcTrans->stride, srcMap,
1168                dstTrans->box.width, dstTrans->box.height,
1169                dstTrans->stride, dstMap);
1170
1171      pipe->transfer_unmap(pipe, srcTrans);
1172      pipe->transfer_unmap(pipe, dstTrans);
1173
1174      pipe->transfer_destroy(pipe, srcTrans);
1175      pipe->transfer_destroy(pipe, dstTrans);
1176   }
1177}
1178
1179
1180/* XXX looks a bit more like it could work now but need to test */
1181static void
1182make_3d_mipmap(struct gen_mipmap_state *ctx,
1183               struct pipe_resource *pt,
1184               uint face, uint baseLevel, uint lastLevel)
1185{
1186   struct pipe_context *pipe = ctx->pipe;
1187   uint dstLevel;
1188   struct pipe_box src_box, dst_box;
1189
1190   assert(util_format_get_blockwidth(pt->format) == 1);
1191   assert(util_format_get_blockheight(pt->format) == 1);
1192
1193   src_box.x = src_box.y = src_box.z = 0;
1194   dst_box.x = dst_box.y = dst_box.z = 0;
1195
1196   for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1197      const uint srcLevel = dstLevel - 1;
1198      struct pipe_transfer *srcTrans, *dstTrans;
1199      ubyte *srcMap, *dstMap;
1200      struct pipe_box src_box, dst_box;
1201      src_box.width = u_minify(pt->width0, srcLevel);
1202      src_box.height = u_minify(pt->height0, srcLevel);
1203      src_box.depth = u_minify(pt->depth0, srcLevel);
1204      dst_box.width = u_minify(pt->width0, dstLevel);
1205      dst_box.height = u_minify(pt->height0, dstLevel);
1206      dst_box.depth = u_minify(pt->depth0, dstLevel);
1207
1208      srcTrans = pipe->get_transfer(pipe, pt, srcLevel,
1209                                    PIPE_TRANSFER_READ,
1210                                    &src_box);
1211      dstTrans = pipe->get_transfer(pipe, pt, dstLevel,
1212                                    PIPE_TRANSFER_WRITE,
1213                                    &dst_box);
1214
1215      srcMap = (ubyte *) pipe->transfer_map(pipe, srcTrans);
1216      dstMap = (ubyte *) pipe->transfer_map(pipe, dstTrans);
1217
1218      reduce_3d(pt->format,
1219                srcTrans->box.width, srcTrans->box.height, srcTrans->box.depth,
1220                srcTrans->stride, srcTrans->layer_stride, srcMap,
1221                dstTrans->box.width, dstTrans->box.height, dstTrans->box.depth,
1222                dstTrans->stride, dstTrans->layer_stride, dstMap);
1223
1224      pipe->transfer_unmap(pipe, srcTrans);
1225      pipe->transfer_unmap(pipe, dstTrans);
1226
1227      pipe->transfer_destroy(pipe, srcTrans);
1228      pipe->transfer_destroy(pipe, dstTrans);
1229   }
1230}
1231
1232
1233static void
1234fallback_gen_mipmap(struct gen_mipmap_state *ctx,
1235                    struct pipe_resource *pt,
1236                    uint layer, uint baseLevel, uint lastLevel)
1237{
1238   switch (pt->target) {
1239   case PIPE_TEXTURE_1D:
1240      make_1d_mipmap(ctx, pt, layer, baseLevel, lastLevel);
1241      break;
1242   case PIPE_TEXTURE_2D:
1243   case PIPE_TEXTURE_RECT:
1244   case PIPE_TEXTURE_CUBE:
1245      make_2d_mipmap(ctx, pt, layer, baseLevel, lastLevel);
1246      break;
1247   case PIPE_TEXTURE_3D:
1248      make_3d_mipmap(ctx, pt, layer, baseLevel, lastLevel);
1249      break;
1250   default:
1251      assert(0);
1252   }
1253}
1254
1255
1256/**
1257 * Create a mipmap generation context.
1258 * The idea is to create one of these and re-use it each time we need to
1259 * generate a mipmap.
1260 */
1261struct gen_mipmap_state *
1262util_create_gen_mipmap(struct pipe_context *pipe,
1263                       struct cso_context *cso)
1264{
1265   struct gen_mipmap_state *ctx;
1266   uint i;
1267
1268   ctx = CALLOC_STRUCT(gen_mipmap_state);
1269   if (!ctx)
1270      return NULL;
1271
1272   ctx->pipe = pipe;
1273   ctx->cso = cso;
1274
1275   /* disabled blending/masking */
1276   memset(&ctx->blend, 0, sizeof(ctx->blend));
1277   ctx->blend.rt[0].colormask = PIPE_MASK_RGBA;
1278
1279   /* no-op depth/stencil/alpha */
1280   memset(&ctx->depthstencil, 0, sizeof(ctx->depthstencil));
1281
1282   /* rasterizer */
1283   memset(&ctx->rasterizer, 0, sizeof(ctx->rasterizer));
1284   ctx->rasterizer.cull_face = PIPE_FACE_NONE;
1285   ctx->rasterizer.gl_rasterization_rules = 1;
1286
1287   /* sampler state */
1288   memset(&ctx->sampler, 0, sizeof(ctx->sampler));
1289   ctx->sampler.wrap_s = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1290   ctx->sampler.wrap_t = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1291   ctx->sampler.wrap_r = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1292   ctx->sampler.min_mip_filter = PIPE_TEX_MIPFILTER_NEAREST;
1293   ctx->sampler.normalized_coords = 1;
1294
1295   /* vertex elements state */
1296   memset(&ctx->velem[0], 0, sizeof(ctx->velem[0]) * 2);
1297   for (i = 0; i < 2; i++) {
1298      ctx->velem[i].src_offset = i * 4 * sizeof(float);
1299      ctx->velem[i].instance_divisor = 0;
1300      ctx->velem[i].vertex_buffer_index = 0;
1301      ctx->velem[i].src_format = PIPE_FORMAT_R32G32B32A32_FLOAT;
1302   }
1303
1304   /* vertex shader - still needed to specify mapping from fragment
1305    * shader input semantics to vertex elements
1306    */
1307   {
1308      const uint semantic_names[] = { TGSI_SEMANTIC_POSITION,
1309                                      TGSI_SEMANTIC_GENERIC };
1310      const uint semantic_indexes[] = { 0, 0 };
1311      ctx->vs = util_make_vertex_passthrough_shader(pipe, 2, semantic_names,
1312                                                    semantic_indexes);
1313   }
1314
1315   /* fragment shader */
1316   ctx->fs1d = util_make_fragment_tex_shader(pipe, TGSI_TEXTURE_1D,
1317                                             TGSI_INTERPOLATE_LINEAR);
1318   ctx->fs2d = util_make_fragment_tex_shader(pipe, TGSI_TEXTURE_2D,
1319                                             TGSI_INTERPOLATE_LINEAR);
1320   ctx->fs3d = util_make_fragment_tex_shader(pipe, TGSI_TEXTURE_3D,
1321                                               TGSI_INTERPOLATE_LINEAR);
1322   ctx->fsCube = util_make_fragment_tex_shader(pipe, TGSI_TEXTURE_CUBE,
1323                                               TGSI_INTERPOLATE_LINEAR);
1324
1325   /* vertex data that doesn't change */
1326   for (i = 0; i < 4; i++) {
1327      ctx->vertices[i][0][2] = 0.0f; /* z */
1328      ctx->vertices[i][0][3] = 1.0f; /* w */
1329      ctx->vertices[i][1][3] = 1.0f; /* q */
1330   }
1331
1332   /* Note: the actual vertex buffer is allocated as needed below */
1333
1334   return ctx;
1335}
1336
1337
1338/**
1339 * Get next "slot" of vertex space in the vertex buffer.
1340 * We're allocating one large vertex buffer and using it piece by piece.
1341 */
1342static unsigned
1343get_next_slot(struct gen_mipmap_state *ctx)
1344{
1345   const unsigned max_slots = 4096 / sizeof ctx->vertices;
1346
1347   if (ctx->vbuf_slot >= max_slots)
1348      util_gen_mipmap_flush( ctx );
1349
1350   if (!ctx->vbuf) {
1351      ctx->vbuf = pipe_buffer_create(ctx->pipe->screen,
1352                                     PIPE_BIND_VERTEX_BUFFER,
1353                                     PIPE_USAGE_STREAM,
1354                                     max_slots * sizeof ctx->vertices);
1355   }
1356
1357   return ctx->vbuf_slot++ * sizeof ctx->vertices;
1358}
1359
1360
1361static unsigned
1362set_vertex_data(struct gen_mipmap_state *ctx,
1363                enum pipe_texture_target tex_target,
1364                uint layer, float r)
1365{
1366   unsigned offset;
1367
1368   /* vert[0].position */
1369   ctx->vertices[0][0][0] = -1.0f; /*x*/
1370   ctx->vertices[0][0][1] = -1.0f; /*y*/
1371
1372   /* vert[1].position */
1373   ctx->vertices[1][0][0] = 1.0f;
1374   ctx->vertices[1][0][1] = -1.0f;
1375
1376   /* vert[2].position */
1377   ctx->vertices[2][0][0] = 1.0f;
1378   ctx->vertices[2][0][1] = 1.0f;
1379
1380   /* vert[3].position */
1381   ctx->vertices[3][0][0] = -1.0f;
1382   ctx->vertices[3][0][1] = 1.0f;
1383
1384   /* Setup vertex texcoords.  This is a little tricky for cube maps. */
1385   if (tex_target == PIPE_TEXTURE_CUBE) {
1386      static const float st[4][2] = {
1387         {0.0f, 0.0f}, {1.0f, 0.0f}, {1.0f, 1.0f}, {0.0f, 1.0f}
1388      };
1389
1390      util_map_texcoords2d_onto_cubemap(layer, &st[0][0], 2,
1391                                        &ctx->vertices[0][1][0], 8);
1392   }
1393   else {
1394      /* 1D/2D/3D */
1395      ctx->vertices[0][1][0] = 0.0f; /*s*/
1396      ctx->vertices[0][1][1] = 0.0f; /*t*/
1397      ctx->vertices[0][1][2] = r;    /*r*/
1398
1399      ctx->vertices[1][1][0] = 1.0f;
1400      ctx->vertices[1][1][1] = 0.0f;
1401      ctx->vertices[1][1][2] = r;
1402
1403      ctx->vertices[2][1][0] = 1.0f;
1404      ctx->vertices[2][1][1] = 1.0f;
1405      ctx->vertices[2][1][2] = r;
1406
1407      ctx->vertices[3][1][0] = 0.0f;
1408      ctx->vertices[3][1][1] = 1.0f;
1409      ctx->vertices[3][1][2] = r;
1410   }
1411
1412   offset = get_next_slot( ctx );
1413
1414   pipe_buffer_write_nooverlap(ctx->pipe, ctx->vbuf,
1415                               offset, sizeof(ctx->vertices), ctx->vertices);
1416
1417   return offset;
1418}
1419
1420
1421
1422/**
1423 * Destroy a mipmap generation context
1424 */
1425void
1426util_destroy_gen_mipmap(struct gen_mipmap_state *ctx)
1427{
1428   struct pipe_context *pipe = ctx->pipe;
1429
1430   pipe->delete_fs_state(pipe, ctx->fsCube);
1431   pipe->delete_fs_state(pipe, ctx->fs3d);
1432   pipe->delete_fs_state(pipe, ctx->fs2d);
1433   pipe->delete_fs_state(pipe, ctx->fs1d);
1434   pipe->delete_vs_state(pipe, ctx->vs);
1435
1436   pipe_resource_reference(&ctx->vbuf, NULL);
1437
1438   FREE(ctx);
1439}
1440
1441
1442
1443/* Release vertex buffer at end of frame to avoid synchronous
1444 * rendering.
1445 */
1446void util_gen_mipmap_flush( struct gen_mipmap_state *ctx )
1447{
1448   pipe_resource_reference(&ctx->vbuf, NULL);
1449   ctx->vbuf_slot = 0;
1450}
1451
1452
1453/**
1454 * Generate mipmap images.  It's assumed all needed texture memory is
1455 * already allocated.
1456 *
1457 * \param psv  the sampler view to the texture to generate mipmap levels for
1458 * \param face  which cube face to generate mipmaps for (0 for non-cube maps)
1459 * \param baseLevel  the first mipmap level to use as a src
1460 * \param lastLevel  the last mipmap level to generate
1461 * \param filter  the minification filter used to generate mipmap levels with
1462 * \param filter  one of PIPE_TEX_FILTER_LINEAR, PIPE_TEX_FILTER_NEAREST
1463 */
1464void
1465util_gen_mipmap(struct gen_mipmap_state *ctx,
1466                struct pipe_sampler_view *psv,
1467                uint face, uint baseLevel, uint lastLevel, uint filter)
1468{
1469   struct pipe_context *pipe = ctx->pipe;
1470   struct pipe_screen *screen = pipe->screen;
1471   struct pipe_framebuffer_state fb;
1472   struct pipe_resource *pt = psv->texture;
1473   void *fs;
1474   uint dstLevel;
1475   uint offset;
1476
1477   /* The texture object should have room for the levels which we're
1478    * about to generate.
1479    */
1480   assert(lastLevel <= pt->last_level);
1481
1482   /* If this fails, why are we here? */
1483   assert(lastLevel > baseLevel);
1484
1485   assert(filter == PIPE_TEX_FILTER_LINEAR ||
1486          filter == PIPE_TEX_FILTER_NEAREST);
1487
1488   switch (pt->target) {
1489   case PIPE_TEXTURE_1D:
1490      fs = ctx->fs1d;
1491      break;
1492   case PIPE_TEXTURE_2D:
1493      fs = ctx->fs2d;
1494      break;
1495   case PIPE_TEXTURE_3D:
1496      fs = ctx->fs3d;
1497      break;
1498   case PIPE_TEXTURE_CUBE:
1499      fs = ctx->fsCube;
1500      break;
1501   case PIPE_TEXTURE_1D_ARRAY:
1502   case PIPE_TEXTURE_2D_ARRAY:
1503   default:
1504      assert(0);
1505      fs = ctx->fs2d;
1506   }
1507
1508   /* check if we can render in the texture's format */
1509   if (!screen->is_format_supported(screen, psv->format, pt->target,
1510                                    pt->nr_samples, PIPE_BIND_RENDER_TARGET, 0)) {
1511      fallback_gen_mipmap(ctx, pt, face, baseLevel, lastLevel);
1512      return;
1513   }
1514
1515   /* save state (restored below) */
1516   cso_save_blend(ctx->cso);
1517   cso_save_depth_stencil_alpha(ctx->cso);
1518   cso_save_rasterizer(ctx->cso);
1519   cso_save_samplers(ctx->cso);
1520   cso_save_fragment_sampler_views(ctx->cso);
1521   cso_save_framebuffer(ctx->cso);
1522   cso_save_fragment_shader(ctx->cso);
1523   cso_save_vertex_shader(ctx->cso);
1524   cso_save_viewport(ctx->cso);
1525   cso_save_clip(ctx->cso);
1526   cso_save_vertex_elements(ctx->cso);
1527
1528   /* bind our state */
1529   cso_set_blend(ctx->cso, &ctx->blend);
1530   cso_set_depth_stencil_alpha(ctx->cso, &ctx->depthstencil);
1531   cso_set_rasterizer(ctx->cso, &ctx->rasterizer);
1532   cso_set_clip(ctx->cso, &ctx->clip);
1533   cso_set_vertex_elements(ctx->cso, 2, ctx->velem);
1534
1535   cso_set_fragment_shader_handle(ctx->cso, fs);
1536   cso_set_vertex_shader_handle(ctx->cso, ctx->vs);
1537
1538   /* init framebuffer state */
1539   memset(&fb, 0, sizeof(fb));
1540   fb.nr_cbufs = 1;
1541
1542   /* set min/mag to same filter for faster sw speed */
1543   ctx->sampler.mag_img_filter = filter;
1544   ctx->sampler.min_img_filter = filter;
1545
1546   /*
1547    * XXX for small mipmap levels, it may be faster to use the software
1548    * fallback path...
1549    */
1550   for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1551      const uint srcLevel = dstLevel - 1;
1552      struct pipe_viewport_state vp;
1553      unsigned nr_layers, layer, i;
1554      float rcoord = 0.0f;
1555
1556      if (pt->target == PIPE_TEXTURE_3D)
1557         nr_layers = u_minify(pt->depth0, dstLevel);
1558      else
1559         nr_layers = 1;
1560
1561      for (i = 0; i < nr_layers; i++) {
1562         struct pipe_surface *surf, surf_templ;
1563         if (pt->target == PIPE_TEXTURE_3D) {
1564            /* in theory with geom shaders and driver with full layer support
1565               could do that in one go. */
1566            layer = i;
1567            offset = 1.0f / (float)(nr_layers * 2);
1568            /* XXX hmm really? */
1569            rcoord = (float)layer / (float)nr_layers + 1.0f / (float)(nr_layers * 2);
1570         }
1571         else
1572            layer = face;
1573
1574         memset(&surf_templ, 0, sizeof(surf_templ));
1575         u_surface_default_template(&surf_templ, pt, PIPE_BIND_RENDER_TARGET);
1576         surf_templ.u.tex.level = dstLevel;
1577         surf_templ.u.tex.first_layer = layer;
1578         surf_templ.u.tex.last_layer = layer;
1579         surf = pipe->create_surface(pipe, pt, &surf_templ);
1580
1581         /*
1582          * Setup framebuffer / dest surface
1583          */
1584         fb.cbufs[0] = surf;
1585         fb.width = u_minify(pt->width0, dstLevel);
1586         fb.height = u_minify(pt->height0, dstLevel);
1587         cso_set_framebuffer(ctx->cso, &fb);
1588
1589         /* viewport */
1590         vp.scale[0] = 0.5f * fb.width;
1591         vp.scale[1] = 0.5f * fb.height;
1592         vp.scale[2] = 1.0f;
1593         vp.scale[3] = 1.0f;
1594         vp.translate[0] = 0.5f * fb.width;
1595         vp.translate[1] = 0.5f * fb.height;
1596         vp.translate[2] = 0.0f;
1597         vp.translate[3] = 0.0f;
1598         cso_set_viewport(ctx->cso, &vp);
1599
1600         /*
1601          * Setup sampler state
1602          * Note: we should only have to set the min/max LOD clamps to ensure
1603          * we grab texels from the right mipmap level.  But some hardware
1604          * has trouble with min clamping so we also set the lod_bias to
1605          * try to work around that.
1606          */
1607         ctx->sampler.min_lod = ctx->sampler.max_lod = (float) srcLevel;
1608         ctx->sampler.lod_bias = (float) srcLevel;
1609         cso_single_sampler(ctx->cso, 0, &ctx->sampler);
1610         cso_single_sampler_done(ctx->cso);
1611
1612         cso_set_fragment_sampler_views(ctx->cso, 1, &psv);
1613
1614         /* quad coords in clip coords */
1615         offset = set_vertex_data(ctx,
1616                                  pt->target,
1617                                  face,
1618                                  rcoord);
1619
1620         util_draw_vertex_buffer(ctx->pipe,
1621                                 ctx->cso,
1622                                 ctx->vbuf,
1623                                 offset,
1624                                 PIPE_PRIM_TRIANGLE_FAN,
1625                                 4,  /* verts */
1626                                 2); /* attribs/vert */
1627
1628         pipe->flush(pipe, PIPE_FLUSH_RENDER_CACHE, NULL);
1629
1630         /* need to signal that the texture has changed _after_ rendering to it */
1631         pipe_surface_reference( &surf, NULL );
1632      }
1633   }
1634
1635   /* restore state we changed */
1636   cso_restore_blend(ctx->cso);
1637   cso_restore_depth_stencil_alpha(ctx->cso);
1638   cso_restore_rasterizer(ctx->cso);
1639   cso_restore_samplers(ctx->cso);
1640   cso_restore_fragment_sampler_views(ctx->cso);
1641   cso_restore_framebuffer(ctx->cso);
1642   cso_restore_fragment_shader(ctx->cso);
1643   cso_restore_vertex_shader(ctx->cso);
1644   cso_restore_viewport(ctx->cso);
1645   cso_restore_clip(ctx->cso);
1646   cso_restore_vertex_elements(ctx->cso);
1647}
1648