intel_tris.c revision bcbfda71b03303d3f008a6f3cf8cb7d9667bf8d2
1/**************************************************************************
2 *
3 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28/** @file intel_tris.c
29 *
30 * This file contains functions for managing the vertex buffer and emitting
31 * primitives into it.
32 */
33
34#include "main/glheader.h"
35#include "main/context.h"
36#include "main/macros.h"
37#include "main/enums.h"
38#include "main/texobj.h"
39#include "main/state.h"
40#include "main/dd.h"
41
42#include "swrast/swrast.h"
43#include "swrast_setup/swrast_setup.h"
44#include "tnl/t_context.h"
45#include "tnl/t_pipeline.h"
46#include "tnl/t_vertex.h"
47
48#include "intel_screen.h"
49#include "intel_context.h"
50#include "intel_tris.h"
51#include "intel_batchbuffer.h"
52#include "intel_buffers.h"
53#include "intel_reg.h"
54#include "intel_span.h"
55#include "intel_tex.h"
56#include "intel_chipset.h"
57#include "i830_context.h"
58#include "i830_reg.h"
59
60static void intelRenderPrimitive(GLcontext * ctx, GLenum prim);
61static void intelRasterPrimitive(GLcontext * ctx, GLenum rprim,
62                                 GLuint hwprim);
63
64static void
65intel_flush_inline_primitive(struct intel_context *intel)
66{
67   GLuint used = intel->batch->ptr - intel->prim.start_ptr;
68
69   assert(intel->prim.primitive != ~0);
70
71/*    _mesa_printf("/\n"); */
72
73   if (used < 8)
74      goto do_discard;
75
76   *(int *) intel->prim.start_ptr = (_3DPRIMITIVE |
77                                     intel->prim.primitive | (used / 4 - 2));
78
79   goto finished;
80
81 do_discard:
82   intel->batch->ptr -= used;
83
84 finished:
85   intel->prim.primitive = ~0;
86   intel->prim.start_ptr = 0;
87   intel->prim.flush = 0;
88}
89
90static void intel_start_inline(struct intel_context *intel, uint32_t prim)
91{
92   uint32_t batch_flags = LOOP_CLIPRECTS;
93   BATCH_LOCALS;
94
95   intel->vtbl.emit_state(intel);
96
97   intel->no_batch_wrap = GL_TRUE;
98
99   /*_mesa_printf("%s *", __progname);*/
100
101   /* Emit a slot which will be filled with the inline primitive
102    * command later.
103    */
104   BEGIN_BATCH(2, batch_flags);
105   OUT_BATCH(0);
106
107   assert((intel->batch->dirty_state & (1<<1)) == 0);
108
109   intel->prim.start_ptr = intel->batch->ptr;
110   intel->prim.primitive = prim;
111   intel->prim.flush = intel_flush_inline_primitive;
112
113   OUT_BATCH(0);
114   ADVANCE_BATCH();
115
116   intel->no_batch_wrap = GL_FALSE;
117/*    _mesa_printf(">"); */
118}
119
120static void intel_wrap_inline(struct intel_context *intel)
121{
122   GLuint prim = intel->prim.primitive;
123
124   intel_flush_inline_primitive(intel);
125   intel_batchbuffer_flush(intel->batch);
126   intel_start_inline(intel, prim);  /* ??? */
127}
128
129static GLuint *intel_extend_inline(struct intel_context *intel, GLuint dwords)
130{
131   GLuint sz = dwords * sizeof(GLuint);
132   GLuint *ptr;
133
134   assert(intel->prim.flush == intel_flush_inline_primitive);
135
136   if (intel_batchbuffer_space(intel->batch) < sz)
137      intel_wrap_inline(intel);
138
139/*    _mesa_printf("."); */
140
141   intel->vtbl.assert_not_dirty(intel);
142
143   ptr = (GLuint *) intel->batch->ptr;
144   intel->batch->ptr += sz;
145
146   return ptr;
147}
148
149/** Sets the primitive type for a primitive sequence, flushing as needed. */
150void intel_set_prim(struct intel_context *intel, uint32_t prim)
151{
152   /* if we have no VBOs */
153
154   if (intel->intelScreen->no_vbo) {
155      intel_start_inline(intel, prim);
156      return;
157   }
158   if (prim != intel->prim.primitive) {
159      INTEL_FIREVERTICES(intel);
160      intel->prim.primitive = prim;
161   }
162}
163
164/** Returns mapped VB space for the given number of vertices */
165uint32_t *intel_get_prim_space(struct intel_context *intel, unsigned int count)
166{
167   uint32_t *addr;
168
169   if (intel->intelScreen->no_vbo) {
170      return intel_extend_inline(intel, count * intel->vertex_size);
171   }
172
173   /* Check for space in the existing VB */
174   if (intel->prim.vb_bo == NULL ||
175       (intel->prim.current_offset +
176	count * intel->vertex_size * 4) > INTEL_VB_SIZE ||
177       (intel->prim.count + count) >= (1 << 16)) {
178      /* Flush existing prim if any */
179      INTEL_FIREVERTICES(intel);
180
181      intel_finish_vb(intel);
182
183      /* Start a new VB */
184      if (intel->prim.vb == NULL)
185	 intel->prim.vb = malloc(INTEL_VB_SIZE);
186      intel->prim.vb_bo = dri_bo_alloc(intel->bufmgr, "vb",
187				       INTEL_VB_SIZE, 4);
188      intel->prim.start_offset = 0;
189      intel->prim.current_offset = 0;
190   }
191
192   intel->prim.flush = intel_flush_prim;
193
194   addr = (uint32_t *)(intel->prim.vb + intel->prim.current_offset);
195   intel->prim.current_offset += intel->vertex_size * 4 * count;
196   intel->prim.count += count;
197
198   return addr;
199}
200
201/** Dispatches the accumulated primitive to the batchbuffer. */
202void intel_flush_prim(struct intel_context *intel)
203{
204   dri_bo *aper_array[2];
205   dri_bo *vb_bo;
206   unsigned int offset, count;
207   BATCH_LOCALS;
208
209   /* Must be called after an intel_start_prim. */
210   assert(intel->prim.primitive != ~0);
211
212   if (intel->prim.count == 0)
213      return;
214
215   /* Clear the current prims out of the context state so that a batch flush
216    * flush triggered by emit_state doesn't loop back to flush_prim again.
217    */
218   vb_bo = intel->prim.vb_bo;
219   dri_bo_reference(vb_bo);
220   count = intel->prim.count;
221   intel->prim.count = 0;
222   offset = intel->prim.start_offset;
223   intel->prim.start_offset = intel->prim.current_offset;
224   if (!IS_9XX(intel->intelScreen->deviceID))
225      intel->prim.start_offset = ALIGN(intel->prim.start_offset, 128);
226   intel->prim.flush = NULL;
227
228   intel->vtbl.emit_state(intel);
229
230   aper_array[0] = intel->batch->buf;
231   aper_array[1] = vb_bo;
232   if (dri_bufmgr_check_aperture_space(aper_array, 2)) {
233      intel_batchbuffer_flush(intel->batch);
234      intel->vtbl.emit_state(intel);
235   }
236
237   /* Ensure that we don't start a new batch for the following emit, which
238    * depends on the state just emitted. emit_state should be making sure we
239    * have the space for this.
240    */
241   intel->no_batch_wrap = GL_TRUE;
242
243   /* Check that we actually emitted the state into this batch, using the
244    * UPLOAD_CTX bit as the signal.
245    */
246   assert((intel->batch->dirty_state & (1<<1)) == 0);
247
248#if 0
249   printf("emitting %d..%d=%d vertices size %d\n", offset,
250	  intel->prim.current_offset, count,
251	  intel->vertex_size * 4);
252#endif
253
254   if (IS_9XX(intel->intelScreen->deviceID)) {
255      BEGIN_BATCH(5, LOOP_CLIPRECTS);
256      OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 |
257		I1_LOAD_S(0) | I1_LOAD_S(1) | 1);
258      assert((offset & !S0_VB_OFFSET_MASK) == 0);
259      OUT_RELOC(vb_bo, I915_GEM_DOMAIN_VERTEX, 0, offset);
260      OUT_BATCH((intel->vertex_size << S1_VERTEX_WIDTH_SHIFT) |
261		(intel->vertex_size << S1_VERTEX_PITCH_SHIFT));
262
263      OUT_BATCH(_3DPRIMITIVE |
264		PRIM_INDIRECT |
265		PRIM_INDIRECT_SEQUENTIAL |
266		intel->prim.primitive |
267		count);
268      OUT_BATCH(0); /* Beginning vertex index */
269      ADVANCE_BATCH();
270   } else {
271      struct i830_context *i830 = i830_context(&intel->ctx);
272
273      BEGIN_BATCH(5, LOOP_CLIPRECTS);
274      OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 |
275		I1_LOAD_S(0) | I1_LOAD_S(2) | 1);
276      /* S0 */
277      assert((offset & !S0_VB_OFFSET_MASK_830) == 0);
278      OUT_RELOC(vb_bo, I915_GEM_DOMAIN_VERTEX, 0,
279		offset | (intel->vertex_size << S0_VB_PITCH_SHIFT_830) |
280		S0_VB_ENABLE_830);
281      /* S2
282       * This is somewhat unfortunate -- VB width is tied up with
283       * vertex format data that we've already uploaded through
284       * _3DSTATE_VFT[01]_CMD.  We may want to replace emits of VFT state with
285       * STATE_IMMEDIATE_1 like this to avoid duplication.
286       */
287      OUT_BATCH((i830->state.Ctx[I830_CTXREG_VF] & VFT0_TEX_COUNT_MASK) >>
288		VFT0_TEX_COUNT_SHIFT << S2_TEX_COUNT_SHIFT_830 |
289		(i830->state.Ctx[I830_CTXREG_VF2] << 16) |
290		intel->vertex_size << S2_VERTEX_0_WIDTH_SHIFT_830);
291
292      OUT_BATCH(_3DPRIMITIVE |
293		PRIM_INDIRECT |
294		PRIM_INDIRECT_SEQUENTIAL |
295		intel->prim.primitive |
296		count);
297      OUT_BATCH(0); /* Beginning vertex index */
298      ADVANCE_BATCH();
299   }
300
301   intel->no_batch_wrap = GL_FALSE;
302
303   dri_bo_unreference(vb_bo);
304}
305
306/**
307 * Uploads the locally-accumulated VB into the buffer object.
308 *
309 * This avoids us thrashing the cachelines in and out as the buffer gets
310 * filled, dispatched, then reused as the hardware completes rendering from it,
311 * and also lets us clflush less if we dispatch with a partially-filled VB.
312 *
313 * This is called normally from get_space when we're finishing a BO, but also
314 * at batch flush time so that we don't try accessing the contents of a
315 * just-dispatched buffer.
316 */
317void intel_finish_vb(struct intel_context *intel)
318{
319   if (intel->prim.vb_bo == NULL)
320      return;
321
322   dri_bo_subdata(intel->prim.vb_bo, 0, intel->prim.start_offset,
323		  intel->prim.vb);
324   dri_bo_unreference(intel->prim.vb_bo);
325   intel->prim.vb_bo = NULL;
326}
327
328/***********************************************************************
329 *                    Emit primitives as inline vertices               *
330 ***********************************************************************/
331
332#ifdef __i386__
333#define COPY_DWORDS( j, vb, vertsize, v )			\
334do {								\
335   int __tmp;							\
336   __asm__ __volatile__( "rep ; movsl"				\
337			 : "=%c" (j), "=D" (vb), "=S" (__tmp)	\
338			 : "0" (vertsize),			\
339			 "D" ((long)vb),			\
340			 "S" ((long)v) );			\
341} while (0)
342#else
343#define COPY_DWORDS( j, vb, vertsize, v )	\
344do {						\
345   for ( j = 0 ; j < vertsize ; j++ ) {		\
346      vb[j] = ((GLuint *)v)[j];			\
347   }						\
348   vb += vertsize;				\
349} while (0)
350#endif
351
352static void
353intel_draw_quad(struct intel_context *intel,
354                intelVertexPtr v0,
355                intelVertexPtr v1, intelVertexPtr v2, intelVertexPtr v3)
356{
357   GLuint vertsize = intel->vertex_size;
358   GLuint *vb = intel_get_prim_space(intel, 6);
359   int j;
360
361   COPY_DWORDS(j, vb, vertsize, v0);
362   COPY_DWORDS(j, vb, vertsize, v1);
363
364   /* If smooth shading, draw like a trifan which gives better
365    * rasterization.  Otherwise draw as two triangles with provoking
366    * vertex in third position as required for flat shading.
367    */
368   if (intel->ctx.Light.ShadeModel == GL_FLAT) {
369      COPY_DWORDS(j, vb, vertsize, v3);
370      COPY_DWORDS(j, vb, vertsize, v1);
371   }
372   else {
373      COPY_DWORDS(j, vb, vertsize, v2);
374      COPY_DWORDS(j, vb, vertsize, v0);
375   }
376
377   COPY_DWORDS(j, vb, vertsize, v2);
378   COPY_DWORDS(j, vb, vertsize, v3);
379}
380
381static void
382intel_draw_triangle(struct intel_context *intel,
383                    intelVertexPtr v0, intelVertexPtr v1, intelVertexPtr v2)
384{
385   GLuint vertsize = intel->vertex_size;
386   GLuint *vb = intel_get_prim_space(intel, 3);
387   int j;
388
389   COPY_DWORDS(j, vb, vertsize, v0);
390   COPY_DWORDS(j, vb, vertsize, v1);
391   COPY_DWORDS(j, vb, vertsize, v2);
392}
393
394
395static void
396intel_draw_line(struct intel_context *intel,
397                intelVertexPtr v0, intelVertexPtr v1)
398{
399   GLuint vertsize = intel->vertex_size;
400   GLuint *vb = intel_get_prim_space(intel, 2);
401   int j;
402
403   COPY_DWORDS(j, vb, vertsize, v0);
404   COPY_DWORDS(j, vb, vertsize, v1);
405}
406
407
408static void
409intel_draw_point(struct intel_context *intel, intelVertexPtr v0)
410{
411   GLuint vertsize = intel->vertex_size;
412   GLuint *vb = intel_get_prim_space(intel, 1);
413   int j;
414
415   /* Adjust for sub pixel position -- still required for conform. */
416   *(float *) &vb[0] = v0->v.x;
417   *(float *) &vb[1] = v0->v.y;
418   for (j = 2; j < vertsize; j++)
419      vb[j] = v0->ui[j];
420}
421
422
423
424/***********************************************************************
425 *                Fixup for ARB_point_parameters                       *
426 ***********************************************************************/
427
428/* Currently not working - VERT_ATTRIB_POINTSIZE isn't correctly
429 * represented in the fragment program InputsRead field.
430 */
431static void
432intel_atten_point(struct intel_context *intel, intelVertexPtr v0)
433{
434   GLcontext *ctx = &intel->ctx;
435   GLfloat psz[4], col[4], restore_psz, restore_alpha;
436
437   _tnl_get_attr(ctx, v0, _TNL_ATTRIB_POINTSIZE, psz);
438   _tnl_get_attr(ctx, v0, _TNL_ATTRIB_COLOR0, col);
439
440   restore_psz = psz[0];
441   restore_alpha = col[3];
442
443   if (psz[0] >= ctx->Point.Threshold) {
444      psz[0] = MIN2(psz[0], ctx->Point.MaxSize);
445   }
446   else {
447      GLfloat dsize = psz[0] / ctx->Point.Threshold;
448      psz[0] = MAX2(ctx->Point.Threshold, ctx->Point.MinSize);
449      col[3] *= dsize * dsize;
450   }
451
452   if (psz[0] < 1.0)
453      psz[0] = 1.0;
454
455   if (restore_psz != psz[0] || restore_alpha != col[3]) {
456      _tnl_set_attr(ctx, v0, _TNL_ATTRIB_POINTSIZE, psz);
457      _tnl_set_attr(ctx, v0, _TNL_ATTRIB_COLOR0, col);
458
459      intel_draw_point(intel, v0);
460
461      psz[0] = restore_psz;
462      col[3] = restore_alpha;
463
464      _tnl_set_attr(ctx, v0, _TNL_ATTRIB_POINTSIZE, psz);
465      _tnl_set_attr(ctx, v0, _TNL_ATTRIB_COLOR0, col);
466   }
467   else
468      intel_draw_point(intel, v0);
469}
470
471
472
473
474
475/***********************************************************************
476 *                Fixup for I915 WPOS texture coordinate                *
477 ***********************************************************************/
478
479
480
481static void
482intel_wpos_triangle(struct intel_context *intel,
483                    intelVertexPtr v0, intelVertexPtr v1, intelVertexPtr v2)
484{
485   GLuint offset = intel->wpos_offset;
486   GLuint size = intel->wpos_size;
487   GLfloat *v0_wpos = (GLfloat *)((char *)v0 + offset);
488   GLfloat *v1_wpos = (GLfloat *)((char *)v1 + offset);
489   GLfloat *v2_wpos = (GLfloat *)((char *)v2 + offset);
490
491   __memcpy(v0_wpos, v0, size);
492   __memcpy(v1_wpos, v1, size);
493   __memcpy(v2_wpos, v2, size);
494
495   v0_wpos[1] = -v0_wpos[1] + intel->driDrawable->h;
496   v1_wpos[1] = -v1_wpos[1] + intel->driDrawable->h;
497   v2_wpos[1] = -v2_wpos[1] + intel->driDrawable->h;
498
499
500   intel_draw_triangle(intel, v0, v1, v2);
501}
502
503
504static void
505intel_wpos_line(struct intel_context *intel,
506                intelVertexPtr v0, intelVertexPtr v1)
507{
508   GLuint offset = intel->wpos_offset;
509   GLuint size = intel->wpos_size;
510   GLfloat *v0_wpos = (GLfloat *)((char *)v0 + offset);
511   GLfloat *v1_wpos = (GLfloat *)((char *)v1 + offset);
512
513   __memcpy(v0_wpos, v0, size);
514   __memcpy(v1_wpos, v1, size);
515
516   v0_wpos[1] = -v0_wpos[1] + intel->driDrawable->h;
517   v1_wpos[1] = -v1_wpos[1] + intel->driDrawable->h;
518
519   intel_draw_line(intel, v0, v1);
520}
521
522
523static void
524intel_wpos_point(struct intel_context *intel, intelVertexPtr v0)
525{
526   GLuint offset = intel->wpos_offset;
527   GLuint size = intel->wpos_size;
528   GLfloat *v0_wpos = (GLfloat *)((char *)v0 + offset);
529
530   __memcpy(v0_wpos, v0, size);
531   v0_wpos[1] = -v0_wpos[1] + intel->driDrawable->h;
532
533   intel_draw_point(intel, v0);
534}
535
536
537
538
539
540
541/***********************************************************************
542 *          Macros for t_dd_tritmp.h to draw basic primitives          *
543 ***********************************************************************/
544
545#define TRI( a, b, c )				\
546do { 						\
547   if (DO_FALLBACK)				\
548      intel->draw_tri( intel, a, b, c );	\
549   else						\
550      intel_draw_triangle( intel, a, b, c );	\
551} while (0)
552
553#define QUAD( a, b, c, d )			\
554do { 						\
555   if (DO_FALLBACK) {				\
556      intel->draw_tri( intel, a, b, d );	\
557      intel->draw_tri( intel, b, c, d );	\
558   } else					\
559      intel_draw_quad( intel, a, b, c, d );	\
560} while (0)
561
562#define LINE( v0, v1 )				\
563do { 						\
564   if (DO_FALLBACK)				\
565      intel->draw_line( intel, v0, v1 );	\
566   else						\
567      intel_draw_line( intel, v0, v1 );		\
568} while (0)
569
570#define POINT( v0 )				\
571do { 						\
572   if (DO_FALLBACK)				\
573      intel->draw_point( intel, v0 );		\
574   else						\
575      intel_draw_point( intel, v0 );		\
576} while (0)
577
578
579/***********************************************************************
580 *              Build render functions from dd templates               *
581 ***********************************************************************/
582
583#define INTEL_OFFSET_BIT 	0x01
584#define INTEL_TWOSIDE_BIT	0x02
585#define INTEL_UNFILLED_BIT	0x04
586#define INTEL_FALLBACK_BIT	0x08
587#define INTEL_MAX_TRIFUNC	0x10
588
589
590static struct
591{
592   tnl_points_func points;
593   tnl_line_func line;
594   tnl_triangle_func triangle;
595   tnl_quad_func quad;
596} rast_tab[INTEL_MAX_TRIFUNC];
597
598
599#define DO_FALLBACK (IND & INTEL_FALLBACK_BIT)
600#define DO_OFFSET   (IND & INTEL_OFFSET_BIT)
601#define DO_UNFILLED (IND & INTEL_UNFILLED_BIT)
602#define DO_TWOSIDE  (IND & INTEL_TWOSIDE_BIT)
603#define DO_FLAT      0
604#define DO_TRI       1
605#define DO_QUAD      1
606#define DO_LINE      1
607#define DO_POINTS    1
608#define DO_FULL_QUAD 1
609
610#define HAVE_RGBA         1
611#define HAVE_SPEC         1
612#define HAVE_BACK_COLORS  0
613#define HAVE_HW_FLATSHADE 1
614#define VERTEX            intelVertex
615#define TAB               rast_tab
616
617/* Only used to pull back colors into vertices (ie, we know color is
618 * floating point).
619 */
620#define INTEL_COLOR( dst, src )				\
621do {							\
622   UNCLAMPED_FLOAT_TO_UBYTE((dst)[0], (src)[2]);	\
623   UNCLAMPED_FLOAT_TO_UBYTE((dst)[1], (src)[1]);	\
624   UNCLAMPED_FLOAT_TO_UBYTE((dst)[2], (src)[0]);	\
625   UNCLAMPED_FLOAT_TO_UBYTE((dst)[3], (src)[3]);	\
626} while (0)
627
628#define INTEL_SPEC( dst, src )				\
629do {							\
630   UNCLAMPED_FLOAT_TO_UBYTE((dst)[0], (src)[2]);	\
631   UNCLAMPED_FLOAT_TO_UBYTE((dst)[1], (src)[1]);	\
632   UNCLAMPED_FLOAT_TO_UBYTE((dst)[2], (src)[0]);	\
633} while (0)
634
635
636#define DEPTH_SCALE intel->polygon_offset_scale
637#define UNFILLED_TRI unfilled_tri
638#define UNFILLED_QUAD unfilled_quad
639#define VERT_X(_v) _v->v.x
640#define VERT_Y(_v) _v->v.y
641#define VERT_Z(_v) _v->v.z
642#define AREA_IS_CCW( a ) (a > 0)
643#define GET_VERTEX(e) (intel->verts + (e * intel->vertex_size * sizeof(GLuint)))
644
645#define VERT_SET_RGBA( v, c )    if (coloroffset) INTEL_COLOR( v->ub4[coloroffset], c )
646#define VERT_COPY_RGBA( v0, v1 ) if (coloroffset) v0->ui[coloroffset] = v1->ui[coloroffset]
647#define VERT_SAVE_RGBA( idx )    if (coloroffset) color[idx] = v[idx]->ui[coloroffset]
648#define VERT_RESTORE_RGBA( idx ) if (coloroffset) v[idx]->ui[coloroffset] = color[idx]
649
650#define VERT_SET_SPEC( v, c )    if (specoffset) INTEL_SPEC( v->ub4[specoffset], c )
651#define VERT_COPY_SPEC( v0, v1 ) if (specoffset) COPY_3V(v0->ub4[specoffset], v1->ub4[specoffset])
652#define VERT_SAVE_SPEC( idx )    if (specoffset) spec[idx] = v[idx]->ui[specoffset]
653#define VERT_RESTORE_SPEC( idx ) if (specoffset) v[idx]->ui[specoffset] = spec[idx]
654
655#define LOCAL_VARS(n)							\
656   struct intel_context *intel = intel_context(ctx);			\
657   GLuint color[n] = { 0, }, spec[n] = { 0, };				\
658   GLuint coloroffset = intel->coloroffset;				\
659   GLboolean specoffset = intel->specoffset;				\
660   (void) color; (void) spec; (void) coloroffset; (void) specoffset;
661
662
663/***********************************************************************
664 *                Helpers for rendering unfilled primitives            *
665 ***********************************************************************/
666
667static const GLuint hw_prim[GL_POLYGON + 1] = {
668   PRIM3D_POINTLIST,
669   PRIM3D_LINELIST,
670   PRIM3D_LINELIST,
671   PRIM3D_LINELIST,
672   PRIM3D_TRILIST,
673   PRIM3D_TRILIST,
674   PRIM3D_TRILIST,
675   PRIM3D_TRILIST,
676   PRIM3D_TRILIST,
677   PRIM3D_TRILIST
678};
679
680#define RASTERIZE(x) intelRasterPrimitive( ctx, x, hw_prim[x] )
681#define RENDER_PRIMITIVE intel->render_primitive
682#define TAG(x) x
683#define IND INTEL_FALLBACK_BIT
684#include "tnl_dd/t_dd_unfilled.h"
685#undef IND
686
687/***********************************************************************
688 *                      Generate GL render functions                   *
689 ***********************************************************************/
690
691#define IND (0)
692#define TAG(x) x
693#include "tnl_dd/t_dd_tritmp.h"
694
695#define IND (INTEL_OFFSET_BIT)
696#define TAG(x) x##_offset
697#include "tnl_dd/t_dd_tritmp.h"
698
699#define IND (INTEL_TWOSIDE_BIT)
700#define TAG(x) x##_twoside
701#include "tnl_dd/t_dd_tritmp.h"
702
703#define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT)
704#define TAG(x) x##_twoside_offset
705#include "tnl_dd/t_dd_tritmp.h"
706
707#define IND (INTEL_UNFILLED_BIT)
708#define TAG(x) x##_unfilled
709#include "tnl_dd/t_dd_tritmp.h"
710
711#define IND (INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT)
712#define TAG(x) x##_offset_unfilled
713#include "tnl_dd/t_dd_tritmp.h"
714
715#define IND (INTEL_TWOSIDE_BIT|INTEL_UNFILLED_BIT)
716#define TAG(x) x##_twoside_unfilled
717#include "tnl_dd/t_dd_tritmp.h"
718
719#define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT)
720#define TAG(x) x##_twoside_offset_unfilled
721#include "tnl_dd/t_dd_tritmp.h"
722
723#define IND (INTEL_FALLBACK_BIT)
724#define TAG(x) x##_fallback
725#include "tnl_dd/t_dd_tritmp.h"
726
727#define IND (INTEL_OFFSET_BIT|INTEL_FALLBACK_BIT)
728#define TAG(x) x##_offset_fallback
729#include "tnl_dd/t_dd_tritmp.h"
730
731#define IND (INTEL_TWOSIDE_BIT|INTEL_FALLBACK_BIT)
732#define TAG(x) x##_twoside_fallback
733#include "tnl_dd/t_dd_tritmp.h"
734
735#define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT|INTEL_FALLBACK_BIT)
736#define TAG(x) x##_twoside_offset_fallback
737#include "tnl_dd/t_dd_tritmp.h"
738
739#define IND (INTEL_UNFILLED_BIT|INTEL_FALLBACK_BIT)
740#define TAG(x) x##_unfilled_fallback
741#include "tnl_dd/t_dd_tritmp.h"
742
743#define IND (INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT|INTEL_FALLBACK_BIT)
744#define TAG(x) x##_offset_unfilled_fallback
745#include "tnl_dd/t_dd_tritmp.h"
746
747#define IND (INTEL_TWOSIDE_BIT|INTEL_UNFILLED_BIT|INTEL_FALLBACK_BIT)
748#define TAG(x) x##_twoside_unfilled_fallback
749#include "tnl_dd/t_dd_tritmp.h"
750
751#define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT| \
752	     INTEL_FALLBACK_BIT)
753#define TAG(x) x##_twoside_offset_unfilled_fallback
754#include "tnl_dd/t_dd_tritmp.h"
755
756
757static void
758init_rast_tab(void)
759{
760   init();
761   init_offset();
762   init_twoside();
763   init_twoside_offset();
764   init_unfilled();
765   init_offset_unfilled();
766   init_twoside_unfilled();
767   init_twoside_offset_unfilled();
768   init_fallback();
769   init_offset_fallback();
770   init_twoside_fallback();
771   init_twoside_offset_fallback();
772   init_unfilled_fallback();
773   init_offset_unfilled_fallback();
774   init_twoside_unfilled_fallback();
775   init_twoside_offset_unfilled_fallback();
776}
777
778
779/***********************************************************************
780 *                    Rasterization fallback helpers                   *
781 ***********************************************************************/
782
783
784/* This code is hit only when a mix of accelerated and unaccelerated
785 * primitives are being drawn, and only for the unaccelerated
786 * primitives.
787 */
788static void
789intel_fallback_tri(struct intel_context *intel,
790                   intelVertex * v0, intelVertex * v1, intelVertex * v2)
791{
792   GLcontext *ctx = &intel->ctx;
793   SWvertex v[3];
794
795   if (0)
796      fprintf(stderr, "\n%s\n", __FUNCTION__);
797
798   INTEL_FIREVERTICES(intel);
799
800   _swsetup_Translate(ctx, v0, &v[0]);
801   _swsetup_Translate(ctx, v1, &v[1]);
802   _swsetup_Translate(ctx, v2, &v[2]);
803   intelSpanRenderStart(ctx);
804   _swrast_Triangle(ctx, &v[0], &v[1], &v[2]);
805   intelSpanRenderFinish(ctx);
806}
807
808
809static void
810intel_fallback_line(struct intel_context *intel,
811                    intelVertex * v0, intelVertex * v1)
812{
813   GLcontext *ctx = &intel->ctx;
814   SWvertex v[2];
815
816   if (0)
817      fprintf(stderr, "\n%s\n", __FUNCTION__);
818
819   INTEL_FIREVERTICES(intel);
820
821   _swsetup_Translate(ctx, v0, &v[0]);
822   _swsetup_Translate(ctx, v1, &v[1]);
823   intelSpanRenderStart(ctx);
824   _swrast_Line(ctx, &v[0], &v[1]);
825   intelSpanRenderFinish(ctx);
826}
827
828static void
829intel_fallback_point(struct intel_context *intel,
830		     intelVertex * v0)
831{
832   GLcontext *ctx = &intel->ctx;
833   SWvertex v[1];
834
835   if (0)
836      fprintf(stderr, "\n%s\n", __FUNCTION__);
837
838   INTEL_FIREVERTICES(intel);
839
840   _swsetup_Translate(ctx, v0, &v[0]);
841   intelSpanRenderStart(ctx);
842   _swrast_Point(ctx, &v[0]);
843   intelSpanRenderFinish(ctx);
844}
845
846
847/**********************************************************************/
848/*               Render unclipped begin/end objects                   */
849/**********************************************************************/
850
851#define IND 0
852#define V(x) (intelVertex *)(vertptr + ((x)*vertsize*sizeof(GLuint)))
853#define RENDER_POINTS( start, count )	\
854   for ( ; start < count ; start++) POINT( V(ELT(start)) );
855#define RENDER_LINE( v0, v1 )         LINE( V(v0), V(v1) )
856#define RENDER_TRI(  v0, v1, v2 )     TRI(  V(v0), V(v1), V(v2) )
857#define RENDER_QUAD( v0, v1, v2, v3 ) QUAD( V(v0), V(v1), V(v2), V(v3) )
858#define INIT(x) intelRenderPrimitive( ctx, x )
859#undef LOCAL_VARS
860#define LOCAL_VARS						\
861    struct intel_context *intel = intel_context(ctx);			\
862    GLubyte *vertptr = (GLubyte *)intel->verts;			\
863    const GLuint vertsize = intel->vertex_size;       	\
864    const GLuint * const elt = TNL_CONTEXT(ctx)->vb.Elts;	\
865    (void) elt;
866#define RESET_STIPPLE
867#define RESET_OCCLUSION
868#define PRESERVE_VB_DEFS
869#define ELT(x) x
870#define TAG(x) intel_##x##_verts
871#include "tnl/t_vb_rendertmp.h"
872#undef ELT
873#undef TAG
874#define TAG(x) intel_##x##_elts
875#define ELT(x) elt[x]
876#include "tnl/t_vb_rendertmp.h"
877
878/**********************************************************************/
879/*                   Render clipped primitives                        */
880/**********************************************************************/
881
882
883
884static void
885intelRenderClippedPoly(GLcontext * ctx, const GLuint * elts, GLuint n)
886{
887   struct intel_context *intel = intel_context(ctx);
888   TNLcontext *tnl = TNL_CONTEXT(ctx);
889   struct vertex_buffer *VB = &TNL_CONTEXT(ctx)->vb;
890   GLuint prim = intel->render_primitive;
891
892   /* Render the new vertices as an unclipped polygon.
893    */
894   {
895      GLuint *tmp = VB->Elts;
896      VB->Elts = (GLuint *) elts;
897      tnl->Driver.Render.PrimTabElts[GL_POLYGON] (ctx, 0, n,
898                                                  PRIM_BEGIN | PRIM_END);
899      VB->Elts = tmp;
900   }
901
902   /* Restore the render primitive
903    */
904   if (prim != GL_POLYGON)
905      tnl->Driver.Render.PrimitiveNotify(ctx, prim);
906}
907
908static void
909intelRenderClippedLine(GLcontext * ctx, GLuint ii, GLuint jj)
910{
911   TNLcontext *tnl = TNL_CONTEXT(ctx);
912
913   tnl->Driver.Render.Line(ctx, ii, jj);
914}
915
916static void
917intelFastRenderClippedPoly(GLcontext * ctx, const GLuint * elts, GLuint n)
918{
919   struct intel_context *intel = intel_context(ctx);
920   const GLuint vertsize = intel->vertex_size;
921   GLuint *vb = intel_get_prim_space(intel, (n - 2) * 3);
922   GLubyte *vertptr = (GLubyte *) intel->verts;
923   const GLuint *start = (const GLuint *) V(elts[0]);
924   int i, j;
925
926   for (i = 2; i < n; i++) {
927      COPY_DWORDS(j, vb, vertsize, V(elts[i - 1]));
928      COPY_DWORDS(j, vb, vertsize, V(elts[i]));
929      COPY_DWORDS(j, vb, vertsize, start);
930   }
931}
932
933/**********************************************************************/
934/*                    Choose render functions                         */
935/**********************************************************************/
936
937
938
939
940#define ANY_FALLBACK_FLAGS (DD_LINE_STIPPLE | DD_TRI_STIPPLE | DD_POINT_ATTEN | DD_POINT_SMOOTH | DD_TRI_SMOOTH)
941#define ANY_RASTER_FLAGS (DD_TRI_LIGHT_TWOSIDE | DD_TRI_OFFSET | DD_TRI_UNFILLED)
942
943void
944intelChooseRenderState(GLcontext * ctx)
945{
946   TNLcontext *tnl = TNL_CONTEXT(ctx);
947   struct intel_context *intel = intel_context(ctx);
948   GLuint flags = ctx->_TriangleCaps;
949   const struct gl_fragment_program *fprog = ctx->FragmentProgram._Current;
950   GLboolean have_wpos = (fprog && (fprog->Base.InputsRead & FRAG_BIT_WPOS));
951   GLuint index = 0;
952
953   if (INTEL_DEBUG & DEBUG_STATE)
954      fprintf(stderr, "\n%s\n", __FUNCTION__);
955
956   if ((flags & (ANY_FALLBACK_FLAGS | ANY_RASTER_FLAGS)) || have_wpos) {
957
958      if (flags & ANY_RASTER_FLAGS) {
959         if (flags & DD_TRI_LIGHT_TWOSIDE)
960            index |= INTEL_TWOSIDE_BIT;
961         if (flags & DD_TRI_OFFSET)
962            index |= INTEL_OFFSET_BIT;
963         if (flags & DD_TRI_UNFILLED)
964            index |= INTEL_UNFILLED_BIT;
965      }
966
967      if (have_wpos) {
968         intel->draw_point = intel_wpos_point;
969         intel->draw_line = intel_wpos_line;
970         intel->draw_tri = intel_wpos_triangle;
971
972         /* Make sure these get called:
973          */
974         index |= INTEL_FALLBACK_BIT;
975      }
976      else {
977         intel->draw_point = intel_draw_point;
978         intel->draw_line = intel_draw_line;
979         intel->draw_tri = intel_draw_triangle;
980      }
981
982      /* Hook in fallbacks for specific primitives.
983       */
984      if (flags & ANY_FALLBACK_FLAGS) {
985         if (flags & DD_LINE_STIPPLE)
986            intel->draw_line = intel_fallback_line;
987
988         if ((flags & DD_TRI_STIPPLE) && !intel->hw_stipple)
989            intel->draw_tri = intel_fallback_tri;
990
991         if (flags & DD_TRI_SMOOTH) {
992	    if (intel->conformance_mode > 0)
993	       intel->draw_tri = intel_fallback_tri;
994	 }
995
996         if (flags & DD_POINT_ATTEN) {
997	    if (0)
998	       intel->draw_point = intel_atten_point;
999	    else
1000	       intel->draw_point = intel_fallback_point;
1001	 }
1002
1003	 if (flags & DD_POINT_SMOOTH) {
1004	    if (intel->conformance_mode > 0)
1005	       intel->draw_point = intel_fallback_point;
1006	 }
1007
1008         index |= INTEL_FALLBACK_BIT;
1009      }
1010   }
1011
1012   if (intel->RenderIndex != index) {
1013      intel->RenderIndex = index;
1014
1015      tnl->Driver.Render.Points = rast_tab[index].points;
1016      tnl->Driver.Render.Line = rast_tab[index].line;
1017      tnl->Driver.Render.Triangle = rast_tab[index].triangle;
1018      tnl->Driver.Render.Quad = rast_tab[index].quad;
1019
1020      if (index == 0) {
1021         tnl->Driver.Render.PrimTabVerts = intel_render_tab_verts;
1022         tnl->Driver.Render.PrimTabElts = intel_render_tab_elts;
1023         tnl->Driver.Render.ClippedLine = line; /* from tritmp.h */
1024         tnl->Driver.Render.ClippedPolygon = intelFastRenderClippedPoly;
1025      }
1026      else {
1027         tnl->Driver.Render.PrimTabVerts = _tnl_render_tab_verts;
1028         tnl->Driver.Render.PrimTabElts = _tnl_render_tab_elts;
1029         tnl->Driver.Render.ClippedLine = intelRenderClippedLine;
1030         tnl->Driver.Render.ClippedPolygon = intelRenderClippedPoly;
1031      }
1032   }
1033}
1034
1035static const GLenum reduced_prim[GL_POLYGON + 1] = {
1036   GL_POINTS,
1037   GL_LINES,
1038   GL_LINES,
1039   GL_LINES,
1040   GL_TRIANGLES,
1041   GL_TRIANGLES,
1042   GL_TRIANGLES,
1043   GL_TRIANGLES,
1044   GL_TRIANGLES,
1045   GL_TRIANGLES
1046};
1047
1048
1049/**********************************************************************/
1050/*                 High level hooks for t_vb_render.c                 */
1051/**********************************************************************/
1052
1053
1054
1055
1056static void
1057intelRunPipeline(GLcontext * ctx)
1058{
1059   struct intel_context *intel = intel_context(ctx);
1060
1061   _mesa_lock_context_textures(ctx);
1062
1063   if (ctx->NewState)
1064      _mesa_update_state_locked(ctx);
1065
1066   if (intel->NewGLState) {
1067      if (intel->NewGLState & _NEW_TEXTURE) {
1068         intel->vtbl.update_texture_state(intel);
1069      }
1070
1071      if (!intel->Fallback) {
1072         if (intel->NewGLState & _INTEL_NEW_RENDERSTATE)
1073            intelChooseRenderState(ctx);
1074      }
1075
1076      intel->NewGLState = 0;
1077   }
1078
1079   intel_map_vertex_shader_textures(ctx);
1080   _tnl_run_pipeline(ctx);
1081   intel_unmap_vertex_shader_textures(ctx);
1082
1083   _mesa_unlock_context_textures(ctx);
1084}
1085
1086static void
1087intelRenderStart(GLcontext * ctx)
1088{
1089   struct intel_context *intel = intel_context(ctx);
1090
1091   intel_check_front_buffer_rendering(intel);
1092   intel->vtbl.render_start(intel_context(ctx));
1093   intel->vtbl.emit_state(intel);
1094}
1095
1096static void
1097intelRenderFinish(GLcontext * ctx)
1098{
1099   struct intel_context *intel = intel_context(ctx);
1100
1101   if (intel->RenderIndex & INTEL_FALLBACK_BIT)
1102      _swrast_flush(ctx);
1103
1104   INTEL_FIREVERTICES(intel);
1105}
1106
1107
1108
1109
1110 /* System to flush dma and emit state changes based on the rasterized
1111  * primitive.
1112  */
1113static void
1114intelRasterPrimitive(GLcontext * ctx, GLenum rprim, GLuint hwprim)
1115{
1116   struct intel_context *intel = intel_context(ctx);
1117
1118   if (0)
1119      fprintf(stderr, "%s %s %x\n", __FUNCTION__,
1120              _mesa_lookup_enum_by_nr(rprim), hwprim);
1121
1122   intel->vtbl.reduced_primitive_state(intel, rprim);
1123
1124   /* Start a new primitive.  Arrange to have it flushed later on.
1125    */
1126   if (hwprim != intel->prim.primitive) {
1127      INTEL_FIREVERTICES(intel);
1128
1129      intel_set_prim(intel, hwprim);
1130   }
1131}
1132
1133
1134 /*
1135  */
1136static void
1137intelRenderPrimitive(GLcontext * ctx, GLenum prim)
1138{
1139   struct intel_context *intel = intel_context(ctx);
1140
1141   if (0)
1142      fprintf(stderr, "%s %s\n", __FUNCTION__, _mesa_lookup_enum_by_nr(prim));
1143
1144   /* Let some clipping routines know which primitive they're dealing
1145    * with.
1146    */
1147   intel->render_primitive = prim;
1148
1149   /* Shortcircuit this when called from t_dd_rendertmp.h for unfilled
1150    * triangles.  The rasterized primitive will always be reset by
1151    * lower level functions in that case, potentially pingponging the
1152    * state:
1153    */
1154   if (reduced_prim[prim] == GL_TRIANGLES &&
1155       (ctx->_TriangleCaps & DD_TRI_UNFILLED))
1156      return;
1157
1158   /* Set some primitive-dependent state and Start? a new primitive.
1159    */
1160   intelRasterPrimitive(ctx, reduced_prim[prim], hw_prim[prim]);
1161}
1162
1163
1164 /**********************************************************************/
1165 /*           Transition to/from hardware rasterization.               */
1166 /**********************************************************************/
1167
1168static char *fallbackStrings[] = {
1169   [0] = "Draw buffer",
1170   [1] = "Read buffer",
1171   [2] = "Depth buffer",
1172   [3] = "Stencil buffer",
1173   [4] = "User disable",
1174   [5] = "Render mode",
1175
1176   [12] = "Texture",
1177   [13] = "Color mask",
1178   [14] = "Stencil",
1179   [15] = "Stipple",
1180   [16] = "Program",
1181   [17] = "Logic op",
1182   [18] = "Smooth polygon",
1183   [19] = "Smooth point",
1184};
1185
1186
1187static char *
1188getFallbackString(GLuint bit)
1189{
1190   int i = 0;
1191   while (bit > 1) {
1192      i++;
1193      bit >>= 1;
1194   }
1195   return fallbackStrings[i];
1196}
1197
1198
1199
1200/**
1201 * Enable/disable a fallback flag.
1202 * \param bit  one of INTEL_FALLBACK_x flags.
1203 */
1204void
1205intelFallback(struct intel_context *intel, GLbitfield bit, GLboolean mode)
1206{
1207   GLcontext *ctx = &intel->ctx;
1208   TNLcontext *tnl = TNL_CONTEXT(ctx);
1209   const GLbitfield oldfallback = intel->Fallback;
1210
1211   if (mode) {
1212      intel->Fallback |= bit;
1213      if (oldfallback == 0) {
1214         intelFlush(ctx);
1215         if (INTEL_DEBUG & DEBUG_FALLBACKS)
1216            fprintf(stderr, "ENTER FALLBACK %x: %s\n",
1217                    bit, getFallbackString(bit));
1218         _swsetup_Wakeup(ctx);
1219         intel->RenderIndex = ~0;
1220      }
1221   }
1222   else {
1223      intel->Fallback &= ~bit;
1224      if (oldfallback == bit) {
1225         _swrast_flush(ctx);
1226         if (INTEL_DEBUG & DEBUG_FALLBACKS)
1227            fprintf(stderr, "LEAVE FALLBACK %s\n", getFallbackString(bit));
1228         tnl->Driver.Render.Start = intelRenderStart;
1229         tnl->Driver.Render.PrimitiveNotify = intelRenderPrimitive;
1230         tnl->Driver.Render.Finish = intelRenderFinish;
1231         tnl->Driver.Render.BuildVertices = _tnl_build_vertices;
1232         tnl->Driver.Render.CopyPV = _tnl_copy_pv;
1233         tnl->Driver.Render.Interp = _tnl_interp;
1234
1235         _tnl_invalidate_vertex_state(ctx, ~0);
1236         _tnl_invalidate_vertices(ctx, ~0);
1237         _tnl_install_attrs(ctx,
1238                            intel->vertex_attrs,
1239                            intel->vertex_attr_count,
1240                            intel->ViewportMatrix.m, 0);
1241
1242         intel->NewGLState |= _INTEL_NEW_RENDERSTATE;
1243      }
1244   }
1245}
1246
1247union fi
1248{
1249   GLfloat f;
1250   GLint i;
1251};
1252
1253
1254/**********************************************************************/
1255/*             Used only with the metaops callbacks.                  */
1256/**********************************************************************/
1257static void
1258intel_meta_draw_poly(struct intel_context *intel,
1259                     GLuint n,
1260                     GLfloat xy[][2],
1261                     GLfloat z, GLuint color, GLfloat tex[][2])
1262{
1263   union fi *vb;
1264   GLint i;
1265   unsigned int saved_vertex_size = intel->vertex_size;
1266
1267   LOCK_HARDWARE(intel);
1268
1269   intel->vertex_size = 6;
1270
1271   /* All 3d primitives should be emitted with LOOP_CLIPRECTS,
1272    * otherwise the drawing origin (DR4) might not be set correctly.
1273    */
1274   intel_set_prim(intel, PRIM3D_TRIFAN);
1275   vb = (union fi *) intel_get_prim_space(intel, n);
1276
1277   for (i = 0; i < n; i++) {
1278      vb[0].f = xy[i][0];
1279      vb[1].f = xy[i][1];
1280      vb[2].f = z;
1281      vb[3].i = color;
1282      vb[4].f = tex[i][0];
1283      vb[5].f = tex[i][1];
1284      vb += 6;
1285   }
1286
1287   INTEL_FIREVERTICES(intel);
1288
1289   intel->vertex_size = saved_vertex_size;
1290
1291   UNLOCK_HARDWARE(intel);
1292}
1293
1294static void
1295intel_meta_draw_quad(struct intel_context *intel,
1296                     GLfloat x0, GLfloat x1,
1297                     GLfloat y0, GLfloat y1,
1298                     GLfloat z,
1299                     GLuint color,
1300                     GLfloat s0, GLfloat s1, GLfloat t0, GLfloat t1)
1301{
1302   GLfloat xy[4][2];
1303   GLfloat tex[4][2];
1304
1305   xy[0][0] = x0;
1306   xy[0][1] = y0;
1307   xy[1][0] = x1;
1308   xy[1][1] = y0;
1309   xy[2][0] = x1;
1310   xy[2][1] = y1;
1311   xy[3][0] = x0;
1312   xy[3][1] = y1;
1313
1314   tex[0][0] = s0;
1315   tex[0][1] = t0;
1316   tex[1][0] = s1;
1317   tex[1][1] = t0;
1318   tex[2][0] = s1;
1319   tex[2][1] = t1;
1320   tex[3][0] = s0;
1321   tex[3][1] = t1;
1322
1323   intel_meta_draw_poly(intel, 4, xy, z, color, tex);
1324}
1325
1326
1327
1328/**********************************************************************/
1329/*                            Initialization.                         */
1330/**********************************************************************/
1331
1332
1333void
1334intelInitTriFuncs(GLcontext * ctx)
1335{
1336   struct intel_context *intel = intel_context(ctx);
1337   TNLcontext *tnl = TNL_CONTEXT(ctx);
1338   static int firsttime = 1;
1339
1340   if (firsttime) {
1341      init_rast_tab();
1342      firsttime = 0;
1343   }
1344
1345   tnl->Driver.RunPipeline = intelRunPipeline;
1346   tnl->Driver.Render.Start = intelRenderStart;
1347   tnl->Driver.Render.Finish = intelRenderFinish;
1348   tnl->Driver.Render.PrimitiveNotify = intelRenderPrimitive;
1349   tnl->Driver.Render.ResetLineStipple = _swrast_ResetLineStipple;
1350   tnl->Driver.Render.BuildVertices = _tnl_build_vertices;
1351   tnl->Driver.Render.CopyPV = _tnl_copy_pv;
1352   tnl->Driver.Render.Interp = _tnl_interp;
1353
1354   intel->vtbl.meta_draw_quad = intel_meta_draw_quad;
1355}
1356