ec2_smpl.c revision 392aa7cc7d2b122614c5393c3e357da07fd07af3
1/* crypto/ec/ec2_smpl.c */
2/* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * The software is originally written by Sheueling Chang Shantz and
13 * Douglas Stebila of Sun Microsystems Laboratories.
14 *
15 */
16/* ====================================================================
17 * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 *
23 * 1. Redistributions of source code must retain the above copyright
24 *    notice, this list of conditions and the following disclaimer.
25 *
26 * 2. Redistributions in binary form must reproduce the above copyright
27 *    notice, this list of conditions and the following disclaimer in
28 *    the documentation and/or other materials provided with the
29 *    distribution.
30 *
31 * 3. All advertising materials mentioning features or use of this
32 *    software must display the following acknowledgment:
33 *    "This product includes software developed by the OpenSSL Project
34 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
35 *
36 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
37 *    endorse or promote products derived from this software without
38 *    prior written permission. For written permission, please contact
39 *    openssl-core@openssl.org.
40 *
41 * 5. Products derived from this software may not be called "OpenSSL"
42 *    nor may "OpenSSL" appear in their names without prior written
43 *    permission of the OpenSSL Project.
44 *
45 * 6. Redistributions of any form whatsoever must retain the following
46 *    acknowledgment:
47 *    "This product includes software developed by the OpenSSL Project
48 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
51 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
54 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
56 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
57 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
61 * OF THE POSSIBILITY OF SUCH DAMAGE.
62 * ====================================================================
63 *
64 * This product includes cryptographic software written by Eric Young
65 * (eay@cryptsoft.com).  This product includes software written by Tim
66 * Hudson (tjh@cryptsoft.com).
67 *
68 */
69
70#include <openssl/err.h>
71
72#include "ec_lcl.h"
73
74#ifndef OPENSSL_NO_EC2M
75
76#ifdef OPENSSL_FIPS
77#include <openssl/fips.h>
78#endif
79
80
81const EC_METHOD *EC_GF2m_simple_method(void)
82	{
83#ifdef OPENSSL_FIPS
84	return fips_ec_gf2m_simple_method();
85#else
86	static const EC_METHOD ret = {
87		EC_FLAGS_DEFAULT_OCT,
88		NID_X9_62_characteristic_two_field,
89		ec_GF2m_simple_group_init,
90		ec_GF2m_simple_group_finish,
91		ec_GF2m_simple_group_clear_finish,
92		ec_GF2m_simple_group_copy,
93		ec_GF2m_simple_group_set_curve,
94		ec_GF2m_simple_group_get_curve,
95		ec_GF2m_simple_group_get_degree,
96		ec_GF2m_simple_group_check_discriminant,
97		ec_GF2m_simple_point_init,
98		ec_GF2m_simple_point_finish,
99		ec_GF2m_simple_point_clear_finish,
100		ec_GF2m_simple_point_copy,
101		ec_GF2m_simple_point_set_to_infinity,
102		0 /* set_Jprojective_coordinates_GFp */,
103		0 /* get_Jprojective_coordinates_GFp */,
104		ec_GF2m_simple_point_set_affine_coordinates,
105		ec_GF2m_simple_point_get_affine_coordinates,
106		0,0,0,
107		ec_GF2m_simple_add,
108		ec_GF2m_simple_dbl,
109		ec_GF2m_simple_invert,
110		ec_GF2m_simple_is_at_infinity,
111		ec_GF2m_simple_is_on_curve,
112		ec_GF2m_simple_cmp,
113		ec_GF2m_simple_make_affine,
114		ec_GF2m_simple_points_make_affine,
115
116		/* the following three method functions are defined in ec2_mult.c */
117		ec_GF2m_simple_mul,
118		ec_GF2m_precompute_mult,
119		ec_GF2m_have_precompute_mult,
120
121		ec_GF2m_simple_field_mul,
122		ec_GF2m_simple_field_sqr,
123		ec_GF2m_simple_field_div,
124		0 /* field_encode */,
125		0 /* field_decode */,
126		0 /* field_set_to_one */ };
127
128	return &ret;
129#endif
130	}
131
132
133/* Initialize a GF(2^m)-based EC_GROUP structure.
134 * Note that all other members are handled by EC_GROUP_new.
135 */
136int ec_GF2m_simple_group_init(EC_GROUP *group)
137	{
138	BN_init(&group->field);
139	BN_init(&group->a);
140	BN_init(&group->b);
141	return 1;
142	}
143
144
145/* Free a GF(2^m)-based EC_GROUP structure.
146 * Note that all other members are handled by EC_GROUP_free.
147 */
148void ec_GF2m_simple_group_finish(EC_GROUP *group)
149	{
150	BN_free(&group->field);
151	BN_free(&group->a);
152	BN_free(&group->b);
153	}
154
155
156/* Clear and free a GF(2^m)-based EC_GROUP structure.
157 * Note that all other members are handled by EC_GROUP_clear_free.
158 */
159void ec_GF2m_simple_group_clear_finish(EC_GROUP *group)
160	{
161	BN_clear_free(&group->field);
162	BN_clear_free(&group->a);
163	BN_clear_free(&group->b);
164	group->poly[0] = 0;
165	group->poly[1] = 0;
166	group->poly[2] = 0;
167	group->poly[3] = 0;
168	group->poly[4] = 0;
169	group->poly[5] = -1;
170	}
171
172
173/* Copy a GF(2^m)-based EC_GROUP structure.
174 * Note that all other members are handled by EC_GROUP_copy.
175 */
176int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
177	{
178	int i;
179	if (!BN_copy(&dest->field, &src->field)) return 0;
180	if (!BN_copy(&dest->a, &src->a)) return 0;
181	if (!BN_copy(&dest->b, &src->b)) return 0;
182	dest->poly[0] = src->poly[0];
183	dest->poly[1] = src->poly[1];
184	dest->poly[2] = src->poly[2];
185	dest->poly[3] = src->poly[3];
186	dest->poly[4] = src->poly[4];
187	dest->poly[5] = src->poly[5];
188	if (bn_wexpand(&dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) return 0;
189	if (bn_wexpand(&dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) return 0;
190	for (i = dest->a.top; i < dest->a.dmax; i++) dest->a.d[i] = 0;
191	for (i = dest->b.top; i < dest->b.dmax; i++) dest->b.d[i] = 0;
192	return 1;
193	}
194
195
196/* Set the curve parameters of an EC_GROUP structure. */
197int ec_GF2m_simple_group_set_curve(EC_GROUP *group,
198	const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
199	{
200	int ret = 0, i;
201
202	/* group->field */
203	if (!BN_copy(&group->field, p)) goto err;
204	i = BN_GF2m_poly2arr(&group->field, group->poly, 6) - 1;
205	if ((i != 5) && (i != 3))
206		{
207		ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD);
208		goto err;
209		}
210
211	/* group->a */
212	if (!BN_GF2m_mod_arr(&group->a, a, group->poly)) goto err;
213	if(bn_wexpand(&group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) goto err;
214	for (i = group->a.top; i < group->a.dmax; i++) group->a.d[i] = 0;
215
216	/* group->b */
217	if (!BN_GF2m_mod_arr(&group->b, b, group->poly)) goto err;
218	if(bn_wexpand(&group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) goto err;
219	for (i = group->b.top; i < group->b.dmax; i++) group->b.d[i] = 0;
220
221	ret = 1;
222  err:
223	return ret;
224	}
225
226
227/* Get the curve parameters of an EC_GROUP structure.
228 * If p, a, or b are NULL then there values will not be set but the method will return with success.
229 */
230int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
231	{
232	int ret = 0;
233
234	if (p != NULL)
235		{
236		if (!BN_copy(p, &group->field)) return 0;
237		}
238
239	if (a != NULL)
240		{
241		if (!BN_copy(a, &group->a)) goto err;
242		}
243
244	if (b != NULL)
245		{
246		if (!BN_copy(b, &group->b)) goto err;
247		}
248
249	ret = 1;
250
251  err:
252	return ret;
253	}
254
255
256/* Gets the degree of the field.  For a curve over GF(2^m) this is the value m. */
257int ec_GF2m_simple_group_get_degree(const EC_GROUP *group)
258	{
259	return BN_num_bits(&group->field)-1;
260	}
261
262
263/* Checks the discriminant of the curve.
264 * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p)
265 */
266int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx)
267	{
268	int ret = 0;
269	BIGNUM *b;
270	BN_CTX *new_ctx = NULL;
271
272	if (ctx == NULL)
273		{
274		ctx = new_ctx = BN_CTX_new();
275		if (ctx == NULL)
276			{
277			ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE);
278			goto err;
279			}
280		}
281	BN_CTX_start(ctx);
282	b = BN_CTX_get(ctx);
283	if (b == NULL) goto err;
284
285	if (!BN_GF2m_mod_arr(b, &group->b, group->poly)) goto err;
286
287	/* check the discriminant:
288	 * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p)
289	 */
290	if (BN_is_zero(b)) goto err;
291
292	ret = 1;
293
294err:
295	if (ctx != NULL)
296		BN_CTX_end(ctx);
297	if (new_ctx != NULL)
298		BN_CTX_free(new_ctx);
299	return ret;
300	}
301
302
303/* Initializes an EC_POINT. */
304int ec_GF2m_simple_point_init(EC_POINT *point)
305	{
306	BN_init(&point->X);
307	BN_init(&point->Y);
308	BN_init(&point->Z);
309	return 1;
310	}
311
312
313/* Frees an EC_POINT. */
314void ec_GF2m_simple_point_finish(EC_POINT *point)
315	{
316	BN_free(&point->X);
317	BN_free(&point->Y);
318	BN_free(&point->Z);
319	}
320
321
322/* Clears and frees an EC_POINT. */
323void ec_GF2m_simple_point_clear_finish(EC_POINT *point)
324	{
325	BN_clear_free(&point->X);
326	BN_clear_free(&point->Y);
327	BN_clear_free(&point->Z);
328	point->Z_is_one = 0;
329	}
330
331
332/* Copy the contents of one EC_POINT into another.  Assumes dest is initialized. */
333int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
334	{
335	if (!BN_copy(&dest->X, &src->X)) return 0;
336	if (!BN_copy(&dest->Y, &src->Y)) return 0;
337	if (!BN_copy(&dest->Z, &src->Z)) return 0;
338	dest->Z_is_one = src->Z_is_one;
339
340	return 1;
341	}
342
343
344/* Set an EC_POINT to the point at infinity.
345 * A point at infinity is represented by having Z=0.
346 */
347int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point)
348	{
349	point->Z_is_one = 0;
350	BN_zero(&point->Z);
351	return 1;
352	}
353
354
355/* Set the coordinates of an EC_POINT using affine coordinates.
356 * Note that the simple implementation only uses affine coordinates.
357 */
358int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point,
359	const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx)
360	{
361	int ret = 0;
362	if (x == NULL || y == NULL)
363		{
364		ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER);
365		return 0;
366		}
367
368	if (!BN_copy(&point->X, x)) goto err;
369	BN_set_negative(&point->X, 0);
370	if (!BN_copy(&point->Y, y)) goto err;
371	BN_set_negative(&point->Y, 0);
372	if (!BN_copy(&point->Z, BN_value_one())) goto err;
373	BN_set_negative(&point->Z, 0);
374	point->Z_is_one = 1;
375	ret = 1;
376
377  err:
378	return ret;
379	}
380
381
382/* Gets the affine coordinates of an EC_POINT.
383 * Note that the simple implementation only uses affine coordinates.
384 */
385int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point,
386	BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
387	{
388	int ret = 0;
389
390	if (EC_POINT_is_at_infinity(group, point))
391		{
392		ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY);
393		return 0;
394		}
395
396	if (BN_cmp(&point->Z, BN_value_one()))
397		{
398		ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
399		return 0;
400		}
401	if (x != NULL)
402		{
403		if (!BN_copy(x, &point->X)) goto err;
404		BN_set_negative(x, 0);
405		}
406	if (y != NULL)
407		{
408		if (!BN_copy(y, &point->Y)) goto err;
409		BN_set_negative(y, 0);
410		}
411	ret = 1;
412
413 err:
414	return ret;
415	}
416
417/* Computes a + b and stores the result in r.  r could be a or b, a could be b.
418 * Uses algorithm A.10.2 of IEEE P1363.
419 */
420int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)
421	{
422	BN_CTX *new_ctx = NULL;
423	BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;
424	int ret = 0;
425
426	if (EC_POINT_is_at_infinity(group, a))
427		{
428		if (!EC_POINT_copy(r, b)) return 0;
429		return 1;
430		}
431
432	if (EC_POINT_is_at_infinity(group, b))
433		{
434		if (!EC_POINT_copy(r, a)) return 0;
435		return 1;
436		}
437
438	if (ctx == NULL)
439		{
440		ctx = new_ctx = BN_CTX_new();
441		if (ctx == NULL)
442			return 0;
443		}
444
445	BN_CTX_start(ctx);
446	x0 = BN_CTX_get(ctx);
447	y0 = BN_CTX_get(ctx);
448	x1 = BN_CTX_get(ctx);
449	y1 = BN_CTX_get(ctx);
450	x2 = BN_CTX_get(ctx);
451	y2 = BN_CTX_get(ctx);
452	s = BN_CTX_get(ctx);
453	t = BN_CTX_get(ctx);
454	if (t == NULL) goto err;
455
456	if (a->Z_is_one)
457		{
458		if (!BN_copy(x0, &a->X)) goto err;
459		if (!BN_copy(y0, &a->Y)) goto err;
460		}
461	else
462		{
463		if (!EC_POINT_get_affine_coordinates_GF2m(group, a, x0, y0, ctx)) goto err;
464		}
465	if (b->Z_is_one)
466		{
467		if (!BN_copy(x1, &b->X)) goto err;
468		if (!BN_copy(y1, &b->Y)) goto err;
469		}
470	else
471		{
472		if (!EC_POINT_get_affine_coordinates_GF2m(group, b, x1, y1, ctx)) goto err;
473		}
474
475
476	if (BN_GF2m_cmp(x0, x1))
477		{
478		if (!BN_GF2m_add(t, x0, x1)) goto err;
479		if (!BN_GF2m_add(s, y0, y1)) goto err;
480		if (!group->meth->field_div(group, s, s, t, ctx)) goto err;
481		if (!group->meth->field_sqr(group, x2, s, ctx)) goto err;
482		if (!BN_GF2m_add(x2, x2, &group->a)) goto err;
483		if (!BN_GF2m_add(x2, x2, s)) goto err;
484		if (!BN_GF2m_add(x2, x2, t)) goto err;
485		}
486	else
487		{
488		if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1))
489			{
490			if (!EC_POINT_set_to_infinity(group, r)) goto err;
491			ret = 1;
492			goto err;
493			}
494		if (!group->meth->field_div(group, s, y1, x1, ctx)) goto err;
495		if (!BN_GF2m_add(s, s, x1)) goto err;
496
497		if (!group->meth->field_sqr(group, x2, s, ctx)) goto err;
498		if (!BN_GF2m_add(x2, x2, s)) goto err;
499		if (!BN_GF2m_add(x2, x2, &group->a)) goto err;
500		}
501
502	if (!BN_GF2m_add(y2, x1, x2)) goto err;
503	if (!group->meth->field_mul(group, y2, y2, s, ctx)) goto err;
504	if (!BN_GF2m_add(y2, y2, x2)) goto err;
505	if (!BN_GF2m_add(y2, y2, y1)) goto err;
506
507	if (!EC_POINT_set_affine_coordinates_GF2m(group, r, x2, y2, ctx)) goto err;
508
509	ret = 1;
510
511 err:
512	BN_CTX_end(ctx);
513	if (new_ctx != NULL)
514		BN_CTX_free(new_ctx);
515	return ret;
516	}
517
518
519/* Computes 2 * a and stores the result in r.  r could be a.
520 * Uses algorithm A.10.2 of IEEE P1363.
521 */
522int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx)
523	{
524	return ec_GF2m_simple_add(group, r, a, a, ctx);
525	}
526
527
528int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
529	{
530	if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y))
531		/* point is its own inverse */
532		return 1;
533
534	if (!EC_POINT_make_affine(group, point, ctx)) return 0;
535	return BN_GF2m_add(&point->Y, &point->X, &point->Y);
536	}
537
538
539/* Indicates whether the given point is the point at infinity. */
540int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
541	{
542	return BN_is_zero(&point->Z);
543	}
544
545
546/* Determines whether the given EC_POINT is an actual point on the curve defined
547 * in the EC_GROUP.  A point is valid if it satisfies the Weierstrass equation:
548 *      y^2 + x*y = x^3 + a*x^2 + b.
549 */
550int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx)
551	{
552	int ret = -1;
553	BN_CTX *new_ctx = NULL;
554	BIGNUM *lh, *y2;
555	int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
556	int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
557
558	if (EC_POINT_is_at_infinity(group, point))
559		return 1;
560
561	field_mul = group->meth->field_mul;
562	field_sqr = group->meth->field_sqr;
563
564	/* only support affine coordinates */
565	if (!point->Z_is_one) return -1;
566
567	if (ctx == NULL)
568		{
569		ctx = new_ctx = BN_CTX_new();
570		if (ctx == NULL)
571			return -1;
572		}
573
574	BN_CTX_start(ctx);
575	y2 = BN_CTX_get(ctx);
576	lh = BN_CTX_get(ctx);
577	if (lh == NULL) goto err;
578
579	/* We have a curve defined by a Weierstrass equation
580	 *      y^2 + x*y = x^3 + a*x^2 + b.
581	 *  <=> x^3 + a*x^2 + x*y + b + y^2 = 0
582	 *  <=> ((x + a) * x + y ) * x + b + y^2 = 0
583	 */
584	if (!BN_GF2m_add(lh, &point->X, &group->a)) goto err;
585	if (!field_mul(group, lh, lh, &point->X, ctx)) goto err;
586	if (!BN_GF2m_add(lh, lh, &point->Y)) goto err;
587	if (!field_mul(group, lh, lh, &point->X, ctx)) goto err;
588	if (!BN_GF2m_add(lh, lh, &group->b)) goto err;
589	if (!field_sqr(group, y2, &point->Y, ctx)) goto err;
590	if (!BN_GF2m_add(lh, lh, y2)) goto err;
591	ret = BN_is_zero(lh);
592 err:
593	if (ctx) BN_CTX_end(ctx);
594	if (new_ctx) BN_CTX_free(new_ctx);
595	return ret;
596	}
597
598
599/* Indicates whether two points are equal.
600 * Return values:
601 *  -1   error
602 *   0   equal (in affine coordinates)
603 *   1   not equal
604 */
605int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)
606	{
607	BIGNUM *aX, *aY, *bX, *bY;
608	BN_CTX *new_ctx = NULL;
609	int ret = -1;
610
611	if (EC_POINT_is_at_infinity(group, a))
612		{
613		return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
614		}
615
616	if (EC_POINT_is_at_infinity(group, b))
617		return 1;
618
619	if (a->Z_is_one && b->Z_is_one)
620		{
621		return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1;
622		}
623
624	if (ctx == NULL)
625		{
626		ctx = new_ctx = BN_CTX_new();
627		if (ctx == NULL)
628			return -1;
629		}
630
631	BN_CTX_start(ctx);
632	aX = BN_CTX_get(ctx);
633	aY = BN_CTX_get(ctx);
634	bX = BN_CTX_get(ctx);
635	bY = BN_CTX_get(ctx);
636	if (bY == NULL) goto err;
637
638	if (!EC_POINT_get_affine_coordinates_GF2m(group, a, aX, aY, ctx)) goto err;
639	if (!EC_POINT_get_affine_coordinates_GF2m(group, b, bX, bY, ctx)) goto err;
640	ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1;
641
642  err:
643	if (ctx) BN_CTX_end(ctx);
644	if (new_ctx) BN_CTX_free(new_ctx);
645	return ret;
646	}
647
648
649/* Forces the given EC_POINT to internally use affine coordinates. */
650int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
651	{
652	BN_CTX *new_ctx = NULL;
653	BIGNUM *x, *y;
654	int ret = 0;
655
656	if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
657		return 1;
658
659	if (ctx == NULL)
660		{
661		ctx = new_ctx = BN_CTX_new();
662		if (ctx == NULL)
663			return 0;
664		}
665
666	BN_CTX_start(ctx);
667	x = BN_CTX_get(ctx);
668	y = BN_CTX_get(ctx);
669	if (y == NULL) goto err;
670
671	if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err;
672	if (!BN_copy(&point->X, x)) goto err;
673	if (!BN_copy(&point->Y, y)) goto err;
674	if (!BN_one(&point->Z)) goto err;
675
676	ret = 1;
677
678  err:
679	if (ctx) BN_CTX_end(ctx);
680	if (new_ctx) BN_CTX_free(new_ctx);
681	return ret;
682	}
683
684
685/* Forces each of the EC_POINTs in the given array to use affine coordinates. */
686int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx)
687	{
688	size_t i;
689
690	for (i = 0; i < num; i++)
691		{
692		if (!group->meth->make_affine(group, points[i], ctx)) return 0;
693		}
694
695	return 1;
696	}
697
698
699/* Wrapper to simple binary polynomial field multiplication implementation. */
700int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
701	{
702	return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);
703	}
704
705
706/* Wrapper to simple binary polynomial field squaring implementation. */
707int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)
708	{
709	return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);
710	}
711
712
713/* Wrapper to simple binary polynomial field division implementation. */
714int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
715	{
716	return BN_GF2m_mod_div(r, a, b, &group->field, ctx);
717	}
718
719#endif
720