ec2_smpl.c revision 98d58bb80c64b02a33662f0ea80351d4a1535267
1f509c5ec066599a3399fced39ea36996184939e8Enrico Granata/* crypto/ec/ec2_smpl.c */
2f509c5ec066599a3399fced39ea36996184939e8Enrico Granata/* ====================================================================
3f509c5ec066599a3399fced39ea36996184939e8Enrico Granata * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4f509c5ec066599a3399fced39ea36996184939e8Enrico Granata *
5f509c5ec066599a3399fced39ea36996184939e8Enrico Granata * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6f509c5ec066599a3399fced39ea36996184939e8Enrico Granata * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7f509c5ec066599a3399fced39ea36996184939e8Enrico Granata * to the OpenSSL project.
8f509c5ec066599a3399fced39ea36996184939e8Enrico Granata *
9f509c5ec066599a3399fced39ea36996184939e8Enrico Granata * The ECC Code is licensed pursuant to the OpenSSL open source
10fe21d4f351f560921e615a6677afe1c057aa7f28Matt Kopec * license provided below.
11fe21d4f351f560921e615a6677afe1c057aa7f28Matt Kopec *
12f509c5ec066599a3399fced39ea36996184939e8Enrico Granata * The software is originally written by Sheueling Chang Shantz and
13f509c5ec066599a3399fced39ea36996184939e8Enrico Granata * Douglas Stebila of Sun Microsystems Laboratories.
14f509c5ec066599a3399fced39ea36996184939e8Enrico Granata *
15f509c5ec066599a3399fced39ea36996184939e8Enrico Granata */
16f509c5ec066599a3399fced39ea36996184939e8Enrico Granata/* ====================================================================
17f509c5ec066599a3399fced39ea36996184939e8Enrico Granata * Copyright (c) 1998-2003 The OpenSSL Project.  All rights reserved.
18f509c5ec066599a3399fced39ea36996184939e8Enrico Granata *
19f509c5ec066599a3399fced39ea36996184939e8Enrico Granata * Redistribution and use in source and binary forms, with or without
20f509c5ec066599a3399fced39ea36996184939e8Enrico Granata * modification, are permitted provided that the following conditions
21f509c5ec066599a3399fced39ea36996184939e8Enrico Granata * are met:
22f509c5ec066599a3399fced39ea36996184939e8Enrico Granata *
23f509c5ec066599a3399fced39ea36996184939e8Enrico Granata * 1. Redistributions of source code must retain the above copyright
24f509c5ec066599a3399fced39ea36996184939e8Enrico Granata *    notice, this list of conditions and the following disclaimer.
25f509c5ec066599a3399fced39ea36996184939e8Enrico Granata *
26f509c5ec066599a3399fced39ea36996184939e8Enrico Granata * 2. Redistributions in binary form must reproduce the above copyright
27f509c5ec066599a3399fced39ea36996184939e8Enrico Granata *    notice, this list of conditions and the following disclaimer in
28f509c5ec066599a3399fced39ea36996184939e8Enrico Granata *    the documentation and/or other materials provided with the
29f509c5ec066599a3399fced39ea36996184939e8Enrico Granata *    distribution.
30f509c5ec066599a3399fced39ea36996184939e8Enrico Granata *
31f509c5ec066599a3399fced39ea36996184939e8Enrico Granata * 3. All advertising materials mentioning features or use of this
32f509c5ec066599a3399fced39ea36996184939e8Enrico Granata *    software must display the following acknowledgment:
33f509c5ec066599a3399fced39ea36996184939e8Enrico Granata *    "This product includes software developed by the OpenSSL Project
34f509c5ec066599a3399fced39ea36996184939e8Enrico Granata *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
35f509c5ec066599a3399fced39ea36996184939e8Enrico Granata *
36f509c5ec066599a3399fced39ea36996184939e8Enrico Granata * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
37f509c5ec066599a3399fced39ea36996184939e8Enrico Granata *    endorse or promote products derived from this software without
38f509c5ec066599a3399fced39ea36996184939e8Enrico Granata *    prior written permission. For written permission, please contact
39f509c5ec066599a3399fced39ea36996184939e8Enrico Granata *    openssl-core@openssl.org.
40f509c5ec066599a3399fced39ea36996184939e8Enrico Granata *
41f509c5ec066599a3399fced39ea36996184939e8Enrico Granata * 5. Products derived from this software may not be called "OpenSSL"
42f509c5ec066599a3399fced39ea36996184939e8Enrico Granata *    nor may "OpenSSL" appear in their names without prior written
43f509c5ec066599a3399fced39ea36996184939e8Enrico Granata *    permission of the OpenSSL Project.
44f509c5ec066599a3399fced39ea36996184939e8Enrico Granata *
45f509c5ec066599a3399fced39ea36996184939e8Enrico Granata * 6. Redistributions of any form whatsoever must retain the following
46f509c5ec066599a3399fced39ea36996184939e8Enrico Granata *    acknowledgment:
47f509c5ec066599a3399fced39ea36996184939e8Enrico Granata *    "This product includes software developed by the OpenSSL Project
48f509c5ec066599a3399fced39ea36996184939e8Enrico Granata *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
49f509c5ec066599a3399fced39ea36996184939e8Enrico Granata *
50f509c5ec066599a3399fced39ea36996184939e8Enrico Granata * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
51f509c5ec066599a3399fced39ea36996184939e8Enrico Granata * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52f509c5ec066599a3399fced39ea36996184939e8Enrico Granata * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
54 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
56 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
57 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
61 * OF THE POSSIBILITY OF SUCH DAMAGE.
62 * ====================================================================
63 *
64 * This product includes cryptographic software written by Eric Young
65 * (eay@cryptsoft.com).  This product includes software written by Tim
66 * Hudson (tjh@cryptsoft.com).
67 *
68 */
69
70#include <openssl/err.h>
71
72#include "ec_lcl.h"
73
74
75const EC_METHOD *EC_GF2m_simple_method(void)
76	{
77	static const EC_METHOD ret = {
78		NID_X9_62_characteristic_two_field,
79		ec_GF2m_simple_group_init,
80		ec_GF2m_simple_group_finish,
81		ec_GF2m_simple_group_clear_finish,
82		ec_GF2m_simple_group_copy,
83		ec_GF2m_simple_group_set_curve,
84		ec_GF2m_simple_group_get_curve,
85		ec_GF2m_simple_group_get_degree,
86		ec_GF2m_simple_group_check_discriminant,
87		ec_GF2m_simple_point_init,
88		ec_GF2m_simple_point_finish,
89		ec_GF2m_simple_point_clear_finish,
90		ec_GF2m_simple_point_copy,
91		ec_GF2m_simple_point_set_to_infinity,
92		0 /* set_Jprojective_coordinates_GFp */,
93		0 /* get_Jprojective_coordinates_GFp */,
94		ec_GF2m_simple_point_set_affine_coordinates,
95		ec_GF2m_simple_point_get_affine_coordinates,
96		ec_GF2m_simple_set_compressed_coordinates,
97		ec_GF2m_simple_point2oct,
98		ec_GF2m_simple_oct2point,
99		ec_GF2m_simple_add,
100		ec_GF2m_simple_dbl,
101		ec_GF2m_simple_invert,
102		ec_GF2m_simple_is_at_infinity,
103		ec_GF2m_simple_is_on_curve,
104		ec_GF2m_simple_cmp,
105		ec_GF2m_simple_make_affine,
106		ec_GF2m_simple_points_make_affine,
107
108		/* the following three method functions are defined in ec2_mult.c */
109		ec_GF2m_simple_mul,
110		ec_GF2m_precompute_mult,
111		ec_GF2m_have_precompute_mult,
112
113		ec_GF2m_simple_field_mul,
114		ec_GF2m_simple_field_sqr,
115		ec_GF2m_simple_field_div,
116		0 /* field_encode */,
117		0 /* field_decode */,
118		0 /* field_set_to_one */ };
119
120	return &ret;
121	}
122
123
124/* Initialize a GF(2^m)-based EC_GROUP structure.
125 * Note that all other members are handled by EC_GROUP_new.
126 */
127int ec_GF2m_simple_group_init(EC_GROUP *group)
128	{
129	BN_init(&group->field);
130	BN_init(&group->a);
131	BN_init(&group->b);
132	return 1;
133	}
134
135
136/* Free a GF(2^m)-based EC_GROUP structure.
137 * Note that all other members are handled by EC_GROUP_free.
138 */
139void ec_GF2m_simple_group_finish(EC_GROUP *group)
140	{
141	BN_free(&group->field);
142	BN_free(&group->a);
143	BN_free(&group->b);
144	}
145
146
147/* Clear and free a GF(2^m)-based EC_GROUP structure.
148 * Note that all other members are handled by EC_GROUP_clear_free.
149 */
150void ec_GF2m_simple_group_clear_finish(EC_GROUP *group)
151	{
152	BN_clear_free(&group->field);
153	BN_clear_free(&group->a);
154	BN_clear_free(&group->b);
155	group->poly[0] = 0;
156	group->poly[1] = 0;
157	group->poly[2] = 0;
158	group->poly[3] = 0;
159	group->poly[4] = 0;
160	}
161
162
163/* Copy a GF(2^m)-based EC_GROUP structure.
164 * Note that all other members are handled by EC_GROUP_copy.
165 */
166int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
167	{
168	int i;
169	if (!BN_copy(&dest->field, &src->field)) return 0;
170	if (!BN_copy(&dest->a, &src->a)) return 0;
171	if (!BN_copy(&dest->b, &src->b)) return 0;
172	dest->poly[0] = src->poly[0];
173	dest->poly[1] = src->poly[1];
174	dest->poly[2] = src->poly[2];
175	dest->poly[3] = src->poly[3];
176	dest->poly[4] = src->poly[4];
177	if(bn_wexpand(&dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL)
178		return 0;
179	if(bn_wexpand(&dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL)
180		return 0;
181	for (i = dest->a.top; i < dest->a.dmax; i++) dest->a.d[i] = 0;
182	for (i = dest->b.top; i < dest->b.dmax; i++) dest->b.d[i] = 0;
183	return 1;
184	}
185
186
187/* Set the curve parameters of an EC_GROUP structure. */
188int ec_GF2m_simple_group_set_curve(EC_GROUP *group,
189	const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
190	{
191	int ret = 0, i;
192
193	/* group->field */
194	if (!BN_copy(&group->field, p)) goto err;
195	i = BN_GF2m_poly2arr(&group->field, group->poly, 5);
196	if ((i != 5) && (i != 3))
197		{
198		ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD);
199		goto err;
200		}
201
202	/* group->a */
203	if (!BN_GF2m_mod_arr(&group->a, a, group->poly)) goto err;
204	if(bn_wexpand(&group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) goto err;
205	for (i = group->a.top; i < group->a.dmax; i++) group->a.d[i] = 0;
206
207	/* group->b */
208	if (!BN_GF2m_mod_arr(&group->b, b, group->poly)) goto err;
209	if(bn_wexpand(&group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) goto err;
210	for (i = group->b.top; i < group->b.dmax; i++) group->b.d[i] = 0;
211
212	ret = 1;
213  err:
214	return ret;
215	}
216
217
218/* Get the curve parameters of an EC_GROUP structure.
219 * If p, a, or b are NULL then there values will not be set but the method will return with success.
220 */
221int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
222	{
223	int ret = 0;
224
225	if (p != NULL)
226		{
227		if (!BN_copy(p, &group->field)) return 0;
228		}
229
230	if (a != NULL)
231		{
232		if (!BN_copy(a, &group->a)) goto err;
233		}
234
235	if (b != NULL)
236		{
237		if (!BN_copy(b, &group->b)) goto err;
238		}
239
240	ret = 1;
241
242  err:
243	return ret;
244	}
245
246
247/* Gets the degree of the field.  For a curve over GF(2^m) this is the value m. */
248int ec_GF2m_simple_group_get_degree(const EC_GROUP *group)
249	{
250	return BN_num_bits(&group->field)-1;
251	}
252
253
254/* Checks the discriminant of the curve.
255 * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p)
256 */
257int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx)
258	{
259	int ret = 0;
260	BIGNUM *b;
261	BN_CTX *new_ctx = NULL;
262
263	if (ctx == NULL)
264		{
265		ctx = new_ctx = BN_CTX_new();
266		if (ctx == NULL)
267			{
268			ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE);
269			goto err;
270			}
271		}
272	BN_CTX_start(ctx);
273	b = BN_CTX_get(ctx);
274	if (b == NULL) goto err;
275
276	if (!BN_GF2m_mod_arr(b, &group->b, group->poly)) goto err;
277
278	/* check the discriminant:
279	 * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p)
280	 */
281	if (BN_is_zero(b)) goto err;
282
283	ret = 1;
284
285err:
286	if (ctx != NULL)
287		BN_CTX_end(ctx);
288	if (new_ctx != NULL)
289		BN_CTX_free(new_ctx);
290	return ret;
291	}
292
293
294/* Initializes an EC_POINT. */
295int ec_GF2m_simple_point_init(EC_POINT *point)
296	{
297	BN_init(&point->X);
298	BN_init(&point->Y);
299	BN_init(&point->Z);
300	return 1;
301	}
302
303
304/* Frees an EC_POINT. */
305void ec_GF2m_simple_point_finish(EC_POINT *point)
306	{
307	BN_free(&point->X);
308	BN_free(&point->Y);
309	BN_free(&point->Z);
310	}
311
312
313/* Clears and frees an EC_POINT. */
314void ec_GF2m_simple_point_clear_finish(EC_POINT *point)
315	{
316	BN_clear_free(&point->X);
317	BN_clear_free(&point->Y);
318	BN_clear_free(&point->Z);
319	point->Z_is_one = 0;
320	}
321
322
323/* Copy the contents of one EC_POINT into another.  Assumes dest is initialized. */
324int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
325	{
326	if (!BN_copy(&dest->X, &src->X)) return 0;
327	if (!BN_copy(&dest->Y, &src->Y)) return 0;
328	if (!BN_copy(&dest->Z, &src->Z)) return 0;
329	dest->Z_is_one = src->Z_is_one;
330
331	return 1;
332	}
333
334
335/* Set an EC_POINT to the point at infinity.
336 * A point at infinity is represented by having Z=0.
337 */
338int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point)
339	{
340	point->Z_is_one = 0;
341	BN_zero(&point->Z);
342	return 1;
343	}
344
345
346/* Set the coordinates of an EC_POINT using affine coordinates.
347 * Note that the simple implementation only uses affine coordinates.
348 */
349int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point,
350	const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx)
351	{
352	int ret = 0;
353	if (x == NULL || y == NULL)
354		{
355		ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER);
356		return 0;
357		}
358
359	if (!BN_copy(&point->X, x)) goto err;
360	BN_set_negative(&point->X, 0);
361	if (!BN_copy(&point->Y, y)) goto err;
362	BN_set_negative(&point->Y, 0);
363	if (!BN_copy(&point->Z, BN_value_one())) goto err;
364	BN_set_negative(&point->Z, 0);
365	point->Z_is_one = 1;
366	ret = 1;
367
368  err:
369	return ret;
370	}
371
372
373/* Gets the affine coordinates of an EC_POINT.
374 * Note that the simple implementation only uses affine coordinates.
375 */
376int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point,
377	BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
378	{
379	int ret = 0;
380
381	if (EC_POINT_is_at_infinity(group, point))
382		{
383		ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY);
384		return 0;
385		}
386
387	if (BN_cmp(&point->Z, BN_value_one()))
388		{
389		ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
390		return 0;
391		}
392	if (x != NULL)
393		{
394		if (!BN_copy(x, &point->X)) goto err;
395		BN_set_negative(x, 0);
396		}
397	if (y != NULL)
398		{
399		if (!BN_copy(y, &point->Y)) goto err;
400		BN_set_negative(y, 0);
401		}
402	ret = 1;
403
404 err:
405	return ret;
406	}
407
408
409/* Include patented algorithms. */
410#include "ec2_smpt.c"
411
412
413/* Converts an EC_POINT to an octet string.
414 * If buf is NULL, the encoded length will be returned.
415 * If the length len of buf is smaller than required an error will be returned.
416 *
417 * The point compression section of this function is patented by Certicom Corp.
418 * under US Patent 6,141,420.  Point compression is disabled by default and can
419 * be enabled by defining the preprocessor macro OPENSSL_EC_BIN_PT_COMP at
420 * Configure-time.
421 */
422size_t ec_GF2m_simple_point2oct(const EC_GROUP *group, const EC_POINT *point, point_conversion_form_t form,
423	unsigned char *buf, size_t len, BN_CTX *ctx)
424	{
425	size_t ret;
426	BN_CTX *new_ctx = NULL;
427	int used_ctx = 0;
428	BIGNUM *x, *y, *yxi;
429	size_t field_len, i, skip;
430
431#ifndef OPENSSL_EC_BIN_PT_COMP
432	if ((form == POINT_CONVERSION_COMPRESSED) || (form == POINT_CONVERSION_HYBRID))
433		{
434		ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_DISABLED);
435		goto err;
436		}
437#endif
438
439	if ((form != POINT_CONVERSION_COMPRESSED)
440		&& (form != POINT_CONVERSION_UNCOMPRESSED)
441		&& (form != POINT_CONVERSION_HYBRID))
442		{
443		ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, EC_R_INVALID_FORM);
444		goto err;
445		}
446
447	if (EC_POINT_is_at_infinity(group, point))
448		{
449		/* encodes to a single 0 octet */
450		if (buf != NULL)
451			{
452			if (len < 1)
453				{
454				ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL);
455				return 0;
456				}
457			buf[0] = 0;
458			}
459		return 1;
460		}
461
462
463	/* ret := required output buffer length */
464	field_len = (EC_GROUP_get_degree(group) + 7) / 8;
465	ret = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2*field_len;
466
467	/* if 'buf' is NULL, just return required length */
468	if (buf != NULL)
469		{
470		if (len < ret)
471			{
472			ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL);
473			goto err;
474			}
475
476		if (ctx == NULL)
477			{
478			ctx = new_ctx = BN_CTX_new();
479			if (ctx == NULL)
480				return 0;
481			}
482
483		BN_CTX_start(ctx);
484		used_ctx = 1;
485		x = BN_CTX_get(ctx);
486		y = BN_CTX_get(ctx);
487		yxi = BN_CTX_get(ctx);
488		if (yxi == NULL) goto err;
489
490		if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err;
491
492		buf[0] = form;
493#ifdef OPENSSL_EC_BIN_PT_COMP
494		if ((form != POINT_CONVERSION_UNCOMPRESSED) && !BN_is_zero(x))
495			{
496			if (!group->meth->field_div(group, yxi, y, x, ctx)) goto err;
497			if (BN_is_odd(yxi)) buf[0]++;
498			}
499#endif
500
501		i = 1;
502
503		skip = field_len - BN_num_bytes(x);
504		if (skip > field_len)
505			{
506			ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR);
507			goto err;
508			}
509		while (skip > 0)
510			{
511			buf[i++] = 0;
512			skip--;
513			}
514		skip = BN_bn2bin(x, buf + i);
515		i += skip;
516		if (i != 1 + field_len)
517			{
518			ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR);
519			goto err;
520			}
521
522		if (form == POINT_CONVERSION_UNCOMPRESSED || form == POINT_CONVERSION_HYBRID)
523			{
524			skip = field_len - BN_num_bytes(y);
525			if (skip > field_len)
526				{
527				ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR);
528				goto err;
529				}
530			while (skip > 0)
531				{
532				buf[i++] = 0;
533				skip--;
534				}
535			skip = BN_bn2bin(y, buf + i);
536			i += skip;
537			}
538
539		if (i != ret)
540			{
541			ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR);
542			goto err;
543			}
544		}
545
546	if (used_ctx)
547		BN_CTX_end(ctx);
548	if (new_ctx != NULL)
549		BN_CTX_free(new_ctx);
550	return ret;
551
552 err:
553	if (used_ctx)
554		BN_CTX_end(ctx);
555	if (new_ctx != NULL)
556		BN_CTX_free(new_ctx);
557	return 0;
558	}
559
560
561/* Converts an octet string representation to an EC_POINT.
562 * Note that the simple implementation only uses affine coordinates.
563 */
564int ec_GF2m_simple_oct2point(const EC_GROUP *group, EC_POINT *point,
565	const unsigned char *buf, size_t len, BN_CTX *ctx)
566	{
567	point_conversion_form_t form;
568	int y_bit;
569	BN_CTX *new_ctx = NULL;
570	BIGNUM *x, *y, *yxi;
571	size_t field_len, enc_len;
572	int ret = 0;
573
574	if (len == 0)
575		{
576		ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_BUFFER_TOO_SMALL);
577		return 0;
578		}
579	form = buf[0];
580	y_bit = form & 1;
581	form = form & ~1U;
582	if ((form != 0)	&& (form != POINT_CONVERSION_COMPRESSED)
583		&& (form != POINT_CONVERSION_UNCOMPRESSED)
584		&& (form != POINT_CONVERSION_HYBRID))
585		{
586		ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING);
587		return 0;
588		}
589	if ((form == 0 || form == POINT_CONVERSION_UNCOMPRESSED) && y_bit)
590		{
591		ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING);
592		return 0;
593		}
594
595	if (form == 0)
596		{
597		if (len != 1)
598			{
599			ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING);
600			return 0;
601			}
602
603		return EC_POINT_set_to_infinity(group, point);
604		}
605
606	field_len = (EC_GROUP_get_degree(group) + 7) / 8;
607	enc_len = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2*field_len;
608
609	if (len != enc_len)
610		{
611		ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING);
612		return 0;
613		}
614
615	if (ctx == NULL)
616		{
617		ctx = new_ctx = BN_CTX_new();
618		if (ctx == NULL)
619			return 0;
620		}
621
622	BN_CTX_start(ctx);
623	x = BN_CTX_get(ctx);
624	y = BN_CTX_get(ctx);
625	yxi = BN_CTX_get(ctx);
626	if (yxi == NULL) goto err;
627
628	if (!BN_bin2bn(buf + 1, field_len, x)) goto err;
629	if (BN_ucmp(x, &group->field) >= 0)
630		{
631		ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING);
632		goto err;
633		}
634
635	if (form == POINT_CONVERSION_COMPRESSED)
636		{
637		if (!EC_POINT_set_compressed_coordinates_GF2m(group, point, x, y_bit, ctx)) goto err;
638		}
639	else
640		{
641		if (!BN_bin2bn(buf + 1 + field_len, field_len, y)) goto err;
642		if (BN_ucmp(y, &group->field) >= 0)
643			{
644			ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING);
645			goto err;
646			}
647		if (form == POINT_CONVERSION_HYBRID)
648			{
649			if (!group->meth->field_div(group, yxi, y, x, ctx)) goto err;
650			if (y_bit != BN_is_odd(yxi))
651				{
652				ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING);
653				goto err;
654				}
655			}
656
657		if (!EC_POINT_set_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err;
658		}
659
660	if (!EC_POINT_is_on_curve(group, point, ctx)) /* test required by X9.62 */
661		{
662		ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_POINT_IS_NOT_ON_CURVE);
663		goto err;
664		}
665
666	ret = 1;
667
668 err:
669	BN_CTX_end(ctx);
670	if (new_ctx != NULL)
671		BN_CTX_free(new_ctx);
672	return ret;
673	}
674
675
676/* Computes a + b and stores the result in r.  r could be a or b, a could be b.
677 * Uses algorithm A.10.2 of IEEE P1363.
678 */
679int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)
680	{
681	BN_CTX *new_ctx = NULL;
682	BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;
683	int ret = 0;
684
685	if (EC_POINT_is_at_infinity(group, a))
686		{
687		if (!EC_POINT_copy(r, b)) return 0;
688		return 1;
689		}
690
691	if (EC_POINT_is_at_infinity(group, b))
692		{
693		if (!EC_POINT_copy(r, a)) return 0;
694		return 1;
695		}
696
697	if (ctx == NULL)
698		{
699		ctx = new_ctx = BN_CTX_new();
700		if (ctx == NULL)
701			return 0;
702		}
703
704	BN_CTX_start(ctx);
705	x0 = BN_CTX_get(ctx);
706	y0 = BN_CTX_get(ctx);
707	x1 = BN_CTX_get(ctx);
708	y1 = BN_CTX_get(ctx);
709	x2 = BN_CTX_get(ctx);
710	y2 = BN_CTX_get(ctx);
711	s = BN_CTX_get(ctx);
712	t = BN_CTX_get(ctx);
713	if (t == NULL) goto err;
714
715	if (a->Z_is_one)
716		{
717		if (!BN_copy(x0, &a->X)) goto err;
718		if (!BN_copy(y0, &a->Y)) goto err;
719		}
720	else
721		{
722		if (!EC_POINT_get_affine_coordinates_GF2m(group, a, x0, y0, ctx)) goto err;
723		}
724	if (b->Z_is_one)
725		{
726		if (!BN_copy(x1, &b->X)) goto err;
727		if (!BN_copy(y1, &b->Y)) goto err;
728		}
729	else
730		{
731		if (!EC_POINT_get_affine_coordinates_GF2m(group, b, x1, y1, ctx)) goto err;
732		}
733
734
735	if (BN_GF2m_cmp(x0, x1))
736		{
737		if (!BN_GF2m_add(t, x0, x1)) goto err;
738		if (!BN_GF2m_add(s, y0, y1)) goto err;
739		if (!group->meth->field_div(group, s, s, t, ctx)) goto err;
740		if (!group->meth->field_sqr(group, x2, s, ctx)) goto err;
741		if (!BN_GF2m_add(x2, x2, &group->a)) goto err;
742		if (!BN_GF2m_add(x2, x2, s)) goto err;
743		if (!BN_GF2m_add(x2, x2, t)) goto err;
744		}
745	else
746		{
747		if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1))
748			{
749			if (!EC_POINT_set_to_infinity(group, r)) goto err;
750			ret = 1;
751			goto err;
752			}
753		if (!group->meth->field_div(group, s, y1, x1, ctx)) goto err;
754		if (!BN_GF2m_add(s, s, x1)) goto err;
755
756		if (!group->meth->field_sqr(group, x2, s, ctx)) goto err;
757		if (!BN_GF2m_add(x2, x2, s)) goto err;
758		if (!BN_GF2m_add(x2, x2, &group->a)) goto err;
759		}
760
761	if (!BN_GF2m_add(y2, x1, x2)) goto err;
762	if (!group->meth->field_mul(group, y2, y2, s, ctx)) goto err;
763	if (!BN_GF2m_add(y2, y2, x2)) goto err;
764	if (!BN_GF2m_add(y2, y2, y1)) goto err;
765
766	if (!EC_POINT_set_affine_coordinates_GF2m(group, r, x2, y2, ctx)) goto err;
767
768	ret = 1;
769
770 err:
771	BN_CTX_end(ctx);
772	if (new_ctx != NULL)
773		BN_CTX_free(new_ctx);
774	return ret;
775	}
776
777
778/* Computes 2 * a and stores the result in r.  r could be a.
779 * Uses algorithm A.10.2 of IEEE P1363.
780 */
781int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx)
782	{
783	return ec_GF2m_simple_add(group, r, a, a, ctx);
784	}
785
786
787int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
788	{
789	if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y))
790		/* point is its own inverse */
791		return 1;
792
793	if (!EC_POINT_make_affine(group, point, ctx)) return 0;
794	return BN_GF2m_add(&point->Y, &point->X, &point->Y);
795	}
796
797
798/* Indicates whether the given point is the point at infinity. */
799int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
800	{
801	return BN_is_zero(&point->Z);
802	}
803
804
805/* Determines whether the given EC_POINT is an actual point on the curve defined
806 * in the EC_GROUP.  A point is valid if it satisfies the Weierstrass equation:
807 *      y^2 + x*y = x^3 + a*x^2 + b.
808 */
809int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx)
810	{
811	int ret = -1;
812	BN_CTX *new_ctx = NULL;
813	BIGNUM *lh, *y2;
814	int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
815	int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
816
817	if (EC_POINT_is_at_infinity(group, point))
818		return 1;
819
820	field_mul = group->meth->field_mul;
821	field_sqr = group->meth->field_sqr;
822
823	/* only support affine coordinates */
824	if (!point->Z_is_one) goto err;
825
826	if (ctx == NULL)
827		{
828		ctx = new_ctx = BN_CTX_new();
829		if (ctx == NULL)
830			return -1;
831		}
832
833	BN_CTX_start(ctx);
834	y2 = BN_CTX_get(ctx);
835	lh = BN_CTX_get(ctx);
836	if (lh == NULL) goto err;
837
838	/* We have a curve defined by a Weierstrass equation
839	 *      y^2 + x*y = x^3 + a*x^2 + b.
840	 *  <=> x^3 + a*x^2 + x*y + b + y^2 = 0
841	 *  <=> ((x + a) * x + y ) * x + b + y^2 = 0
842	 */
843	if (!BN_GF2m_add(lh, &point->X, &group->a)) goto err;
844	if (!field_mul(group, lh, lh, &point->X, ctx)) goto err;
845	if (!BN_GF2m_add(lh, lh, &point->Y)) goto err;
846	if (!field_mul(group, lh, lh, &point->X, ctx)) goto err;
847	if (!BN_GF2m_add(lh, lh, &group->b)) goto err;
848	if (!field_sqr(group, y2, &point->Y, ctx)) goto err;
849	if (!BN_GF2m_add(lh, lh, y2)) goto err;
850	ret = BN_is_zero(lh);
851 err:
852	if (ctx) BN_CTX_end(ctx);
853	if (new_ctx) BN_CTX_free(new_ctx);
854	return ret;
855	}
856
857
858/* Indicates whether two points are equal.
859 * Return values:
860 *  -1   error
861 *   0   equal (in affine coordinates)
862 *   1   not equal
863 */
864int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)
865	{
866	BIGNUM *aX, *aY, *bX, *bY;
867	BN_CTX *new_ctx = NULL;
868	int ret = -1;
869
870	if (EC_POINT_is_at_infinity(group, a))
871		{
872		return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
873		}
874
875	if (a->Z_is_one && b->Z_is_one)
876		{
877		return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1;
878		}
879
880	if (ctx == NULL)
881		{
882		ctx = new_ctx = BN_CTX_new();
883		if (ctx == NULL)
884			return -1;
885		}
886
887	BN_CTX_start(ctx);
888	aX = BN_CTX_get(ctx);
889	aY = BN_CTX_get(ctx);
890	bX = BN_CTX_get(ctx);
891	bY = BN_CTX_get(ctx);
892	if (bY == NULL) goto err;
893
894	if (!EC_POINT_get_affine_coordinates_GF2m(group, a, aX, aY, ctx)) goto err;
895	if (!EC_POINT_get_affine_coordinates_GF2m(group, b, bX, bY, ctx)) goto err;
896	ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1;
897
898  err:
899	if (ctx) BN_CTX_end(ctx);
900	if (new_ctx) BN_CTX_free(new_ctx);
901	return ret;
902	}
903
904
905/* Forces the given EC_POINT to internally use affine coordinates. */
906int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
907	{
908	BN_CTX *new_ctx = NULL;
909	BIGNUM *x, *y;
910	int ret = 0;
911
912	if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
913		return 1;
914
915	if (ctx == NULL)
916		{
917		ctx = new_ctx = BN_CTX_new();
918		if (ctx == NULL)
919			return 0;
920		}
921
922	BN_CTX_start(ctx);
923	x = BN_CTX_get(ctx);
924	y = BN_CTX_get(ctx);
925	if (y == NULL) goto err;
926
927	if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err;
928	if (!BN_copy(&point->X, x)) goto err;
929	if (!BN_copy(&point->Y, y)) goto err;
930	if (!BN_one(&point->Z)) goto err;
931
932	ret = 1;
933
934  err:
935	if (ctx) BN_CTX_end(ctx);
936	if (new_ctx) BN_CTX_free(new_ctx);
937	return ret;
938	}
939
940
941/* Forces each of the EC_POINTs in the given array to use affine coordinates. */
942int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx)
943	{
944	size_t i;
945
946	for (i = 0; i < num; i++)
947		{
948		if (!group->meth->make_affine(group, points[i], ctx)) return 0;
949		}
950
951	return 1;
952	}
953
954
955/* Wrapper to simple binary polynomial field multiplication implementation. */
956int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
957	{
958	return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);
959	}
960
961
962/* Wrapper to simple binary polynomial field squaring implementation. */
963int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)
964	{
965	return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);
966	}
967
968
969/* Wrapper to simple binary polynomial field division implementation. */
970int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
971	{
972	return BN_GF2m_mod_div(r, a, b, &group->field, ctx);
973	}
974