1/*
2 * Mesa 3-D graphics library
3 * Version:  7.1
4 *
5 * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25/**
26 * \file prog_statevars.c
27 * Program state variable management.
28 * \author Brian Paul
29 */
30
31
32#include "main/glheader.h"
33#include "main/context.h"
34#include "main/imports.h"
35#include "main/macros.h"
36#include "main/mtypes.h"
37#include "main/fbobject.h"
38#include "prog_statevars.h"
39#include "prog_parameter.h"
40#include "main/samplerobj.h"
41
42
43/**
44 * Use the list of tokens in the state[] array to find global GL state
45 * and return it in <value>.  Usually, four values are returned in <value>
46 * but matrix queries may return as many as 16 values.
47 * This function is used for ARB vertex/fragment programs.
48 * The program parser will produce the state[] values.
49 */
50static void
51_mesa_fetch_state(struct gl_context *ctx, const gl_state_index state[],
52                  GLfloat *value)
53{
54   switch (state[0]) {
55   case STATE_MATERIAL:
56      {
57         /* state[1] is either 0=front or 1=back side */
58         const GLuint face = (GLuint) state[1];
59         const struct gl_material *mat = &ctx->Light.Material;
60         ASSERT(face == 0 || face == 1);
61         /* we rely on tokens numbered so that _BACK_ == _FRONT_+ 1 */
62         ASSERT(MAT_ATTRIB_FRONT_AMBIENT + 1 == MAT_ATTRIB_BACK_AMBIENT);
63         /* XXX we could get rid of this switch entirely with a little
64          * work in arbprogparse.c's parse_state_single_item().
65          */
66         /* state[2] is the material attribute */
67         switch (state[2]) {
68         case STATE_AMBIENT:
69            COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_AMBIENT + face]);
70            return;
71         case STATE_DIFFUSE:
72            COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_DIFFUSE + face]);
73            return;
74         case STATE_SPECULAR:
75            COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_SPECULAR + face]);
76            return;
77         case STATE_EMISSION:
78            COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_EMISSION + face]);
79            return;
80         case STATE_SHININESS:
81            value[0] = mat->Attrib[MAT_ATTRIB_FRONT_SHININESS + face][0];
82            value[1] = 0.0F;
83            value[2] = 0.0F;
84            value[3] = 1.0F;
85            return;
86         default:
87            _mesa_problem(ctx, "Invalid material state in fetch_state");
88            return;
89         }
90      }
91   case STATE_LIGHT:
92      {
93         /* state[1] is the light number */
94         const GLuint ln = (GLuint) state[1];
95         /* state[2] is the light attribute */
96         switch (state[2]) {
97         case STATE_AMBIENT:
98            COPY_4V(value, ctx->Light.Light[ln].Ambient);
99            return;
100         case STATE_DIFFUSE:
101            COPY_4V(value, ctx->Light.Light[ln].Diffuse);
102            return;
103         case STATE_SPECULAR:
104            COPY_4V(value, ctx->Light.Light[ln].Specular);
105            return;
106         case STATE_POSITION:
107            COPY_4V(value, ctx->Light.Light[ln].EyePosition);
108            return;
109         case STATE_ATTENUATION:
110            value[0] = ctx->Light.Light[ln].ConstantAttenuation;
111            value[1] = ctx->Light.Light[ln].LinearAttenuation;
112            value[2] = ctx->Light.Light[ln].QuadraticAttenuation;
113            value[3] = ctx->Light.Light[ln].SpotExponent;
114            return;
115         case STATE_SPOT_DIRECTION:
116            COPY_3V(value, ctx->Light.Light[ln].SpotDirection);
117            value[3] = ctx->Light.Light[ln]._CosCutoff;
118            return;
119         case STATE_SPOT_CUTOFF:
120            value[0] = ctx->Light.Light[ln].SpotCutoff;
121            return;
122         case STATE_HALF_VECTOR:
123            {
124               static const GLfloat eye_z[] = {0, 0, 1};
125               GLfloat p[3];
126               /* Compute infinite half angle vector:
127                *   halfVector = normalize(normalize(lightPos) + (0, 0, 1))
128		* light.EyePosition.w should be 0 for infinite lights.
129                */
130               COPY_3V(p, ctx->Light.Light[ln].EyePosition);
131               NORMALIZE_3FV(p);
132	       ADD_3V(value, p, eye_z);
133	       NORMALIZE_3FV(value);
134	       value[3] = 1.0;
135            }
136            return;
137         default:
138            _mesa_problem(ctx, "Invalid light state in fetch_state");
139            return;
140         }
141      }
142   case STATE_LIGHTMODEL_AMBIENT:
143      COPY_4V(value, ctx->Light.Model.Ambient);
144      return;
145   case STATE_LIGHTMODEL_SCENECOLOR:
146      if (state[1] == 0) {
147         /* front */
148         GLint i;
149         for (i = 0; i < 3; i++) {
150            value[i] = ctx->Light.Model.Ambient[i]
151               * ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT][i]
152               + ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_EMISSION][i];
153         }
154	 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3];
155      }
156      else {
157         /* back */
158         GLint i;
159         for (i = 0; i < 3; i++) {
160            value[i] = ctx->Light.Model.Ambient[i]
161               * ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_AMBIENT][i]
162               + ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_EMISSION][i];
163         }
164	 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_DIFFUSE][3];
165      }
166      return;
167   case STATE_LIGHTPROD:
168      {
169         const GLuint ln = (GLuint) state[1];
170         const GLuint face = (GLuint) state[2];
171         GLint i;
172         ASSERT(face == 0 || face == 1);
173         switch (state[3]) {
174            case STATE_AMBIENT:
175               for (i = 0; i < 3; i++) {
176                  value[i] = ctx->Light.Light[ln].Ambient[i] *
177                     ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][i];
178               }
179               /* [3] = material alpha */
180               value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][3];
181               return;
182            case STATE_DIFFUSE:
183               for (i = 0; i < 3; i++) {
184                  value[i] = ctx->Light.Light[ln].Diffuse[i] *
185                     ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][i];
186               }
187               /* [3] = material alpha */
188               value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][3];
189               return;
190            case STATE_SPECULAR:
191               for (i = 0; i < 3; i++) {
192                  value[i] = ctx->Light.Light[ln].Specular[i] *
193                     ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][i];
194               }
195               /* [3] = material alpha */
196               value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][3];
197               return;
198            default:
199               _mesa_problem(ctx, "Invalid lightprod state in fetch_state");
200               return;
201         }
202      }
203   case STATE_TEXGEN:
204      {
205         /* state[1] is the texture unit */
206         const GLuint unit = (GLuint) state[1];
207         /* state[2] is the texgen attribute */
208         switch (state[2]) {
209         case STATE_TEXGEN_EYE_S:
210            COPY_4V(value, ctx->Texture.Unit[unit].GenS.EyePlane);
211            return;
212         case STATE_TEXGEN_EYE_T:
213            COPY_4V(value, ctx->Texture.Unit[unit].GenT.EyePlane);
214            return;
215         case STATE_TEXGEN_EYE_R:
216            COPY_4V(value, ctx->Texture.Unit[unit].GenR.EyePlane);
217            return;
218         case STATE_TEXGEN_EYE_Q:
219            COPY_4V(value, ctx->Texture.Unit[unit].GenQ.EyePlane);
220            return;
221         case STATE_TEXGEN_OBJECT_S:
222            COPY_4V(value, ctx->Texture.Unit[unit].GenS.ObjectPlane);
223            return;
224         case STATE_TEXGEN_OBJECT_T:
225            COPY_4V(value, ctx->Texture.Unit[unit].GenT.ObjectPlane);
226            return;
227         case STATE_TEXGEN_OBJECT_R:
228            COPY_4V(value, ctx->Texture.Unit[unit].GenR.ObjectPlane);
229            return;
230         case STATE_TEXGEN_OBJECT_Q:
231            COPY_4V(value, ctx->Texture.Unit[unit].GenQ.ObjectPlane);
232            return;
233         default:
234            _mesa_problem(ctx, "Invalid texgen state in fetch_state");
235            return;
236         }
237      }
238   case STATE_TEXENV_COLOR:
239      {
240         /* state[1] is the texture unit */
241         const GLuint unit = (GLuint) state[1];
242         if(ctx->Color._ClampFragmentColor)
243            COPY_4V(value, ctx->Texture.Unit[unit].EnvColor);
244         else
245            COPY_4V(value, ctx->Texture.Unit[unit].EnvColorUnclamped);
246      }
247      return;
248   case STATE_FOG_COLOR:
249      if(ctx->Color._ClampFragmentColor)
250         COPY_4V(value, ctx->Fog.Color);
251      else
252         COPY_4V(value, ctx->Fog.ColorUnclamped);
253      return;
254   case STATE_FOG_PARAMS:
255      value[0] = ctx->Fog.Density;
256      value[1] = ctx->Fog.Start;
257      value[2] = ctx->Fog.End;
258      value[3] = (ctx->Fog.End == ctx->Fog.Start)
259         ? 1.0f : (GLfloat)(1.0 / (ctx->Fog.End - ctx->Fog.Start));
260      return;
261   case STATE_CLIPPLANE:
262      {
263         const GLuint plane = (GLuint) state[1];
264         COPY_4V(value, ctx->Transform.EyeUserPlane[plane]);
265      }
266      return;
267   case STATE_POINT_SIZE:
268      value[0] = ctx->Point.Size;
269      value[1] = ctx->Point.MinSize;
270      value[2] = ctx->Point.MaxSize;
271      value[3] = ctx->Point.Threshold;
272      return;
273   case STATE_POINT_ATTENUATION:
274      value[0] = ctx->Point.Params[0];
275      value[1] = ctx->Point.Params[1];
276      value[2] = ctx->Point.Params[2];
277      value[3] = 1.0F;
278      return;
279   case STATE_MODELVIEW_MATRIX:
280   case STATE_PROJECTION_MATRIX:
281   case STATE_MVP_MATRIX:
282   case STATE_TEXTURE_MATRIX:
283   case STATE_PROGRAM_MATRIX:
284      {
285         /* state[0] = modelview, projection, texture, etc. */
286         /* state[1] = which texture matrix or program matrix */
287         /* state[2] = first row to fetch */
288         /* state[3] = last row to fetch */
289         /* state[4] = transpose, inverse or invtrans */
290         const GLmatrix *matrix;
291         const gl_state_index mat = state[0];
292         const GLuint index = (GLuint) state[1];
293         const GLuint firstRow = (GLuint) state[2];
294         const GLuint lastRow = (GLuint) state[3];
295         const gl_state_index modifier = state[4];
296         const GLfloat *m;
297         GLuint row, i;
298         ASSERT(firstRow >= 0);
299         ASSERT(firstRow < 4);
300         ASSERT(lastRow >= 0);
301         ASSERT(lastRow < 4);
302         if (mat == STATE_MODELVIEW_MATRIX) {
303            matrix = ctx->ModelviewMatrixStack.Top;
304         }
305         else if (mat == STATE_PROJECTION_MATRIX) {
306            matrix = ctx->ProjectionMatrixStack.Top;
307         }
308         else if (mat == STATE_MVP_MATRIX) {
309            matrix = &ctx->_ModelProjectMatrix;
310         }
311         else if (mat == STATE_TEXTURE_MATRIX) {
312            ASSERT(index < Elements(ctx->TextureMatrixStack));
313            matrix = ctx->TextureMatrixStack[index].Top;
314         }
315         else if (mat == STATE_PROGRAM_MATRIX) {
316            ASSERT(index < Elements(ctx->ProgramMatrixStack));
317            matrix = ctx->ProgramMatrixStack[index].Top;
318         }
319         else {
320            _mesa_problem(ctx, "Bad matrix name in _mesa_fetch_state()");
321            return;
322         }
323         if (modifier == STATE_MATRIX_INVERSE ||
324             modifier == STATE_MATRIX_INVTRANS) {
325            /* Be sure inverse is up to date:
326	     */
327	    _math_matrix_analyse( (GLmatrix*) matrix );
328            m = matrix->inv;
329         }
330         else {
331            m = matrix->m;
332         }
333         if (modifier == STATE_MATRIX_TRANSPOSE ||
334             modifier == STATE_MATRIX_INVTRANS) {
335            for (i = 0, row = firstRow; row <= lastRow; row++) {
336               value[i++] = m[row * 4 + 0];
337               value[i++] = m[row * 4 + 1];
338               value[i++] = m[row * 4 + 2];
339               value[i++] = m[row * 4 + 3];
340            }
341         }
342         else {
343            for (i = 0, row = firstRow; row <= lastRow; row++) {
344               value[i++] = m[row + 0];
345               value[i++] = m[row + 4];
346               value[i++] = m[row + 8];
347               value[i++] = m[row + 12];
348            }
349         }
350      }
351      return;
352   case STATE_DEPTH_RANGE:
353      value[0] = ctx->Viewport.Near;                     /* near       */
354      value[1] = ctx->Viewport.Far;                      /* far        */
355      value[2] = ctx->Viewport.Far - ctx->Viewport.Near; /* far - near */
356      value[3] = 1.0;
357      return;
358   case STATE_FRAGMENT_PROGRAM:
359      {
360         /* state[1] = {STATE_ENV, STATE_LOCAL} */
361         /* state[2] = parameter index          */
362         const int idx = (int) state[2];
363         switch (state[1]) {
364            case STATE_ENV:
365               COPY_4V(value, ctx->FragmentProgram.Parameters[idx]);
366               return;
367            case STATE_LOCAL:
368               COPY_4V(value, ctx->FragmentProgram.Current->Base.LocalParams[idx]);
369               return;
370            default:
371               _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
372               return;
373         }
374      }
375      return;
376
377   case STATE_VERTEX_PROGRAM:
378      {
379         /* state[1] = {STATE_ENV, STATE_LOCAL} */
380         /* state[2] = parameter index          */
381         const int idx = (int) state[2];
382         switch (state[1]) {
383            case STATE_ENV:
384               COPY_4V(value, ctx->VertexProgram.Parameters[idx]);
385               return;
386            case STATE_LOCAL:
387               COPY_4V(value, ctx->VertexProgram.Current->Base.LocalParams[idx]);
388               return;
389            default:
390               _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
391               return;
392         }
393      }
394      return;
395
396   case STATE_NORMAL_SCALE:
397      ASSIGN_4V(value, ctx->_ModelViewInvScale, 0, 0, 1);
398      return;
399
400   case STATE_INTERNAL:
401      switch (state[1]) {
402      case STATE_CURRENT_ATTRIB:
403         {
404            const GLuint idx = (GLuint) state[2];
405            COPY_4V(value, ctx->Current.Attrib[idx]);
406         }
407         return;
408
409      case STATE_CURRENT_ATTRIB_MAYBE_VP_CLAMPED:
410         {
411            const GLuint idx = (GLuint) state[2];
412            if(ctx->Light._ClampVertexColor &&
413               (idx == VERT_ATTRIB_COLOR0 ||
414                idx == VERT_ATTRIB_COLOR1)) {
415               value[0] = CLAMP(ctx->Current.Attrib[idx][0], 0.0f, 1.0f);
416               value[1] = CLAMP(ctx->Current.Attrib[idx][1], 0.0f, 1.0f);
417               value[2] = CLAMP(ctx->Current.Attrib[idx][2], 0.0f, 1.0f);
418               value[3] = CLAMP(ctx->Current.Attrib[idx][3], 0.0f, 1.0f);
419            }
420            else
421               COPY_4V(value, ctx->Current.Attrib[idx]);
422         }
423         return;
424
425      case STATE_NORMAL_SCALE:
426         ASSIGN_4V(value,
427                   ctx->_ModelViewInvScale,
428                   ctx->_ModelViewInvScale,
429                   ctx->_ModelViewInvScale,
430                   1);
431         return;
432
433      case STATE_TEXRECT_SCALE:
434         /* Value = { 1/texWidth, 1/texHeight, 0, 1 }.
435          * Used to convert unnormalized texcoords to normalized texcoords.
436          */
437         {
438            const int unit = (int) state[2];
439            const struct gl_texture_object *texObj
440               = ctx->Texture.Unit[unit]._Current;
441            if (texObj) {
442               struct gl_texture_image *texImage = texObj->Image[0][0];
443               ASSIGN_4V(value,
444                         (GLfloat) (1.0 / texImage->Width),
445                         (GLfloat) (1.0 / texImage->Height),
446                         0.0f, 1.0f);
447            }
448         }
449         return;
450
451      case STATE_FOG_PARAMS_OPTIMIZED:
452         /* for simpler per-vertex/pixel fog calcs. POW (for EXP/EXP2 fog)
453          * might be more expensive than EX2 on some hw, plus it needs
454          * another constant (e) anyway. Linear fog can now be done with a
455          * single MAD.
456          * linear: fogcoord * -1/(end-start) + end/(end-start)
457          * exp: 2^-(density/ln(2) * fogcoord)
458          * exp2: 2^-((density/(ln(2)^2) * fogcoord)^2)
459          */
460         value[0] = (ctx->Fog.End == ctx->Fog.Start)
461            ? 1.0f : (GLfloat)(-1.0F / (ctx->Fog.End - ctx->Fog.Start));
462         value[1] = ctx->Fog.End * -value[0];
463         value[2] = (GLfloat)(ctx->Fog.Density * M_LOG2E); /* M_LOG2E == 1/ln(2) */
464         value[3] = (GLfloat)(ctx->Fog.Density * ONE_DIV_SQRT_LN2);
465         return;
466
467      case STATE_POINT_SIZE_CLAMPED:
468         {
469           /* this includes implementation dependent limits, to avoid
470            * another potentially necessary clamp.
471            * Note: for sprites, point smooth (point AA) is ignored
472            * and we'll clamp to MinPointSizeAA and MaxPointSize, because we
473            * expect drivers will want to say their minimum for AA size is 0.0
474            * but for non-AA it's 1.0 (because normal points with size below 1.0
475            * need to get rounded up to 1.0, hence never disappear). GL does
476            * not specify max clamp size for sprites, other than it needs to be
477            * at least as large as max AA size, hence use non-AA size there.
478            */
479            GLfloat minImplSize;
480            GLfloat maxImplSize;
481            if (ctx->Point.PointSprite) {
482               minImplSize = ctx->Const.MinPointSizeAA;
483               maxImplSize = ctx->Const.MaxPointSize;
484            }
485            else if (ctx->Point.SmoothFlag || ctx->Multisample._Enabled) {
486               minImplSize = ctx->Const.MinPointSizeAA;
487               maxImplSize = ctx->Const.MaxPointSizeAA;
488            }
489            else {
490               minImplSize = ctx->Const.MinPointSize;
491               maxImplSize = ctx->Const.MaxPointSize;
492            }
493            value[0] = ctx->Point.Size;
494            value[1] = ctx->Point.MinSize >= minImplSize ? ctx->Point.MinSize : minImplSize;
495            value[2] = ctx->Point.MaxSize <= maxImplSize ? ctx->Point.MaxSize : maxImplSize;
496            value[3] = ctx->Point.Threshold;
497         }
498         return;
499      case STATE_LIGHT_SPOT_DIR_NORMALIZED:
500         {
501            /* here, state[2] is the light number */
502            /* pre-normalize spot dir */
503            const GLuint ln = (GLuint) state[2];
504            COPY_3V(value, ctx->Light.Light[ln]._NormSpotDirection);
505            value[3] = ctx->Light.Light[ln]._CosCutoff;
506         }
507         return;
508
509      case STATE_LIGHT_POSITION:
510         {
511            const GLuint ln = (GLuint) state[2];
512            COPY_4V(value, ctx->Light.Light[ln]._Position);
513         }
514         return;
515
516      case STATE_LIGHT_POSITION_NORMALIZED:
517         {
518            const GLuint ln = (GLuint) state[2];
519            COPY_4V(value, ctx->Light.Light[ln]._Position);
520            NORMALIZE_3FV( value );
521         }
522         return;
523
524      case STATE_LIGHT_HALF_VECTOR:
525         {
526            const GLuint ln = (GLuint) state[2];
527            GLfloat p[3];
528            /* Compute infinite half angle vector:
529             *   halfVector = normalize(normalize(lightPos) + (0, 0, 1))
530             * light.EyePosition.w should be 0 for infinite lights.
531             */
532            COPY_3V(p, ctx->Light.Light[ln]._Position);
533            NORMALIZE_3FV(p);
534            ADD_3V(value, p, ctx->_EyeZDir);
535            NORMALIZE_3FV(value);
536            value[3] = 1.0;
537         }
538         return;
539
540      case STATE_PT_SCALE:
541         value[0] = ctx->Pixel.RedScale;
542         value[1] = ctx->Pixel.GreenScale;
543         value[2] = ctx->Pixel.BlueScale;
544         value[3] = ctx->Pixel.AlphaScale;
545         return;
546
547      case STATE_PT_BIAS:
548         value[0] = ctx->Pixel.RedBias;
549         value[1] = ctx->Pixel.GreenBias;
550         value[2] = ctx->Pixel.BlueBias;
551         value[3] = ctx->Pixel.AlphaBias;
552         return;
553
554      case STATE_FB_SIZE:
555         value[0] = (GLfloat) (ctx->DrawBuffer->Width - 1);
556         value[1] = (GLfloat) (ctx->DrawBuffer->Height - 1);
557         value[2] = 0.0F;
558         value[3] = 0.0F;
559         return;
560
561      case STATE_FB_WPOS_Y_TRANSFORM:
562         /* A driver may negate this conditional by using ZW swizzle
563          * instead of XY (based on e.g. some other state). */
564         if (_mesa_is_user_fbo(ctx->DrawBuffer)) {
565            /* Identity (XY) followed by flipping Y upside down (ZW). */
566            value[0] = 1.0F;
567            value[1] = 0.0F;
568            value[2] = -1.0F;
569            value[3] = (GLfloat) ctx->DrawBuffer->Height;
570         } else {
571            /* Flipping Y upside down (XY) followed by identity (ZW). */
572            value[0] = -1.0F;
573            value[1] = (GLfloat) ctx->DrawBuffer->Height;
574            value[2] = 1.0F;
575            value[3] = 0.0F;
576         }
577         return;
578
579      case STATE_ROT_MATRIX_0:
580         {
581            const int unit = (int) state[2];
582            GLfloat *rotMat22 = ctx->Texture.Unit[unit].RotMatrix;
583            value[0] = rotMat22[0];
584            value[1] = rotMat22[2];
585            value[2] = 0.0;
586            value[3] = 0.0;
587         }
588         return;
589
590      case STATE_ROT_MATRIX_1:
591         {
592            const int unit = (int) state[2];
593            GLfloat *rotMat22 = ctx->Texture.Unit[unit].RotMatrix;
594            value[0] = rotMat22[1];
595            value[1] = rotMat22[3];
596            value[2] = 0.0;
597            value[3] = 0.0;
598         }
599         return;
600
601      /* XXX: make sure new tokens added here are also handled in the
602       * _mesa_program_state_flags() switch, below.
603       */
604      default:
605         /* Unknown state indexes are silently ignored here.
606          * Drivers may do something special.
607          */
608         return;
609      }
610      return;
611
612   default:
613      _mesa_problem(ctx, "Invalid state in _mesa_fetch_state");
614      return;
615   }
616}
617
618
619/**
620 * Return a bitmask of the Mesa state flags (_NEW_* values) which would
621 * indicate that the given context state may have changed.
622 * The bitmask is used during validation to determine if we need to update
623 * vertex/fragment program parameters (like "state.material.color") when
624 * some GL state has changed.
625 */
626GLbitfield
627_mesa_program_state_flags(const gl_state_index state[STATE_LENGTH])
628{
629   switch (state[0]) {
630   case STATE_MATERIAL:
631   case STATE_LIGHTPROD:
632   case STATE_LIGHTMODEL_SCENECOLOR:
633      /* these can be effected by glColor when colormaterial mode is used */
634      return _NEW_LIGHT | _NEW_CURRENT_ATTRIB;
635
636   case STATE_LIGHT:
637   case STATE_LIGHTMODEL_AMBIENT:
638      return _NEW_LIGHT;
639
640   case STATE_TEXGEN:
641      return _NEW_TEXTURE;
642   case STATE_TEXENV_COLOR:
643      return _NEW_TEXTURE | _NEW_BUFFERS | _NEW_FRAG_CLAMP;
644
645   case STATE_FOG_COLOR:
646      return _NEW_FOG | _NEW_BUFFERS | _NEW_FRAG_CLAMP;
647   case STATE_FOG_PARAMS:
648      return _NEW_FOG;
649
650   case STATE_CLIPPLANE:
651      return _NEW_TRANSFORM;
652
653   case STATE_POINT_SIZE:
654   case STATE_POINT_ATTENUATION:
655      return _NEW_POINT;
656
657   case STATE_MODELVIEW_MATRIX:
658      return _NEW_MODELVIEW;
659   case STATE_PROJECTION_MATRIX:
660      return _NEW_PROJECTION;
661   case STATE_MVP_MATRIX:
662      return _NEW_MODELVIEW | _NEW_PROJECTION;
663   case STATE_TEXTURE_MATRIX:
664      return _NEW_TEXTURE_MATRIX;
665   case STATE_PROGRAM_MATRIX:
666      return _NEW_TRACK_MATRIX;
667
668   case STATE_DEPTH_RANGE:
669      return _NEW_VIEWPORT;
670
671   case STATE_FRAGMENT_PROGRAM:
672   case STATE_VERTEX_PROGRAM:
673      return _NEW_PROGRAM;
674
675   case STATE_NORMAL_SCALE:
676      return _NEW_MODELVIEW;
677
678   case STATE_INTERNAL:
679      switch (state[1]) {
680      case STATE_CURRENT_ATTRIB:
681         return _NEW_CURRENT_ATTRIB;
682      case STATE_CURRENT_ATTRIB_MAYBE_VP_CLAMPED:
683         return _NEW_CURRENT_ATTRIB | _NEW_LIGHT | _NEW_BUFFERS;
684
685      case STATE_NORMAL_SCALE:
686         return _NEW_MODELVIEW;
687
688      case STATE_TEXRECT_SCALE:
689      case STATE_ROT_MATRIX_0:
690      case STATE_ROT_MATRIX_1:
691	 return _NEW_TEXTURE;
692      case STATE_FOG_PARAMS_OPTIMIZED:
693	 return _NEW_FOG;
694      case STATE_POINT_SIZE_CLAMPED:
695         return _NEW_POINT | _NEW_MULTISAMPLE;
696      case STATE_LIGHT_SPOT_DIR_NORMALIZED:
697      case STATE_LIGHT_POSITION:
698      case STATE_LIGHT_POSITION_NORMALIZED:
699      case STATE_LIGHT_HALF_VECTOR:
700         return _NEW_LIGHT;
701
702      case STATE_PT_SCALE:
703      case STATE_PT_BIAS:
704         return _NEW_PIXEL;
705
706      case STATE_FB_SIZE:
707      case STATE_FB_WPOS_Y_TRANSFORM:
708         return _NEW_BUFFERS;
709
710      default:
711         /* unknown state indexes are silently ignored and
712         *  no flag set, since it is handled by the driver.
713         */
714	 return 0;
715      }
716
717   default:
718      _mesa_problem(NULL, "unexpected state[0] in make_state_flags()");
719      return 0;
720   }
721}
722
723
724static void
725append(char *dst, const char *src)
726{
727   while (*dst)
728      dst++;
729   while (*src)
730     *dst++ = *src++;
731   *dst = 0;
732}
733
734
735/**
736 * Convert token 'k' to a string, append it onto 'dst' string.
737 */
738static void
739append_token(char *dst, gl_state_index k)
740{
741   switch (k) {
742   case STATE_MATERIAL:
743      append(dst, "material");
744      break;
745   case STATE_LIGHT:
746      append(dst, "light");
747      break;
748   case STATE_LIGHTMODEL_AMBIENT:
749      append(dst, "lightmodel.ambient");
750      break;
751   case STATE_LIGHTMODEL_SCENECOLOR:
752      break;
753   case STATE_LIGHTPROD:
754      append(dst, "lightprod");
755      break;
756   case STATE_TEXGEN:
757      append(dst, "texgen");
758      break;
759   case STATE_FOG_COLOR:
760      append(dst, "fog.color");
761      break;
762   case STATE_FOG_PARAMS:
763      append(dst, "fog.params");
764      break;
765   case STATE_CLIPPLANE:
766      append(dst, "clip");
767      break;
768   case STATE_POINT_SIZE:
769      append(dst, "point.size");
770      break;
771   case STATE_POINT_ATTENUATION:
772      append(dst, "point.attenuation");
773      break;
774   case STATE_MODELVIEW_MATRIX:
775      append(dst, "matrix.modelview");
776      break;
777   case STATE_PROJECTION_MATRIX:
778      append(dst, "matrix.projection");
779      break;
780   case STATE_MVP_MATRIX:
781      append(dst, "matrix.mvp");
782      break;
783   case STATE_TEXTURE_MATRIX:
784      append(dst, "matrix.texture");
785      break;
786   case STATE_PROGRAM_MATRIX:
787      append(dst, "matrix.program");
788      break;
789   case STATE_MATRIX_INVERSE:
790      append(dst, ".inverse");
791      break;
792   case STATE_MATRIX_TRANSPOSE:
793      append(dst, ".transpose");
794      break;
795   case STATE_MATRIX_INVTRANS:
796      append(dst, ".invtrans");
797      break;
798   case STATE_AMBIENT:
799      append(dst, ".ambient");
800      break;
801   case STATE_DIFFUSE:
802      append(dst, ".diffuse");
803      break;
804   case STATE_SPECULAR:
805      append(dst, ".specular");
806      break;
807   case STATE_EMISSION:
808      append(dst, ".emission");
809      break;
810   case STATE_SHININESS:
811      append(dst, "lshininess");
812      break;
813   case STATE_HALF_VECTOR:
814      append(dst, ".half");
815      break;
816   case STATE_POSITION:
817      append(dst, ".position");
818      break;
819   case STATE_ATTENUATION:
820      append(dst, ".attenuation");
821      break;
822   case STATE_SPOT_DIRECTION:
823      append(dst, ".spot.direction");
824      break;
825   case STATE_SPOT_CUTOFF:
826      append(dst, ".spot.cutoff");
827      break;
828   case STATE_TEXGEN_EYE_S:
829      append(dst, ".eye.s");
830      break;
831   case STATE_TEXGEN_EYE_T:
832      append(dst, ".eye.t");
833      break;
834   case STATE_TEXGEN_EYE_R:
835      append(dst, ".eye.r");
836      break;
837   case STATE_TEXGEN_EYE_Q:
838      append(dst, ".eye.q");
839      break;
840   case STATE_TEXGEN_OBJECT_S:
841      append(dst, ".object.s");
842      break;
843   case STATE_TEXGEN_OBJECT_T:
844      append(dst, ".object.t");
845      break;
846   case STATE_TEXGEN_OBJECT_R:
847      append(dst, ".object.r");
848      break;
849   case STATE_TEXGEN_OBJECT_Q:
850      append(dst, ".object.q");
851      break;
852   case STATE_TEXENV_COLOR:
853      append(dst, "texenv");
854      break;
855   case STATE_DEPTH_RANGE:
856      append(dst, "depth.range");
857      break;
858   case STATE_VERTEX_PROGRAM:
859   case STATE_FRAGMENT_PROGRAM:
860      break;
861   case STATE_ENV:
862      append(dst, "env");
863      break;
864   case STATE_LOCAL:
865      append(dst, "local");
866      break;
867   /* BEGIN internal state vars */
868   case STATE_INTERNAL:
869      append(dst, ".internal.");
870      break;
871   case STATE_CURRENT_ATTRIB:
872      append(dst, "current");
873      break;
874   case STATE_NORMAL_SCALE:
875      append(dst, "normalScale");
876      break;
877   case STATE_TEXRECT_SCALE:
878      append(dst, "texrectScale");
879      break;
880   case STATE_FOG_PARAMS_OPTIMIZED:
881      append(dst, "fogParamsOptimized");
882      break;
883   case STATE_POINT_SIZE_CLAMPED:
884      append(dst, "pointSizeClamped");
885      break;
886   case STATE_LIGHT_SPOT_DIR_NORMALIZED:
887      append(dst, "lightSpotDirNormalized");
888      break;
889   case STATE_LIGHT_POSITION:
890      append(dst, "lightPosition");
891      break;
892   case STATE_LIGHT_POSITION_NORMALIZED:
893      append(dst, "light.position.normalized");
894      break;
895   case STATE_LIGHT_HALF_VECTOR:
896      append(dst, "lightHalfVector");
897      break;
898   case STATE_PT_SCALE:
899      append(dst, "PTscale");
900      break;
901   case STATE_PT_BIAS:
902      append(dst, "PTbias");
903      break;
904   case STATE_FB_SIZE:
905      append(dst, "FbSize");
906      break;
907   case STATE_FB_WPOS_Y_TRANSFORM:
908      append(dst, "FbWposYTransform");
909      break;
910   case STATE_ROT_MATRIX_0:
911      append(dst, "rotMatrixRow0");
912      break;
913   case STATE_ROT_MATRIX_1:
914      append(dst, "rotMatrixRow1");
915      break;
916   default:
917      /* probably STATE_INTERNAL_DRIVER+i (driver private state) */
918      append(dst, "driverState");
919   }
920}
921
922static void
923append_face(char *dst, GLint face)
924{
925   if (face == 0)
926      append(dst, "front.");
927   else
928      append(dst, "back.");
929}
930
931static void
932append_index(char *dst, GLint index)
933{
934   char s[20];
935   sprintf(s, "[%d]", index);
936   append(dst, s);
937}
938
939/**
940 * Make a string from the given state vector.
941 * For example, return "state.matrix.texture[2].inverse".
942 * Use free() to deallocate the string.
943 */
944char *
945_mesa_program_state_string(const gl_state_index state[STATE_LENGTH])
946{
947   char str[1000] = "";
948   char tmp[30];
949
950   append(str, "state.");
951   append_token(str, state[0]);
952
953   switch (state[0]) {
954   case STATE_MATERIAL:
955      append_face(str, state[1]);
956      append_token(str, state[2]);
957      break;
958   case STATE_LIGHT:
959      append_index(str, state[1]); /* light number [i]. */
960      append_token(str, state[2]); /* coefficients */
961      break;
962   case STATE_LIGHTMODEL_AMBIENT:
963      append(str, "lightmodel.ambient");
964      break;
965   case STATE_LIGHTMODEL_SCENECOLOR:
966      if (state[1] == 0) {
967         append(str, "lightmodel.front.scenecolor");
968      }
969      else {
970         append(str, "lightmodel.back.scenecolor");
971      }
972      break;
973   case STATE_LIGHTPROD:
974      append_index(str, state[1]); /* light number [i]. */
975      append_face(str, state[2]);
976      append_token(str, state[3]);
977      break;
978   case STATE_TEXGEN:
979      append_index(str, state[1]); /* tex unit [i] */
980      append_token(str, state[2]); /* plane coef */
981      break;
982   case STATE_TEXENV_COLOR:
983      append_index(str, state[1]); /* tex unit [i] */
984      append(str, "color");
985      break;
986   case STATE_CLIPPLANE:
987      append_index(str, state[1]); /* plane [i] */
988      append(str, ".plane");
989      break;
990   case STATE_MODELVIEW_MATRIX:
991   case STATE_PROJECTION_MATRIX:
992   case STATE_MVP_MATRIX:
993   case STATE_TEXTURE_MATRIX:
994   case STATE_PROGRAM_MATRIX:
995      {
996         /* state[0] = modelview, projection, texture, etc. */
997         /* state[1] = which texture matrix or program matrix */
998         /* state[2] = first row to fetch */
999         /* state[3] = last row to fetch */
1000         /* state[4] = transpose, inverse or invtrans */
1001         const gl_state_index mat = state[0];
1002         const GLuint index = (GLuint) state[1];
1003         const GLuint firstRow = (GLuint) state[2];
1004         const GLuint lastRow = (GLuint) state[3];
1005         const gl_state_index modifier = state[4];
1006         if (index ||
1007             mat == STATE_TEXTURE_MATRIX ||
1008             mat == STATE_PROGRAM_MATRIX)
1009            append_index(str, index);
1010         if (modifier)
1011            append_token(str, modifier);
1012         if (firstRow == lastRow)
1013            sprintf(tmp, ".row[%d]", firstRow);
1014         else
1015            sprintf(tmp, ".row[%d..%d]", firstRow, lastRow);
1016         append(str, tmp);
1017      }
1018      break;
1019   case STATE_POINT_SIZE:
1020      break;
1021   case STATE_POINT_ATTENUATION:
1022      break;
1023   case STATE_FOG_PARAMS:
1024      break;
1025   case STATE_FOG_COLOR:
1026      break;
1027   case STATE_DEPTH_RANGE:
1028      break;
1029   case STATE_FRAGMENT_PROGRAM:
1030   case STATE_VERTEX_PROGRAM:
1031      /* state[1] = {STATE_ENV, STATE_LOCAL} */
1032      /* state[2] = parameter index          */
1033      append_token(str, state[1]);
1034      append_index(str, state[2]);
1035      break;
1036   case STATE_NORMAL_SCALE:
1037      break;
1038   case STATE_INTERNAL:
1039      append_token(str, state[1]);
1040      if (state[1] == STATE_CURRENT_ATTRIB)
1041         append_index(str, state[2]);
1042       break;
1043   default:
1044      _mesa_problem(NULL, "Invalid state in _mesa_program_state_string");
1045      break;
1046   }
1047
1048   return _mesa_strdup(str);
1049}
1050
1051
1052/**
1053 * Loop over all the parameters in a parameter list.  If the parameter
1054 * is a GL state reference, look up the current value of that state
1055 * variable and put it into the parameter's Value[4] array.
1056 * Other parameter types never change or are explicitly set by the user
1057 * with glUniform() or glProgramParameter(), etc.
1058 * This would be called at glBegin time.
1059 */
1060void
1061_mesa_load_state_parameters(struct gl_context *ctx,
1062                            struct gl_program_parameter_list *paramList)
1063{
1064   GLuint i;
1065
1066   if (!paramList)
1067      return;
1068
1069   for (i = 0; i < paramList->NumParameters; i++) {
1070      if (paramList->Parameters[i].Type == PROGRAM_STATE_VAR) {
1071         _mesa_fetch_state(ctx,
1072			   paramList->Parameters[i].StateIndexes,
1073                           &paramList->ParameterValues[i][0].f);
1074      }
1075   }
1076}
1077
1078
1079/**
1080 * Copy the 16 elements of a matrix into four consecutive program
1081 * registers starting at 'pos'.
1082 */
1083static void
1084load_matrix(GLfloat registers[][4], GLuint pos, const GLfloat mat[16])
1085{
1086   GLuint i;
1087   for (i = 0; i < 4; i++) {
1088      registers[pos + i][0] = mat[0 + i];
1089      registers[pos + i][1] = mat[4 + i];
1090      registers[pos + i][2] = mat[8 + i];
1091      registers[pos + i][3] = mat[12 + i];
1092   }
1093}
1094
1095
1096/**
1097 * As above, but transpose the matrix.
1098 */
1099static void
1100load_transpose_matrix(GLfloat registers[][4], GLuint pos,
1101                      const GLfloat mat[16])
1102{
1103   memcpy(registers[pos], mat, 16 * sizeof(GLfloat));
1104}
1105
1106
1107/**
1108 * Load current vertex program's parameter registers with tracked
1109 * matrices (if NV program).  This only needs to be done per
1110 * glBegin/glEnd, not per-vertex.
1111 */
1112void
1113_mesa_load_tracked_matrices(struct gl_context *ctx)
1114{
1115   GLuint i;
1116
1117   for (i = 0; i < MAX_NV_VERTEX_PROGRAM_PARAMS / 4; i++) {
1118      /* point 'mat' at source matrix */
1119      GLmatrix *mat;
1120      if (ctx->VertexProgram.TrackMatrix[i] == GL_MODELVIEW) {
1121         mat = ctx->ModelviewMatrixStack.Top;
1122      }
1123      else if (ctx->VertexProgram.TrackMatrix[i] == GL_PROJECTION) {
1124         mat = ctx->ProjectionMatrixStack.Top;
1125      }
1126      else if (ctx->VertexProgram.TrackMatrix[i] == GL_TEXTURE) {
1127         GLuint unit = MIN2(ctx->Texture.CurrentUnit,
1128                            Elements(ctx->TextureMatrixStack) - 1);
1129         mat = ctx->TextureMatrixStack[unit].Top;
1130      }
1131      else if (ctx->VertexProgram.TrackMatrix[i]==GL_MODELVIEW_PROJECTION_NV) {
1132         /* XXX verify the combined matrix is up to date */
1133         mat = &ctx->_ModelProjectMatrix;
1134      }
1135      else if (ctx->VertexProgram.TrackMatrix[i] >= GL_MATRIX0_NV &&
1136               ctx->VertexProgram.TrackMatrix[i] <= GL_MATRIX7_NV) {
1137         GLuint n = ctx->VertexProgram.TrackMatrix[i] - GL_MATRIX0_NV;
1138         ASSERT(n < Elements(ctx->ProgramMatrixStack));
1139         mat = ctx->ProgramMatrixStack[n].Top;
1140      }
1141      else {
1142         /* no matrix is tracked, but we leave the register values as-is */
1143         assert(ctx->VertexProgram.TrackMatrix[i] == GL_NONE);
1144         continue;
1145      }
1146
1147      /* load the matrix values into sequential registers */
1148      if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_IDENTITY_NV) {
1149         load_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
1150      }
1151      else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_INVERSE_NV) {
1152         _math_matrix_analyse(mat); /* update the inverse */
1153         ASSERT(!_math_matrix_is_dirty(mat));
1154         load_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
1155      }
1156      else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_TRANSPOSE_NV) {
1157         load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
1158      }
1159      else {
1160         assert(ctx->VertexProgram.TrackMatrixTransform[i]
1161                == GL_INVERSE_TRANSPOSE_NV);
1162         _math_matrix_analyse(mat); /* update the inverse */
1163         ASSERT(!_math_matrix_is_dirty(mat));
1164         load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
1165      }
1166   }
1167}
1168