1/**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.  All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 *
25 **************************************************************************/
26
27#include "arc.h"
28
29#include "matrix.h"
30#include "bezier.h"
31#include "polygon.h"
32#include "stroker.h"
33#include "path.h"
34
35#include "util/u_debug.h"
36#include "util/u_math.h"
37
38#ifndef M_PI
39#define M_PI 3.14159265358979323846
40#endif
41
42#define DEBUG_ARCS 0
43
44static const VGfloat two_pi = M_PI * 2;
45
46
47static const double coeffs3Low[2][4][4] = {
48   {
49      {  3.85268,   -21.229,      -0.330434,    0.0127842  },
50      { -1.61486,     0.706564,    0.225945,    0.263682   },
51      { -0.910164,    0.388383,    0.00551445,  0.00671814 },
52      { -0.630184,    0.192402,    0.0098871,   0.0102527  }
53   },
54   {
55      { -0.162211,    9.94329,     0.13723,     0.0124084  },
56      { -0.253135,    0.00187735,  0.0230286,   0.01264    },
57      { -0.0695069,  -0.0437594,   0.0120636,   0.0163087  },
58      { -0.0328856,  -0.00926032, -0.00173573,  0.00527385 }
59   }
60};
61
62/* coefficients for error estimation
63   while using cubic Bézier curves for approximation
64   1/4 <= b/a <= 1 */
65static const double coeffs3High[2][4][4] = {
66   {
67      {  0.0899116, -19.2349,     -4.11711,     0.183362   },
68      {  0.138148,   -1.45804,     1.32044,     1.38474    },
69      {  0.230903,   -0.450262,    0.219963,    0.414038   },
70      {  0.0590565,  -0.101062,    0.0430592,   0.0204699  }
71   },
72   {
73      {  0.0164649,   9.89394,     0.0919496,   0.00760802 },
74      {  0.0191603,  -0.0322058,   0.0134667,  -0.0825018  },
75      {  0.0156192,  -0.017535,    0.00326508, -0.228157   },
76      { -0.0236752,   0.0405821,  -0.0173086,   0.176187   }
77   }
78};
79
80/* safety factor to convert the "best" error approximation
81   into a "max bound" error */
82static const double safety3[] = {
83   0.001, 4.98, 0.207, 0.0067
84};
85
86/* The code below is from the OpenVG 1.1 Spec
87 * Section 18.4 */
88
89/* Given: Points (x0, y0) and (x1, y1)
90 * Return: TRUE if a solution exists, FALSE otherwise
91 *         Circle centers are written to (cx0, cy0) and (cx1, cy1)
92 */
93static VGboolean
94find_unit_circles(double x0, double y0, double x1, double y1,
95                  double *cx0, double *cy0,
96                  double *cx1, double *cy1)
97{
98   /* Compute differences and averages */
99   double dx = x0 - x1;
100   double dy = y0 - y1;
101   double xm = (x0 + x1)/2;
102   double ym = (y0 + y1)/2;
103   double dsq, disc, s, sdx, sdy;
104
105   /* Solve for intersecting unit circles */
106   dsq = dx*dx + dy*dy;
107   if (dsq == 0.0) return VG_FALSE; /* Points are coincident */
108   disc = 1.0/dsq - 1.0/4.0;
109
110   /* the precision we care about here is around float so if we're
111    * around the float defined zero then make it official to avoid
112    * precision problems later on */
113   if (floatIsZero(disc))
114      disc = 0.0;
115
116   if (disc < 0.0) return VG_FALSE; /* Points are too far apart */
117   s = sqrt(disc);
118   sdx = s*dx;
119   sdy = s*dy;
120   *cx0 = xm + sdy;
121   *cy0 = ym - sdx;
122   *cx1 = xm - sdy;
123   *cy1 = ym + sdx;
124   return VG_TRUE;
125}
126
127
128/* Given:  Ellipse parameters rh, rv, rot (in degrees),
129 *         endpoints (x0, y0) and (x1, y1)
130 * Return: TRUE if a solution exists, FALSE otherwise
131 *         Ellipse centers are written to (cx0, cy0) and (cx1, cy1)
132 */
133static VGboolean
134find_ellipses(double rh, double rv, double rot,
135              double x0, double y0, double x1, double y1,
136              double *cx0, double *cy0, double *cx1, double *cy1)
137{
138   double COS, SIN, x0p, y0p, x1p, y1p, pcx0, pcy0, pcx1, pcy1;
139   /* Convert rotation angle from degrees to radians */
140   rot *= M_PI/180.0;
141   /* Pre-compute rotation matrix entries */
142   COS = cos(rot); SIN = sin(rot);
143   /* Transform (x0, y0) and (x1, y1) into unit space */
144   /* using (inverse) rotate, followed by (inverse) scale   */
145   x0p = (x0*COS + y0*SIN)/rh;
146   y0p = (-x0*SIN + y0*COS)/rv;
147   x1p = (x1*COS + y1*SIN)/rh;
148   y1p = (-x1*SIN + y1*COS)/rv;
149   if (!find_unit_circles(x0p, y0p, x1p, y1p,
150                          &pcx0, &pcy0, &pcx1, &pcy1)) {
151      return VG_FALSE;
152   }
153   /* Transform back to original coordinate space */
154   /* using (forward) scale followed by (forward) rotate */
155   pcx0 *= rh; pcy0 *= rv;
156   pcx1 *= rh; pcy1 *= rv;
157   *cx0 = pcx0*COS - pcy0*SIN;
158   *cy0 = pcx0*SIN + pcy0*COS;
159   *cx1 = pcx1*COS - pcy1*SIN;
160   *cy1 = pcx1*SIN + pcy1*COS;
161   return VG_TRUE;
162}
163
164static INLINE VGboolean
165try_to_fix_radii(struct arc *arc)
166{
167   double COS, SIN, rot, x0p, y0p, x1p, y1p;
168   double dx, dy, dsq, scale;
169
170   /* Convert rotation angle from degrees to radians */
171   rot = DEGREES_TO_RADIANS(arc->theta);
172
173   /* Pre-compute rotation matrix entries */
174   COS = cos(rot); SIN = sin(rot);
175
176   /* Transform (x0, y0) and (x1, y1) into unit space */
177   /* using (inverse) rotate, followed by (inverse) scale   */
178   x0p = (arc->x1*COS + arc->y1*SIN)/arc->a;
179   y0p = (-arc->x1*SIN + arc->y1*COS)/arc->b;
180   x1p = (arc->x2*COS + arc->y2*SIN)/arc->a;
181   y1p = (-arc->x2*SIN + arc->y2*COS)/arc->b;
182   /* Compute differences and averages */
183   dx = x0p - x1p;
184   dy = y0p - y1p;
185
186   dsq = dx*dx + dy*dy;
187#if 0
188   if (dsq <= 0.001) {
189      debug_printf("AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaaaaa\n");
190   }
191#endif
192   scale = 1/(2/sqrt(dsq));
193   arc->a *= scale;
194   arc->b *= scale;
195   return VG_TRUE;
196}
197
198static INLINE double vector_normalize(double *v)
199{
200   double sq = v[0] * v[0] + v[1] * v[1];
201   return sqrt(sq);
202}
203static INLINE double vector_orientation(double *v)
204{
205   double norm = vector_normalize(v);
206   double cosa = v[0] / norm;
207   double sina = v[1] / norm;
208   return (sina>=0 ? acos(cosa) : 2*M_PI - acos(cosa));
209}
210static INLINE double vector_dot(double *v0,
211                                double *v1)
212{
213   return v0[0] * v1[0] + v0[1] * v1[1];
214}
215
216static INLINE double vector_angles(double *v0,
217                                   double *v1)
218{
219   double dot = vector_dot(v0, v1);
220   double norm0 = vector_normalize(v0);
221   double norm1 = vector_normalize(v1);
222
223   return acos(dot / (norm0 * norm1));
224}
225
226static VGboolean find_angles(struct arc *arc)
227{
228   double vec0[2], vec1[2];
229   double lambda1, lambda2;
230   double angle;
231   struct matrix matrix;
232
233   if (floatIsZero(arc->a) || floatIsZero(arc->b)) {
234      return VG_FALSE;
235   }
236   /* map the points to an identity circle */
237   matrix_load_identity(&matrix);
238   matrix_scale(&matrix, 1.f, arc->a/arc->b);
239   matrix_rotate(&matrix, -arc->theta);
240   matrix_map_point(&matrix,
241                    arc->x1, arc->y1,
242                    &arc->x1, &arc->y1);
243   matrix_map_point(&matrix,
244                    arc->x2, arc->y2,
245                    &arc->x2, &arc->y2);
246   matrix_map_point(&matrix,
247                    arc->cx, arc->cy,
248                    &arc->cx, &arc->cy);
249
250#if DEBUG_ARCS
251   debug_printf("Matrix 3 [%f, %f, %f| %f, %f, %f| %f, %f, %f]\n",
252                matrix.m[0], matrix.m[1], matrix.m[2],
253                matrix.m[3], matrix.m[4], matrix.m[5],
254                matrix.m[6], matrix.m[7], matrix.m[8]);
255   debug_printf("Endpoints [%f, %f], [%f, %f]\n",
256                arc->x1, arc->y1, arc->x2, arc->y2);
257#endif
258
259   vec0[0] = arc->x1 - arc->cx;
260   vec0[1] = arc->y1 - arc->cy;
261   vec1[0] = arc->x2 - arc->cx;
262   vec1[1] = arc->y2 - arc->cy;
263
264#if DEBUG_ARCS
265   debug_printf("Vec is [%f, %f], [%f, %f], [%f, %f]\n",
266                vec0[0], vec0[1], vec1[0], vec1[1], arc->cx, arc->cy);
267#endif
268
269   lambda1 = vector_orientation(vec0);
270
271   if (isnan(lambda1))
272      lambda1 = 0.f;
273
274   if (arc->type == VG_SCWARC_TO ||
275       arc->type == VG_SCCWARC_TO)
276      angle = vector_angles(vec0, vec1);
277   else if (arc->type == VG_LCWARC_TO ||
278            arc->type == VG_LCCWARC_TO) {
279      angle = 2*M_PI - vector_angles(vec0, vec1);
280   } else
281      abort();
282
283   if (isnan(angle))
284      angle = M_PI;
285
286
287   if (arc->type == VG_SCWARC_TO ||
288       arc->type == VG_LCWARC_TO)
289      lambda2 = lambda1 - angle;
290   else
291      lambda2 = lambda1 + angle;
292
293#if DEBUG_ARCS
294   debug_printf("Angle is %f and (%f, %f)\n", angle, lambda1, lambda2);
295#endif
296
297#if 0
298   arc->eta1 = atan2(sin(lambda1) / arc->b,
299                     cos(lambda1) / arc->a);
300   arc->eta2 = atan2(sin(lambda2) / arc->b,
301                     cos(lambda2) / arc->a);
302
303   /* make sure we have eta1 <= eta2 <= eta1 + 2 PI */
304   arc->eta2 -= two_pi * floor((arc->eta2 - arc->eta1) / two_pi);
305
306   /* the preceding correction fails if we have exactly et2 - eta1 = 2 PI
307      it reduces the interval to zero length */
308   if ((lambda2 - lambda1 > M_PI) && (arc->eta2 - arc->eta1 < M_PI)) {
309      arc->eta2 += 2 * M_PI;
310   }
311#else
312   arc->eta1 = lambda1;
313   arc->eta2 = lambda2;
314#endif
315
316   return VG_TRUE;
317}
318
319#if DEBUG_ARCS
320static void check_endpoints(struct arc *arc)
321{
322   double x1, y1, x2, y2;
323
324   double a_cos_eta1 = arc->a * cos(arc->eta1);
325   double b_sin_eta1 = arc->b * sin(arc->eta1);
326   x1 = arc->cx + a_cos_eta1 * arc->cos_theta -
327        b_sin_eta1 * arc->sin_theta;
328   y1 = arc->cy + a_cos_eta1 * arc->sin_theta +
329        b_sin_eta1 * arc->cos_theta;
330
331   double a_cos_eta2 = arc->a * cos(arc->eta2);
332   double b_sin_eta2 = arc->b * sin(arc->eta2);
333   x2 = arc->cx + a_cos_eta2 * arc->cos_theta -
334        b_sin_eta2 * arc->sin_theta;
335   y2 = arc->cy + a_cos_eta2 * arc->sin_theta +
336        b_sin_eta2 * arc->cos_theta;
337
338   debug_printf("Computed (%f, %f), (%f, %f)\n",
339                x1, y1, x2, y2);
340   debug_printf("Real     (%f, %f), (%f, %f)\n",
341                arc->x1, arc->y1,
342                arc->x2, arc->y2);
343}
344#endif
345
346void arc_init(struct arc *arc,
347              VGPathSegment type,
348              VGfloat x1, VGfloat y1,
349              VGfloat x2, VGfloat y2,
350              VGfloat rh, VGfloat rv,
351              VGfloat rot)
352{
353   assert(type == VG_SCCWARC_TO ||
354          type == VG_SCWARC_TO ||
355          type == VG_LCCWARC_TO ||
356          type == VG_LCWARC_TO);
357   arc->type = type;
358   arc->x1  = x1;
359   arc->y1  = y1;
360   arc->x2  = x2;
361   arc->y2  = y2;
362   arc->a   = rh;
363   arc->b   = rv;
364   arc->theta = rot;
365   arc->cos_theta = cos(arc->theta);
366   arc->sin_theta = sin(arc->theta);
367   {
368      double cx0, cy0, cx1, cy1;
369      double cx, cy;
370      arc->is_valid =  find_ellipses(rh, rv, rot, x1, y1, x2, y2,
371                                     &cx0, &cy0, &cx1, &cy1);
372
373      if (!arc->is_valid && try_to_fix_radii(arc)) {
374         rh = arc->a;
375         rv = arc->b;
376         arc->is_valid =
377            find_ellipses(rh, rv, rot, x1, y1, x2, y2,
378                          &cx0, &cy0, &cx1, &cy1);
379      }
380
381      if (type == VG_SCWARC_TO ||
382          type == VG_LCCWARC_TO) {
383         cx = cx1;
384         cy = cy1;
385      } else {
386         cx = cx0;
387         cy = cy0;
388      }
389#if DEBUG_ARCS
390      debug_printf("Centers are : (%f, %f) , (%f, %f). Real (%f, %f)\n",
391                   cx0, cy0, cx1, cy1, cx, cy);
392#endif
393      arc->cx = cx;
394      arc->cy = cy;
395      if (arc->is_valid) {
396         arc->is_valid = find_angles(arc);
397#if DEBUG_ARCS
398         check_endpoints(arc);
399#endif
400         /* remap a few points. find_angles requires
401          * rot in angles, the rest of the code
402          * will need them in radians. and find_angles
403          * modifies the center to match an identity
404          * circle so lets reset it */
405         arc->theta = DEGREES_TO_RADIANS(rot);
406         arc->cos_theta = cos(arc->theta);
407         arc->sin_theta = sin(arc->theta);
408         arc->cx = cx;
409         arc->cy = cy;
410      }
411   }
412}
413
414static INLINE double rational_function(double x, const double *c)
415{
416   return (x * (x * c[0] + c[1]) + c[2]) / (x + c[3]);
417}
418
419static double estimate_error(struct arc *arc,
420                             double etaA, double etaB)
421{
422   double eta  = 0.5 * (etaA + etaB);
423
424   double x    = arc->b / arc->a;
425   double dEta = etaB - etaA;
426   double cos2 = cos(2 * eta);
427   double cos4 = cos(4 * eta);
428   double cos6 = cos(6 * eta);
429   double c0, c1;
430
431   /* select the right coeficients set according to degree and b/a */
432   const double (*coeffs)[4][4];
433   const double *safety;
434   coeffs = (x < 0.25) ? coeffs3Low : coeffs3High;
435   safety = safety3;
436
437   c0 = rational_function(x, coeffs[0][0])
438        + cos2 * rational_function(x, coeffs[0][1])
439        + cos4 * rational_function(x, coeffs[0][2])
440        + cos6 * rational_function(x, coeffs[0][3]);
441
442   c1 = rational_function(x, coeffs[1][0])
443        + cos2 * rational_function(x, coeffs[1][1])
444        + cos4 * rational_function(x, coeffs[1][2])
445        + cos6 * rational_function(x, coeffs[1][3]);
446
447   return rational_function(x, safety) * arc->a * exp(c0 + c1 * dEta);
448}
449
450struct arc_cb {
451   void (*move)(struct arc_cb *cb, VGfloat x, VGfloat y);
452   void (*point)(struct arc_cb *cb, VGfloat x, VGfloat y);
453   void (*bezier)(struct arc_cb *cb, struct bezier *bezier);
454
455   void *user_data;
456};
457
458static void cb_null_move(struct arc_cb *cb, VGfloat x, VGfloat y)
459{
460}
461
462static void polygon_point(struct arc_cb *cb, VGfloat x, VGfloat y)
463{
464   struct polygon *poly = (struct polygon*)cb->user_data;
465   polygon_vertex_append(poly, x, y);
466}
467
468static void polygon_bezier(struct arc_cb *cb, struct bezier *bezier)
469{
470   struct polygon *poly = (struct polygon*)cb->user_data;
471   bezier_add_to_polygon(bezier, poly);
472}
473
474static void stroke_point(struct arc_cb *cb, VGfloat x, VGfloat y)
475{
476   struct stroker *stroker = (struct stroker*)cb->user_data;
477   stroker_line_to(stroker, x, y);
478}
479
480static void stroke_curve(struct arc_cb *cb, struct bezier *bezier)
481{
482   struct stroker *stroker = (struct stroker*)cb->user_data;
483   stroker_curve_to(stroker,
484                    bezier->x2, bezier->y2,
485                    bezier->x3, bezier->y3,
486                    bezier->x4, bezier->y4);
487}
488
489static void stroke_emit_point(struct arc_cb *cb, VGfloat x, VGfloat y)
490{
491   struct stroker *stroker = (struct stroker*)cb->user_data;
492   stroker_emit_line_to(stroker, x, y);
493}
494
495static void stroke_emit_curve(struct arc_cb *cb, struct bezier *bezier)
496{
497   struct stroker *stroker = (struct stroker*)cb->user_data;
498   stroker_emit_curve_to(stroker,
499                         bezier->x2, bezier->y2,
500                         bezier->x3, bezier->y3,
501                         bezier->x4, bezier->y4);
502}
503
504static void arc_path_move(struct arc_cb *cb, VGfloat x, VGfloat y)
505{
506   struct path *path = (struct path*)cb->user_data;
507   path_move_to(path, x, y);
508}
509
510static void arc_path_point(struct arc_cb *cb, VGfloat x, VGfloat y)
511{
512   struct path *path = (struct path*)cb->user_data;
513   path_line_to(path, x, y);
514}
515
516static void arc_path_bezier(struct arc_cb *cb, struct bezier *bezier)
517{
518   struct path *path = (struct path*)cb->user_data;
519   path_cubic_to(path,
520                 bezier->x2, bezier->y2,
521                 bezier->x3, bezier->y3,
522                 bezier->x4, bezier->y4);
523}
524
525static INLINE int num_beziers_needed(struct arc *arc)
526{
527   double threshold = 0.05;
528   VGboolean found = VG_FALSE;
529   int n = 1;
530   double min_eta, max_eta;
531
532   min_eta = MIN2(arc->eta1, arc->eta2);
533   max_eta = MAX2(arc->eta1, arc->eta2);
534
535   while ((! found) && (n < 1024)) {
536      double d_eta = (max_eta - min_eta) / n;
537      if (d_eta <= 0.5 * M_PI) {
538         double eta_b = min_eta;
539         int i;
540         found = VG_TRUE;
541         for (i = 0; found && (i < n); ++i) {
542            double etaA = eta_b;
543            eta_b += d_eta;
544            found = (estimate_error(arc, etaA, eta_b) <= threshold);
545         }
546      }
547      n = n << 1;
548   }
549
550   return n;
551}
552
553static void arc_to_beziers(struct arc *arc,
554                           struct arc_cb cb,
555                           struct matrix *matrix)
556{
557   int i;
558   int n = 1;
559   double d_eta, eta_b, cos_eta_b,
560      sin_eta_b, a_cos_eta_b, b_sin_eta_b, a_sin_eta_b,
561      b_cos_eta_b, x_b, y_b, x_b_dot, y_b_dot, lx, ly;
562   double t, alpha;
563
564   { /* always move to the start of the arc */
565      VGfloat x = arc->x1;
566      VGfloat y = arc->y1;
567      matrix_map_point(matrix, x, y, &x, &y);
568      cb.move(&cb, x, y);
569   }
570
571   if (!arc->is_valid) {
572      VGfloat x = arc->x2;
573      VGfloat y = arc->y2;
574      matrix_map_point(matrix, x, y, &x, &y);
575      cb.point(&cb, x, y);
576      return;
577   }
578
579   /* find the number of Bézier curves needed */
580   n = num_beziers_needed(arc);
581
582   d_eta = (arc->eta2 - arc->eta1) / n;
583   eta_b = arc->eta1;
584
585   cos_eta_b  = cos(eta_b);
586   sin_eta_b  = sin(eta_b);
587   a_cos_eta_b = arc->a * cos_eta_b;
588   b_sin_eta_b = arc->b * sin_eta_b;
589   a_sin_eta_b = arc->a * sin_eta_b;
590   b_cos_eta_b = arc->b * cos_eta_b;
591   x_b       = arc->cx + a_cos_eta_b * arc->cos_theta -
592               b_sin_eta_b * arc->sin_theta;
593   y_b       = arc->cy + a_cos_eta_b * arc->sin_theta +
594               b_sin_eta_b * arc->cos_theta;
595   x_b_dot    = -a_sin_eta_b * arc->cos_theta -
596                b_cos_eta_b * arc->sin_theta;
597   y_b_dot    = -a_sin_eta_b * arc->sin_theta +
598                b_cos_eta_b * arc->cos_theta;
599
600   {
601      VGfloat x = x_b, y = y_b;
602      matrix_map_point(matrix, x, y, &x, &y);
603      cb.point(&cb, x, y);
604   }
605   lx = x_b;
606   ly = y_b;
607
608   t     = tan(0.5 * d_eta);
609   alpha = sin(d_eta) * (sqrt(4 + 3 * t * t) - 1) / 3;
610
611   for (i = 0; i < n; ++i) {
612      struct bezier bezier;
613      double xA    = x_b;
614      double yA    = y_b;
615      double xADot = x_b_dot;
616      double yADot = y_b_dot;
617
618      eta_b    += d_eta;
619      cos_eta_b  = cos(eta_b);
620      sin_eta_b  = sin(eta_b);
621      a_cos_eta_b = arc->a * cos_eta_b;
622      b_sin_eta_b = arc->b * sin_eta_b;
623      a_sin_eta_b = arc->a * sin_eta_b;
624      b_cos_eta_b = arc->b * cos_eta_b;
625      x_b       = arc->cx + a_cos_eta_b * arc->cos_theta -
626                  b_sin_eta_b * arc->sin_theta;
627      y_b       = arc->cy + a_cos_eta_b * arc->sin_theta +
628                  b_sin_eta_b * arc->cos_theta;
629      x_b_dot    = -a_sin_eta_b * arc->cos_theta -
630                   b_cos_eta_b * arc->sin_theta;
631      y_b_dot    = -a_sin_eta_b * arc->sin_theta +
632                   b_cos_eta_b * arc->cos_theta;
633
634      bezier_init(&bezier,
635                  lx, ly,
636                  (float) (xA + alpha * xADot), (float) (yA + alpha * yADot),
637                  (float) (x_b - alpha * x_b_dot), (float) (y_b - alpha * y_b_dot),
638                  (float) x_b,                   (float) y_b);
639#if 0
640      debug_printf("%d) Bezier (%f, %f), (%f, %f), (%f, %f), (%f, %f)\n",
641                   i,
642                   bezier.x1, bezier.y1,
643                   bezier.x2, bezier.y2,
644                   bezier.x3, bezier.y3,
645                   bezier.x4, bezier.y4);
646#endif
647      bezier_transform(&bezier, matrix);
648      cb.bezier(&cb, &bezier);
649      lx = x_b;
650      ly = y_b;
651   }
652}
653
654
655void arc_add_to_polygon(struct arc *arc,
656                        struct polygon *poly,
657                        struct matrix *matrix)
658{
659   struct arc_cb cb;
660
661   cb.move = cb_null_move;
662   cb.point = polygon_point;
663   cb.bezier = polygon_bezier;
664   cb.user_data = poly;
665
666   arc_to_beziers(arc, cb, matrix);
667}
668
669void arc_stroke_cb(struct arc *arc,
670                   struct stroker *stroke,
671                   struct matrix *matrix)
672{
673   struct arc_cb cb;
674
675   cb.move = cb_null_move;
676   cb.point = stroke_point;
677   cb.bezier = stroke_curve;
678   cb.user_data = stroke;
679
680   arc_to_beziers(arc, cb, matrix);
681}
682
683void arc_stroker_emit(struct arc *arc,
684                      struct stroker *stroker,
685                      struct matrix *matrix)
686{
687   struct arc_cb cb;
688
689   cb.move = cb_null_move;
690   cb.point = stroke_emit_point;
691   cb.bezier = stroke_emit_curve;
692   cb.user_data = stroker;
693
694   arc_to_beziers(arc, cb, matrix);
695}
696
697void arc_to_path(struct arc *arc,
698                 struct path *path,
699                 struct matrix *matrix)
700{
701   struct arc_cb cb;
702
703   cb.move = arc_path_move;
704   cb.point = arc_path_point;
705   cb.bezier = arc_path_bezier;
706   cb.user_data = path;
707
708   arc_to_beziers(arc, cb, matrix);
709}
710