intel_tris.c revision 5203b7227ccb6b618fa42f08434d4a3cf123dca2
1/**************************************************************************
2 *
3 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28/** @file intel_tris.c
29 *
30 * This file contains functions for managing the vertex buffer and emitting
31 * primitives into it.
32 */
33
34#include "main/glheader.h"
35#include "main/context.h"
36#include "main/macros.h"
37#include "main/enums.h"
38#include "main/texobj.h"
39#include "main/state.h"
40#include "main/dd.h"
41
42#include "swrast/swrast.h"
43#include "swrast_setup/swrast_setup.h"
44#include "tnl/t_context.h"
45#include "tnl/t_pipeline.h"
46#include "tnl/t_vertex.h"
47
48#include "intel_screen.h"
49#include "intel_context.h"
50#include "intel_tris.h"
51#include "intel_batchbuffer.h"
52#include "intel_buffers.h"
53#include "intel_reg.h"
54#include "intel_span.h"
55#include "intel_tex.h"
56#include "intel_chipset.h"
57#include "i830_context.h"
58#include "i830_reg.h"
59
60static void intelRenderPrimitive(GLcontext * ctx, GLenum prim);
61static void intelRasterPrimitive(GLcontext * ctx, GLenum rprim,
62                                 GLuint hwprim);
63
64static void
65intel_flush_inline_primitive(struct intel_context *intel)
66{
67   GLuint used = intel->batch->ptr - intel->prim.start_ptr;
68
69   assert(intel->prim.primitive != ~0);
70
71/*    _mesa_printf("/\n"); */
72
73   if (used < 8)
74      goto do_discard;
75
76   *(int *) intel->prim.start_ptr = (_3DPRIMITIVE |
77                                     intel->prim.primitive | (used / 4 - 2));
78
79   goto finished;
80
81 do_discard:
82   intel->batch->ptr -= used;
83
84 finished:
85   intel->prim.primitive = ~0;
86   intel->prim.start_ptr = 0;
87   intel->prim.flush = 0;
88}
89
90static void intel_start_inline(struct intel_context *intel, uint32_t prim)
91{
92   BATCH_LOCALS;
93
94   intel->vtbl.emit_state(intel);
95
96   intel->no_batch_wrap = GL_TRUE;
97
98   /*_mesa_printf("%s *", __progname);*/
99
100   /* Emit a slot which will be filled with the inline primitive
101    * command later.
102    */
103   BEGIN_BATCH(2);
104   OUT_BATCH(0);
105
106   assert((intel->batch->dirty_state & (1<<1)) == 0);
107
108   intel->prim.start_ptr = intel->batch->ptr;
109   intel->prim.primitive = prim;
110   intel->prim.flush = intel_flush_inline_primitive;
111
112   OUT_BATCH(0);
113   ADVANCE_BATCH();
114
115   intel->no_batch_wrap = GL_FALSE;
116/*    _mesa_printf(">"); */
117}
118
119static void intel_wrap_inline(struct intel_context *intel)
120{
121   GLuint prim = intel->prim.primitive;
122
123   intel_flush_inline_primitive(intel);
124   intel_batchbuffer_flush(intel->batch);
125   intel_start_inline(intel, prim);  /* ??? */
126}
127
128static GLuint *intel_extend_inline(struct intel_context *intel, GLuint dwords)
129{
130   GLuint sz = dwords * sizeof(GLuint);
131   GLuint *ptr;
132
133   assert(intel->prim.flush == intel_flush_inline_primitive);
134
135   if (intel_batchbuffer_space(intel->batch) < sz)
136      intel_wrap_inline(intel);
137
138/*    _mesa_printf("."); */
139
140   intel->vtbl.assert_not_dirty(intel);
141
142   ptr = (GLuint *) intel->batch->ptr;
143   intel->batch->ptr += sz;
144
145   return ptr;
146}
147
148/** Sets the primitive type for a primitive sequence, flushing as needed. */
149void intel_set_prim(struct intel_context *intel, uint32_t prim)
150{
151   /* if we have no VBOs */
152
153   if (intel->intelScreen->no_vbo) {
154      intel_start_inline(intel, prim);
155      return;
156   }
157   if (prim != intel->prim.primitive) {
158      INTEL_FIREVERTICES(intel);
159      intel->prim.primitive = prim;
160   }
161}
162
163/** Returns mapped VB space for the given number of vertices */
164uint32_t *intel_get_prim_space(struct intel_context *intel, unsigned int count)
165{
166   uint32_t *addr;
167
168   if (intel->intelScreen->no_vbo) {
169      return intel_extend_inline(intel, count * intel->vertex_size);
170   }
171
172   /* Check for space in the existing VB */
173   if (intel->prim.vb_bo == NULL ||
174       (intel->prim.current_offset +
175	count * intel->vertex_size * 4) > INTEL_VB_SIZE ||
176       (intel->prim.count + count) >= (1 << 16)) {
177      /* Flush existing prim if any */
178      INTEL_FIREVERTICES(intel);
179
180      intel_finish_vb(intel);
181
182      /* Start a new VB */
183      if (intel->prim.vb == NULL)
184	 intel->prim.vb = malloc(INTEL_VB_SIZE);
185      intel->prim.vb_bo = dri_bo_alloc(intel->bufmgr, "vb",
186				       INTEL_VB_SIZE, 4);
187      intel->prim.start_offset = 0;
188      intel->prim.current_offset = 0;
189   }
190
191   intel->prim.flush = intel_flush_prim;
192
193   addr = (uint32_t *)(intel->prim.vb + intel->prim.current_offset);
194   intel->prim.current_offset += intel->vertex_size * 4 * count;
195   intel->prim.count += count;
196
197   return addr;
198}
199
200/** Dispatches the accumulated primitive to the batchbuffer. */
201void intel_flush_prim(struct intel_context *intel)
202{
203   dri_bo *aper_array[2];
204   dri_bo *vb_bo;
205   unsigned int offset, count;
206   BATCH_LOCALS;
207
208   /* Must be called after an intel_start_prim. */
209   assert(intel->prim.primitive != ~0);
210
211   if (intel->prim.count == 0)
212      return;
213
214   /* Clear the current prims out of the context state so that a batch flush
215    * flush triggered by emit_state doesn't loop back to flush_prim again.
216    */
217   vb_bo = intel->prim.vb_bo;
218   dri_bo_reference(vb_bo);
219   count = intel->prim.count;
220   intel->prim.count = 0;
221   offset = intel->prim.start_offset;
222   intel->prim.start_offset = intel->prim.current_offset;
223   if (!intel->gen >= 3)
224      intel->prim.start_offset = ALIGN(intel->prim.start_offset, 128);
225   intel->prim.flush = NULL;
226
227   intel->vtbl.emit_state(intel);
228
229   aper_array[0] = intel->batch->buf;
230   aper_array[1] = vb_bo;
231   if (dri_bufmgr_check_aperture_space(aper_array, 2)) {
232      intel_batchbuffer_flush(intel->batch);
233      intel->vtbl.emit_state(intel);
234   }
235
236   /* Ensure that we don't start a new batch for the following emit, which
237    * depends on the state just emitted. emit_state should be making sure we
238    * have the space for this.
239    */
240   intel->no_batch_wrap = GL_TRUE;
241
242   /* Check that we actually emitted the state into this batch, using the
243    * UPLOAD_CTX bit as the signal.
244    */
245   assert((intel->batch->dirty_state & (1<<1)) == 0);
246
247#if 0
248   printf("emitting %d..%d=%d vertices size %d\n", offset,
249	  intel->prim.current_offset, count,
250	  intel->vertex_size * 4);
251#endif
252
253   if (intel->gen >= 3) {
254      BEGIN_BATCH(5);
255      OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 |
256		I1_LOAD_S(0) | I1_LOAD_S(1) | 1);
257      assert((offset & !S0_VB_OFFSET_MASK) == 0);
258      OUT_RELOC(vb_bo, I915_GEM_DOMAIN_VERTEX, 0, offset);
259      OUT_BATCH((intel->vertex_size << S1_VERTEX_WIDTH_SHIFT) |
260		(intel->vertex_size << S1_VERTEX_PITCH_SHIFT));
261
262      OUT_BATCH(_3DPRIMITIVE |
263		PRIM_INDIRECT |
264		PRIM_INDIRECT_SEQUENTIAL |
265		intel->prim.primitive |
266		count);
267      OUT_BATCH(0); /* Beginning vertex index */
268      ADVANCE_BATCH();
269   } else {
270      struct i830_context *i830 = i830_context(&intel->ctx);
271
272      BEGIN_BATCH(5);
273      OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 |
274		I1_LOAD_S(0) | I1_LOAD_S(2) | 1);
275      /* S0 */
276      assert((offset & !S0_VB_OFFSET_MASK_830) == 0);
277      OUT_RELOC(vb_bo, I915_GEM_DOMAIN_VERTEX, 0,
278		offset | (intel->vertex_size << S0_VB_PITCH_SHIFT_830) |
279		S0_VB_ENABLE_830);
280      /* S2
281       * This is somewhat unfortunate -- VB width is tied up with
282       * vertex format data that we've already uploaded through
283       * _3DSTATE_VFT[01]_CMD.  We may want to replace emits of VFT state with
284       * STATE_IMMEDIATE_1 like this to avoid duplication.
285       */
286      OUT_BATCH((i830->state.Ctx[I830_CTXREG_VF] & VFT0_TEX_COUNT_MASK) >>
287		VFT0_TEX_COUNT_SHIFT << S2_TEX_COUNT_SHIFT_830 |
288		(i830->state.Ctx[I830_CTXREG_VF2] << 16) |
289		intel->vertex_size << S2_VERTEX_0_WIDTH_SHIFT_830);
290
291      OUT_BATCH(_3DPRIMITIVE |
292		PRIM_INDIRECT |
293		PRIM_INDIRECT_SEQUENTIAL |
294		intel->prim.primitive |
295		count);
296      OUT_BATCH(0); /* Beginning vertex index */
297      ADVANCE_BATCH();
298   }
299
300   intel->no_batch_wrap = GL_FALSE;
301
302   dri_bo_unreference(vb_bo);
303}
304
305/**
306 * Uploads the locally-accumulated VB into the buffer object.
307 *
308 * This avoids us thrashing the cachelines in and out as the buffer gets
309 * filled, dispatched, then reused as the hardware completes rendering from it,
310 * and also lets us clflush less if we dispatch with a partially-filled VB.
311 *
312 * This is called normally from get_space when we're finishing a BO, but also
313 * at batch flush time so that we don't try accessing the contents of a
314 * just-dispatched buffer.
315 */
316void intel_finish_vb(struct intel_context *intel)
317{
318   if (intel->prim.vb_bo == NULL)
319      return;
320
321   dri_bo_subdata(intel->prim.vb_bo, 0, intel->prim.start_offset,
322		  intel->prim.vb);
323   dri_bo_unreference(intel->prim.vb_bo);
324   intel->prim.vb_bo = NULL;
325}
326
327/***********************************************************************
328 *                    Emit primitives as inline vertices               *
329 ***********************************************************************/
330
331#ifdef __i386__
332#define COPY_DWORDS( j, vb, vertsize, v )			\
333do {								\
334   int __tmp;							\
335   __asm__ __volatile__( "rep ; movsl"				\
336			 : "=%c" (j), "=D" (vb), "=S" (__tmp)	\
337			 : "0" (vertsize),			\
338			 "D" ((long)vb),			\
339			 "S" ((long)v) );			\
340} while (0)
341#else
342#define COPY_DWORDS( j, vb, vertsize, v )	\
343do {						\
344   for ( j = 0 ; j < vertsize ; j++ ) {		\
345      vb[j] = ((GLuint *)v)[j];			\
346   }						\
347   vb += vertsize;				\
348} while (0)
349#endif
350
351static void
352intel_draw_quad(struct intel_context *intel,
353                intelVertexPtr v0,
354                intelVertexPtr v1, intelVertexPtr v2, intelVertexPtr v3)
355{
356   GLuint vertsize = intel->vertex_size;
357   GLuint *vb = intel_get_prim_space(intel, 6);
358   int j;
359
360   COPY_DWORDS(j, vb, vertsize, v0);
361   COPY_DWORDS(j, vb, vertsize, v1);
362
363   /* If smooth shading, draw like a trifan which gives better
364    * rasterization.  Otherwise draw as two triangles with provoking
365    * vertex in third position as required for flat shading.
366    */
367   if (intel->ctx.Light.ShadeModel == GL_FLAT) {
368      COPY_DWORDS(j, vb, vertsize, v3);
369      COPY_DWORDS(j, vb, vertsize, v1);
370   }
371   else {
372      COPY_DWORDS(j, vb, vertsize, v2);
373      COPY_DWORDS(j, vb, vertsize, v0);
374   }
375
376   COPY_DWORDS(j, vb, vertsize, v2);
377   COPY_DWORDS(j, vb, vertsize, v3);
378}
379
380static void
381intel_draw_triangle(struct intel_context *intel,
382                    intelVertexPtr v0, intelVertexPtr v1, intelVertexPtr v2)
383{
384   GLuint vertsize = intel->vertex_size;
385   GLuint *vb = intel_get_prim_space(intel, 3);
386   int j;
387
388   COPY_DWORDS(j, vb, vertsize, v0);
389   COPY_DWORDS(j, vb, vertsize, v1);
390   COPY_DWORDS(j, vb, vertsize, v2);
391}
392
393
394static void
395intel_draw_line(struct intel_context *intel,
396                intelVertexPtr v0, intelVertexPtr v1)
397{
398   GLuint vertsize = intel->vertex_size;
399   GLuint *vb = intel_get_prim_space(intel, 2);
400   int j;
401
402   COPY_DWORDS(j, vb, vertsize, v0);
403   COPY_DWORDS(j, vb, vertsize, v1);
404}
405
406
407static void
408intel_draw_point(struct intel_context *intel, intelVertexPtr v0)
409{
410   GLuint vertsize = intel->vertex_size;
411   GLuint *vb = intel_get_prim_space(intel, 1);
412   int j;
413
414   /* Adjust for sub pixel position -- still required for conform. */
415   *(float *) &vb[0] = v0->v.x;
416   *(float *) &vb[1] = v0->v.y;
417   for (j = 2; j < vertsize; j++)
418      vb[j] = v0->ui[j];
419}
420
421
422
423/***********************************************************************
424 *                Fixup for ARB_point_parameters                       *
425 ***********************************************************************/
426
427/* Currently not working - VERT_ATTRIB_POINTSIZE isn't correctly
428 * represented in the fragment program InputsRead field.
429 */
430static void
431intel_atten_point(struct intel_context *intel, intelVertexPtr v0)
432{
433   GLcontext *ctx = &intel->ctx;
434   GLfloat psz[4], col[4], restore_psz, restore_alpha;
435
436   _tnl_get_attr(ctx, v0, _TNL_ATTRIB_POINTSIZE, psz);
437   _tnl_get_attr(ctx, v0, _TNL_ATTRIB_COLOR0, col);
438
439   restore_psz = psz[0];
440   restore_alpha = col[3];
441
442   if (psz[0] >= ctx->Point.Threshold) {
443      psz[0] = MIN2(psz[0], ctx->Point.MaxSize);
444   }
445   else {
446      GLfloat dsize = psz[0] / ctx->Point.Threshold;
447      psz[0] = MAX2(ctx->Point.Threshold, ctx->Point.MinSize);
448      col[3] *= dsize * dsize;
449   }
450
451   if (psz[0] < 1.0)
452      psz[0] = 1.0;
453
454   if (restore_psz != psz[0] || restore_alpha != col[3]) {
455      _tnl_set_attr(ctx, v0, _TNL_ATTRIB_POINTSIZE, psz);
456      _tnl_set_attr(ctx, v0, _TNL_ATTRIB_COLOR0, col);
457
458      intel_draw_point(intel, v0);
459
460      psz[0] = restore_psz;
461      col[3] = restore_alpha;
462
463      _tnl_set_attr(ctx, v0, _TNL_ATTRIB_POINTSIZE, psz);
464      _tnl_set_attr(ctx, v0, _TNL_ATTRIB_COLOR0, col);
465   }
466   else
467      intel_draw_point(intel, v0);
468}
469
470
471
472
473
474/***********************************************************************
475 *                Fixup for I915 WPOS texture coordinate                *
476 ***********************************************************************/
477
478
479
480static void
481intel_wpos_triangle(struct intel_context *intel,
482                    intelVertexPtr v0, intelVertexPtr v1, intelVertexPtr v2)
483{
484   GLuint offset = intel->wpos_offset;
485   GLuint size = intel->wpos_size;
486   GLfloat *v0_wpos = (GLfloat *)((char *)v0 + offset);
487   GLfloat *v1_wpos = (GLfloat *)((char *)v1 + offset);
488   GLfloat *v2_wpos = (GLfloat *)((char *)v2 + offset);
489
490   __memcpy(v0_wpos, v0, size);
491   __memcpy(v1_wpos, v1, size);
492   __memcpy(v2_wpos, v2, size);
493
494   v0_wpos[1] = -v0_wpos[1] + intel->driDrawable->h;
495   v1_wpos[1] = -v1_wpos[1] + intel->driDrawable->h;
496   v2_wpos[1] = -v2_wpos[1] + intel->driDrawable->h;
497
498
499   intel_draw_triangle(intel, v0, v1, v2);
500}
501
502
503static void
504intel_wpos_line(struct intel_context *intel,
505                intelVertexPtr v0, intelVertexPtr v1)
506{
507   GLuint offset = intel->wpos_offset;
508   GLuint size = intel->wpos_size;
509   GLfloat *v0_wpos = (GLfloat *)((char *)v0 + offset);
510   GLfloat *v1_wpos = (GLfloat *)((char *)v1 + offset);
511
512   __memcpy(v0_wpos, v0, size);
513   __memcpy(v1_wpos, v1, size);
514
515   v0_wpos[1] = -v0_wpos[1] + intel->driDrawable->h;
516   v1_wpos[1] = -v1_wpos[1] + intel->driDrawable->h;
517
518   intel_draw_line(intel, v0, v1);
519}
520
521
522static void
523intel_wpos_point(struct intel_context *intel, intelVertexPtr v0)
524{
525   GLuint offset = intel->wpos_offset;
526   GLuint size = intel->wpos_size;
527   GLfloat *v0_wpos = (GLfloat *)((char *)v0 + offset);
528
529   __memcpy(v0_wpos, v0, size);
530   v0_wpos[1] = -v0_wpos[1] + intel->driDrawable->h;
531
532   intel_draw_point(intel, v0);
533}
534
535
536
537
538
539
540/***********************************************************************
541 *          Macros for t_dd_tritmp.h to draw basic primitives          *
542 ***********************************************************************/
543
544#define TRI( a, b, c )				\
545do { 						\
546   if (DO_FALLBACK)				\
547      intel->draw_tri( intel, a, b, c );	\
548   else						\
549      intel_draw_triangle( intel, a, b, c );	\
550} while (0)
551
552#define QUAD( a, b, c, d )			\
553do { 						\
554   if (DO_FALLBACK) {				\
555      intel->draw_tri( intel, a, b, d );	\
556      intel->draw_tri( intel, b, c, d );	\
557   } else					\
558      intel_draw_quad( intel, a, b, c, d );	\
559} while (0)
560
561#define LINE( v0, v1 )				\
562do { 						\
563   if (DO_FALLBACK)				\
564      intel->draw_line( intel, v0, v1 );	\
565   else						\
566      intel_draw_line( intel, v0, v1 );		\
567} while (0)
568
569#define POINT( v0 )				\
570do { 						\
571   if (DO_FALLBACK)				\
572      intel->draw_point( intel, v0 );		\
573   else						\
574      intel_draw_point( intel, v0 );		\
575} while (0)
576
577
578/***********************************************************************
579 *              Build render functions from dd templates               *
580 ***********************************************************************/
581
582#define INTEL_OFFSET_BIT 	0x01
583#define INTEL_TWOSIDE_BIT	0x02
584#define INTEL_UNFILLED_BIT	0x04
585#define INTEL_FALLBACK_BIT	0x08
586#define INTEL_MAX_TRIFUNC	0x10
587
588
589static struct
590{
591   tnl_points_func points;
592   tnl_line_func line;
593   tnl_triangle_func triangle;
594   tnl_quad_func quad;
595} rast_tab[INTEL_MAX_TRIFUNC];
596
597
598#define DO_FALLBACK (IND & INTEL_FALLBACK_BIT)
599#define DO_OFFSET   (IND & INTEL_OFFSET_BIT)
600#define DO_UNFILLED (IND & INTEL_UNFILLED_BIT)
601#define DO_TWOSIDE  (IND & INTEL_TWOSIDE_BIT)
602#define DO_FLAT      0
603#define DO_TRI       1
604#define DO_QUAD      1
605#define DO_LINE      1
606#define DO_POINTS    1
607#define DO_FULL_QUAD 1
608
609#define HAVE_RGBA         1
610#define HAVE_SPEC         1
611#define HAVE_BACK_COLORS  0
612#define HAVE_HW_FLATSHADE 1
613#define VERTEX            intelVertex
614#define TAB               rast_tab
615
616/* Only used to pull back colors into vertices (ie, we know color is
617 * floating point).
618 */
619#define INTEL_COLOR( dst, src )				\
620do {							\
621   UNCLAMPED_FLOAT_TO_UBYTE((dst)[0], (src)[2]);	\
622   UNCLAMPED_FLOAT_TO_UBYTE((dst)[1], (src)[1]);	\
623   UNCLAMPED_FLOAT_TO_UBYTE((dst)[2], (src)[0]);	\
624   UNCLAMPED_FLOAT_TO_UBYTE((dst)[3], (src)[3]);	\
625} while (0)
626
627#define INTEL_SPEC( dst, src )				\
628do {							\
629   UNCLAMPED_FLOAT_TO_UBYTE((dst)[0], (src)[2]);	\
630   UNCLAMPED_FLOAT_TO_UBYTE((dst)[1], (src)[1]);	\
631   UNCLAMPED_FLOAT_TO_UBYTE((dst)[2], (src)[0]);	\
632} while (0)
633
634
635#define DEPTH_SCALE intel->polygon_offset_scale
636#define UNFILLED_TRI unfilled_tri
637#define UNFILLED_QUAD unfilled_quad
638#define VERT_X(_v) _v->v.x
639#define VERT_Y(_v) _v->v.y
640#define VERT_Z(_v) _v->v.z
641#define AREA_IS_CCW( a ) (a > 0)
642#define GET_VERTEX(e) (intel->verts + (e * intel->vertex_size * sizeof(GLuint)))
643
644#define VERT_SET_RGBA( v, c )    if (coloroffset) INTEL_COLOR( v->ub4[coloroffset], c )
645#define VERT_COPY_RGBA( v0, v1 ) if (coloroffset) v0->ui[coloroffset] = v1->ui[coloroffset]
646#define VERT_SAVE_RGBA( idx )    if (coloroffset) color[idx] = v[idx]->ui[coloroffset]
647#define VERT_RESTORE_RGBA( idx ) if (coloroffset) v[idx]->ui[coloroffset] = color[idx]
648
649#define VERT_SET_SPEC( v, c )    if (specoffset) INTEL_SPEC( v->ub4[specoffset], c )
650#define VERT_COPY_SPEC( v0, v1 ) if (specoffset) COPY_3V(v0->ub4[specoffset], v1->ub4[specoffset])
651#define VERT_SAVE_SPEC( idx )    if (specoffset) spec[idx] = v[idx]->ui[specoffset]
652#define VERT_RESTORE_SPEC( idx ) if (specoffset) v[idx]->ui[specoffset] = spec[idx]
653
654#define LOCAL_VARS(n)							\
655   struct intel_context *intel = intel_context(ctx);			\
656   GLuint color[n] = { 0, }, spec[n] = { 0, };				\
657   GLuint coloroffset = intel->coloroffset;				\
658   GLboolean specoffset = intel->specoffset;				\
659   (void) color; (void) spec; (void) coloroffset; (void) specoffset;
660
661
662/***********************************************************************
663 *                Helpers for rendering unfilled primitives            *
664 ***********************************************************************/
665
666static const GLuint hw_prim[GL_POLYGON + 1] = {
667   PRIM3D_POINTLIST,
668   PRIM3D_LINELIST,
669   PRIM3D_LINELIST,
670   PRIM3D_LINELIST,
671   PRIM3D_TRILIST,
672   PRIM3D_TRILIST,
673   PRIM3D_TRILIST,
674   PRIM3D_TRILIST,
675   PRIM3D_TRILIST,
676   PRIM3D_TRILIST
677};
678
679#define RASTERIZE(x) intelRasterPrimitive( ctx, x, hw_prim[x] )
680#define RENDER_PRIMITIVE intel->render_primitive
681#define TAG(x) x
682#define IND INTEL_FALLBACK_BIT
683#include "tnl_dd/t_dd_unfilled.h"
684#undef IND
685
686/***********************************************************************
687 *                      Generate GL render functions                   *
688 ***********************************************************************/
689
690#define IND (0)
691#define TAG(x) x
692#include "tnl_dd/t_dd_tritmp.h"
693
694#define IND (INTEL_OFFSET_BIT)
695#define TAG(x) x##_offset
696#include "tnl_dd/t_dd_tritmp.h"
697
698#define IND (INTEL_TWOSIDE_BIT)
699#define TAG(x) x##_twoside
700#include "tnl_dd/t_dd_tritmp.h"
701
702#define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT)
703#define TAG(x) x##_twoside_offset
704#include "tnl_dd/t_dd_tritmp.h"
705
706#define IND (INTEL_UNFILLED_BIT)
707#define TAG(x) x##_unfilled
708#include "tnl_dd/t_dd_tritmp.h"
709
710#define IND (INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT)
711#define TAG(x) x##_offset_unfilled
712#include "tnl_dd/t_dd_tritmp.h"
713
714#define IND (INTEL_TWOSIDE_BIT|INTEL_UNFILLED_BIT)
715#define TAG(x) x##_twoside_unfilled
716#include "tnl_dd/t_dd_tritmp.h"
717
718#define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT)
719#define TAG(x) x##_twoside_offset_unfilled
720#include "tnl_dd/t_dd_tritmp.h"
721
722#define IND (INTEL_FALLBACK_BIT)
723#define TAG(x) x##_fallback
724#include "tnl_dd/t_dd_tritmp.h"
725
726#define IND (INTEL_OFFSET_BIT|INTEL_FALLBACK_BIT)
727#define TAG(x) x##_offset_fallback
728#include "tnl_dd/t_dd_tritmp.h"
729
730#define IND (INTEL_TWOSIDE_BIT|INTEL_FALLBACK_BIT)
731#define TAG(x) x##_twoside_fallback
732#include "tnl_dd/t_dd_tritmp.h"
733
734#define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT|INTEL_FALLBACK_BIT)
735#define TAG(x) x##_twoside_offset_fallback
736#include "tnl_dd/t_dd_tritmp.h"
737
738#define IND (INTEL_UNFILLED_BIT|INTEL_FALLBACK_BIT)
739#define TAG(x) x##_unfilled_fallback
740#include "tnl_dd/t_dd_tritmp.h"
741
742#define IND (INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT|INTEL_FALLBACK_BIT)
743#define TAG(x) x##_offset_unfilled_fallback
744#include "tnl_dd/t_dd_tritmp.h"
745
746#define IND (INTEL_TWOSIDE_BIT|INTEL_UNFILLED_BIT|INTEL_FALLBACK_BIT)
747#define TAG(x) x##_twoside_unfilled_fallback
748#include "tnl_dd/t_dd_tritmp.h"
749
750#define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT| \
751	     INTEL_FALLBACK_BIT)
752#define TAG(x) x##_twoside_offset_unfilled_fallback
753#include "tnl_dd/t_dd_tritmp.h"
754
755
756static void
757init_rast_tab(void)
758{
759   init();
760   init_offset();
761   init_twoside();
762   init_twoside_offset();
763   init_unfilled();
764   init_offset_unfilled();
765   init_twoside_unfilled();
766   init_twoside_offset_unfilled();
767   init_fallback();
768   init_offset_fallback();
769   init_twoside_fallback();
770   init_twoside_offset_fallback();
771   init_unfilled_fallback();
772   init_offset_unfilled_fallback();
773   init_twoside_unfilled_fallback();
774   init_twoside_offset_unfilled_fallback();
775}
776
777
778/***********************************************************************
779 *                    Rasterization fallback helpers                   *
780 ***********************************************************************/
781
782
783/* This code is hit only when a mix of accelerated and unaccelerated
784 * primitives are being drawn, and only for the unaccelerated
785 * primitives.
786 */
787static void
788intel_fallback_tri(struct intel_context *intel,
789                   intelVertex * v0, intelVertex * v1, intelVertex * v2)
790{
791   GLcontext *ctx = &intel->ctx;
792   SWvertex v[3];
793
794   if (0)
795      fprintf(stderr, "\n%s\n", __FUNCTION__);
796
797   INTEL_FIREVERTICES(intel);
798
799   _swsetup_Translate(ctx, v0, &v[0]);
800   _swsetup_Translate(ctx, v1, &v[1]);
801   _swsetup_Translate(ctx, v2, &v[2]);
802   intelSpanRenderStart(ctx);
803   _swrast_Triangle(ctx, &v[0], &v[1], &v[2]);
804   intelSpanRenderFinish(ctx);
805}
806
807
808static void
809intel_fallback_line(struct intel_context *intel,
810                    intelVertex * v0, intelVertex * v1)
811{
812   GLcontext *ctx = &intel->ctx;
813   SWvertex v[2];
814
815   if (0)
816      fprintf(stderr, "\n%s\n", __FUNCTION__);
817
818   INTEL_FIREVERTICES(intel);
819
820   _swsetup_Translate(ctx, v0, &v[0]);
821   _swsetup_Translate(ctx, v1, &v[1]);
822   intelSpanRenderStart(ctx);
823   _swrast_Line(ctx, &v[0], &v[1]);
824   intelSpanRenderFinish(ctx);
825}
826
827static void
828intel_fallback_point(struct intel_context *intel,
829		     intelVertex * v0)
830{
831   GLcontext *ctx = &intel->ctx;
832   SWvertex v[1];
833
834   if (0)
835      fprintf(stderr, "\n%s\n", __FUNCTION__);
836
837   INTEL_FIREVERTICES(intel);
838
839   _swsetup_Translate(ctx, v0, &v[0]);
840   intelSpanRenderStart(ctx);
841   _swrast_Point(ctx, &v[0]);
842   intelSpanRenderFinish(ctx);
843}
844
845
846/**********************************************************************/
847/*               Render unclipped begin/end objects                   */
848/**********************************************************************/
849
850#define IND 0
851#define V(x) (intelVertex *)(vertptr + ((x)*vertsize*sizeof(GLuint)))
852#define RENDER_POINTS( start, count )	\
853   for ( ; start < count ; start++) POINT( V(ELT(start)) );
854#define RENDER_LINE( v0, v1 )         LINE( V(v0), V(v1) )
855#define RENDER_TRI(  v0, v1, v2 )     TRI(  V(v0), V(v1), V(v2) )
856#define RENDER_QUAD( v0, v1, v2, v3 ) QUAD( V(v0), V(v1), V(v2), V(v3) )
857#define INIT(x) intelRenderPrimitive( ctx, x )
858#undef LOCAL_VARS
859#define LOCAL_VARS						\
860    struct intel_context *intel = intel_context(ctx);			\
861    GLubyte *vertptr = (GLubyte *)intel->verts;			\
862    const GLuint vertsize = intel->vertex_size;       	\
863    const GLuint * const elt = TNL_CONTEXT(ctx)->vb.Elts;	\
864    (void) elt;
865#define RESET_STIPPLE
866#define RESET_OCCLUSION
867#define PRESERVE_VB_DEFS
868#define ELT(x) x
869#define TAG(x) intel_##x##_verts
870#include "tnl/t_vb_rendertmp.h"
871#undef ELT
872#undef TAG
873#define TAG(x) intel_##x##_elts
874#define ELT(x) elt[x]
875#include "tnl/t_vb_rendertmp.h"
876
877/**********************************************************************/
878/*                   Render clipped primitives                        */
879/**********************************************************************/
880
881
882
883static void
884intelRenderClippedPoly(GLcontext * ctx, const GLuint * elts, GLuint n)
885{
886   struct intel_context *intel = intel_context(ctx);
887   TNLcontext *tnl = TNL_CONTEXT(ctx);
888   struct vertex_buffer *VB = &TNL_CONTEXT(ctx)->vb;
889   GLuint prim = intel->render_primitive;
890
891   /* Render the new vertices as an unclipped polygon.
892    */
893   {
894      GLuint *tmp = VB->Elts;
895      VB->Elts = (GLuint *) elts;
896      tnl->Driver.Render.PrimTabElts[GL_POLYGON] (ctx, 0, n,
897                                                  PRIM_BEGIN | PRIM_END);
898      VB->Elts = tmp;
899   }
900
901   /* Restore the render primitive
902    */
903   if (prim != GL_POLYGON)
904      tnl->Driver.Render.PrimitiveNotify(ctx, prim);
905}
906
907static void
908intelRenderClippedLine(GLcontext * ctx, GLuint ii, GLuint jj)
909{
910   TNLcontext *tnl = TNL_CONTEXT(ctx);
911
912   tnl->Driver.Render.Line(ctx, ii, jj);
913}
914
915static void
916intelFastRenderClippedPoly(GLcontext * ctx, const GLuint * elts, GLuint n)
917{
918   struct intel_context *intel = intel_context(ctx);
919   const GLuint vertsize = intel->vertex_size;
920   GLuint *vb = intel_get_prim_space(intel, (n - 2) * 3);
921   GLubyte *vertptr = (GLubyte *) intel->verts;
922   const GLuint *start = (const GLuint *) V(elts[0]);
923   int i, j;
924
925   for (i = 2; i < n; i++) {
926      COPY_DWORDS(j, vb, vertsize, V(elts[i - 1]));
927      COPY_DWORDS(j, vb, vertsize, V(elts[i]));
928      COPY_DWORDS(j, vb, vertsize, start);
929   }
930}
931
932/**********************************************************************/
933/*                    Choose render functions                         */
934/**********************************************************************/
935
936
937
938
939#define ANY_FALLBACK_FLAGS (DD_LINE_STIPPLE | DD_TRI_STIPPLE | DD_POINT_ATTEN | DD_POINT_SMOOTH | DD_TRI_SMOOTH)
940#define ANY_RASTER_FLAGS (DD_TRI_LIGHT_TWOSIDE | DD_TRI_OFFSET | DD_TRI_UNFILLED)
941
942void
943intelChooseRenderState(GLcontext * ctx)
944{
945   TNLcontext *tnl = TNL_CONTEXT(ctx);
946   struct intel_context *intel = intel_context(ctx);
947   GLuint flags = ctx->_TriangleCaps;
948   const struct gl_fragment_program *fprog = ctx->FragmentProgram._Current;
949   GLboolean have_wpos = (fprog && (fprog->Base.InputsRead & FRAG_BIT_WPOS));
950   GLuint index = 0;
951
952   if (INTEL_DEBUG & DEBUG_STATE)
953      fprintf(stderr, "\n%s\n", __FUNCTION__);
954
955   if ((flags & (ANY_FALLBACK_FLAGS | ANY_RASTER_FLAGS)) || have_wpos) {
956
957      if (flags & ANY_RASTER_FLAGS) {
958         if (flags & DD_TRI_LIGHT_TWOSIDE)
959            index |= INTEL_TWOSIDE_BIT;
960         if (flags & DD_TRI_OFFSET)
961            index |= INTEL_OFFSET_BIT;
962         if (flags & DD_TRI_UNFILLED)
963            index |= INTEL_UNFILLED_BIT;
964      }
965
966      if (have_wpos) {
967         intel->draw_point = intel_wpos_point;
968         intel->draw_line = intel_wpos_line;
969         intel->draw_tri = intel_wpos_triangle;
970
971         /* Make sure these get called:
972          */
973         index |= INTEL_FALLBACK_BIT;
974      }
975      else {
976         intel->draw_point = intel_draw_point;
977         intel->draw_line = intel_draw_line;
978         intel->draw_tri = intel_draw_triangle;
979      }
980
981      /* Hook in fallbacks for specific primitives.
982       */
983      if (flags & ANY_FALLBACK_FLAGS) {
984         if (flags & DD_LINE_STIPPLE)
985            intel->draw_line = intel_fallback_line;
986
987         if ((flags & DD_TRI_STIPPLE) && !intel->hw_stipple)
988            intel->draw_tri = intel_fallback_tri;
989
990         if (flags & DD_TRI_SMOOTH) {
991	    if (intel->conformance_mode > 0)
992	       intel->draw_tri = intel_fallback_tri;
993	 }
994
995         if (flags & DD_POINT_ATTEN) {
996	    if (0)
997	       intel->draw_point = intel_atten_point;
998	    else
999	       intel->draw_point = intel_fallback_point;
1000	 }
1001
1002	 if (flags & DD_POINT_SMOOTH) {
1003	    if (intel->conformance_mode > 0)
1004	       intel->draw_point = intel_fallback_point;
1005	 }
1006
1007         index |= INTEL_FALLBACK_BIT;
1008      }
1009   }
1010
1011   if (intel->RenderIndex != index) {
1012      intel->RenderIndex = index;
1013
1014      tnl->Driver.Render.Points = rast_tab[index].points;
1015      tnl->Driver.Render.Line = rast_tab[index].line;
1016      tnl->Driver.Render.Triangle = rast_tab[index].triangle;
1017      tnl->Driver.Render.Quad = rast_tab[index].quad;
1018
1019      if (index == 0) {
1020         tnl->Driver.Render.PrimTabVerts = intel_render_tab_verts;
1021         tnl->Driver.Render.PrimTabElts = intel_render_tab_elts;
1022         tnl->Driver.Render.ClippedLine = line; /* from tritmp.h */
1023         tnl->Driver.Render.ClippedPolygon = intelFastRenderClippedPoly;
1024      }
1025      else {
1026         tnl->Driver.Render.PrimTabVerts = _tnl_render_tab_verts;
1027         tnl->Driver.Render.PrimTabElts = _tnl_render_tab_elts;
1028         tnl->Driver.Render.ClippedLine = intelRenderClippedLine;
1029         tnl->Driver.Render.ClippedPolygon = intelRenderClippedPoly;
1030      }
1031   }
1032}
1033
1034static const GLenum reduced_prim[GL_POLYGON + 1] = {
1035   GL_POINTS,
1036   GL_LINES,
1037   GL_LINES,
1038   GL_LINES,
1039   GL_TRIANGLES,
1040   GL_TRIANGLES,
1041   GL_TRIANGLES,
1042   GL_TRIANGLES,
1043   GL_TRIANGLES,
1044   GL_TRIANGLES
1045};
1046
1047
1048/**********************************************************************/
1049/*                 High level hooks for t_vb_render.c                 */
1050/**********************************************************************/
1051
1052
1053
1054
1055static void
1056intelRunPipeline(GLcontext * ctx)
1057{
1058   struct intel_context *intel = intel_context(ctx);
1059
1060   _mesa_lock_context_textures(ctx);
1061
1062   if (ctx->NewState)
1063      _mesa_update_state_locked(ctx);
1064
1065   if (intel->NewGLState) {
1066      if (intel->NewGLState & _NEW_TEXTURE) {
1067         intel->vtbl.update_texture_state(intel);
1068      }
1069
1070      if (!intel->Fallback) {
1071         if (intel->NewGLState & _INTEL_NEW_RENDERSTATE)
1072            intelChooseRenderState(ctx);
1073      }
1074
1075      intel->NewGLState = 0;
1076   }
1077
1078   intel_map_vertex_shader_textures(ctx);
1079   _tnl_run_pipeline(ctx);
1080   intel_unmap_vertex_shader_textures(ctx);
1081
1082   _mesa_unlock_context_textures(ctx);
1083}
1084
1085static void
1086intelRenderStart(GLcontext * ctx)
1087{
1088   struct intel_context *intel = intel_context(ctx);
1089
1090   intel_check_front_buffer_rendering(intel);
1091   intel->vtbl.render_start(intel_context(ctx));
1092   intel->vtbl.emit_state(intel);
1093}
1094
1095static void
1096intelRenderFinish(GLcontext * ctx)
1097{
1098   struct intel_context *intel = intel_context(ctx);
1099
1100   if (intel->RenderIndex & INTEL_FALLBACK_BIT)
1101      _swrast_flush(ctx);
1102
1103   INTEL_FIREVERTICES(intel);
1104}
1105
1106
1107
1108
1109 /* System to flush dma and emit state changes based on the rasterized
1110  * primitive.
1111  */
1112static void
1113intelRasterPrimitive(GLcontext * ctx, GLenum rprim, GLuint hwprim)
1114{
1115   struct intel_context *intel = intel_context(ctx);
1116
1117   if (0)
1118      fprintf(stderr, "%s %s %x\n", __FUNCTION__,
1119              _mesa_lookup_enum_by_nr(rprim), hwprim);
1120
1121   intel->vtbl.reduced_primitive_state(intel, rprim);
1122
1123   /* Start a new primitive.  Arrange to have it flushed later on.
1124    */
1125   if (hwprim != intel->prim.primitive) {
1126      INTEL_FIREVERTICES(intel);
1127
1128      intel_set_prim(intel, hwprim);
1129   }
1130}
1131
1132
1133 /*
1134  */
1135static void
1136intelRenderPrimitive(GLcontext * ctx, GLenum prim)
1137{
1138   struct intel_context *intel = intel_context(ctx);
1139
1140   if (0)
1141      fprintf(stderr, "%s %s\n", __FUNCTION__, _mesa_lookup_enum_by_nr(prim));
1142
1143   /* Let some clipping routines know which primitive they're dealing
1144    * with.
1145    */
1146   intel->render_primitive = prim;
1147
1148   /* Shortcircuit this when called from t_dd_rendertmp.h for unfilled
1149    * triangles.  The rasterized primitive will always be reset by
1150    * lower level functions in that case, potentially pingponging the
1151    * state:
1152    */
1153   if (reduced_prim[prim] == GL_TRIANGLES &&
1154       (ctx->_TriangleCaps & DD_TRI_UNFILLED))
1155      return;
1156
1157   /* Set some primitive-dependent state and Start? a new primitive.
1158    */
1159   intelRasterPrimitive(ctx, reduced_prim[prim], hw_prim[prim]);
1160}
1161
1162
1163 /**********************************************************************/
1164 /*           Transition to/from hardware rasterization.               */
1165 /**********************************************************************/
1166
1167static char *fallbackStrings[] = {
1168   [0] = "Draw buffer",
1169   [1] = "Read buffer",
1170   [2] = "Depth buffer",
1171   [3] = "Stencil buffer",
1172   [4] = "User disable",
1173   [5] = "Render mode",
1174
1175   [12] = "Texture",
1176   [13] = "Color mask",
1177   [14] = "Stencil",
1178   [15] = "Stipple",
1179   [16] = "Program",
1180   [17] = "Logic op",
1181   [18] = "Smooth polygon",
1182   [19] = "Smooth point",
1183};
1184
1185
1186static char *
1187getFallbackString(GLuint bit)
1188{
1189   int i = 0;
1190   while (bit > 1) {
1191      i++;
1192      bit >>= 1;
1193   }
1194   return fallbackStrings[i];
1195}
1196
1197
1198
1199/**
1200 * Enable/disable a fallback flag.
1201 * \param bit  one of INTEL_FALLBACK_x flags.
1202 */
1203void
1204intelFallback(struct intel_context *intel, GLbitfield bit, GLboolean mode)
1205{
1206   GLcontext *ctx = &intel->ctx;
1207   TNLcontext *tnl = TNL_CONTEXT(ctx);
1208   const GLbitfield oldfallback = intel->Fallback;
1209
1210   if (mode) {
1211      intel->Fallback |= bit;
1212      if (oldfallback == 0) {
1213         intelFlush(ctx);
1214         if (INTEL_DEBUG & DEBUG_FALLBACKS)
1215            fprintf(stderr, "ENTER FALLBACK %x: %s\n",
1216                    bit, getFallbackString(bit));
1217         _swsetup_Wakeup(ctx);
1218         intel->RenderIndex = ~0;
1219      }
1220   }
1221   else {
1222      intel->Fallback &= ~bit;
1223      if (oldfallback == bit) {
1224         _swrast_flush(ctx);
1225         if (INTEL_DEBUG & DEBUG_FALLBACKS)
1226            fprintf(stderr, "LEAVE FALLBACK %s\n", getFallbackString(bit));
1227         tnl->Driver.Render.Start = intelRenderStart;
1228         tnl->Driver.Render.PrimitiveNotify = intelRenderPrimitive;
1229         tnl->Driver.Render.Finish = intelRenderFinish;
1230         tnl->Driver.Render.BuildVertices = _tnl_build_vertices;
1231         tnl->Driver.Render.CopyPV = _tnl_copy_pv;
1232         tnl->Driver.Render.Interp = _tnl_interp;
1233
1234         _tnl_invalidate_vertex_state(ctx, ~0);
1235         _tnl_invalidate_vertices(ctx, ~0);
1236         _tnl_install_attrs(ctx,
1237                            intel->vertex_attrs,
1238                            intel->vertex_attr_count,
1239                            intel->ViewportMatrix.m, 0);
1240
1241         intel->NewGLState |= _INTEL_NEW_RENDERSTATE;
1242      }
1243   }
1244}
1245
1246union fi
1247{
1248   GLfloat f;
1249   GLint i;
1250};
1251
1252/**********************************************************************/
1253/*                            Initialization.                         */
1254/**********************************************************************/
1255
1256
1257void
1258intelInitTriFuncs(GLcontext * ctx)
1259{
1260   TNLcontext *tnl = TNL_CONTEXT(ctx);
1261   static int firsttime = 1;
1262
1263   if (firsttime) {
1264      init_rast_tab();
1265      firsttime = 0;
1266   }
1267
1268   tnl->Driver.RunPipeline = intelRunPipeline;
1269   tnl->Driver.Render.Start = intelRenderStart;
1270   tnl->Driver.Render.Finish = intelRenderFinish;
1271   tnl->Driver.Render.PrimitiveNotify = intelRenderPrimitive;
1272   tnl->Driver.Render.ResetLineStipple = _swrast_ResetLineStipple;
1273   tnl->Driver.Render.BuildVertices = _tnl_build_vertices;
1274   tnl->Driver.Render.CopyPV = _tnl_copy_pv;
1275   tnl->Driver.Render.Interp = _tnl_interp;
1276}
1277