1/* crypto/rand/md_rand.c */
2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to.  The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 *    notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 *    notice, this list of conditions and the following disclaimer in the
30 *    documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 *    must display the following acknowledgement:
33 *    "This product includes cryptographic software written by
34 *     Eric Young (eay@cryptsoft.com)"
35 *    The word 'cryptographic' can be left out if the rouines from the library
36 *    being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 *    the apps directory (application code) you must include an acknowledgement:
39 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed.  i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58/* ====================================================================
59 * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 *    notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 *    notice, this list of conditions and the following disclaimer in
70 *    the documentation and/or other materials provided with the
71 *    distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 *    software must display the following acknowledgment:
75 *    "This product includes software developed by the OpenSSL Project
76 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 *    endorse or promote products derived from this software without
80 *    prior written permission. For written permission, please contact
81 *    openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 *    nor may "OpenSSL" appear in their names without prior written
85 *    permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 *    acknowledgment:
89 *    "This product includes software developed by the OpenSSL Project
90 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com).  This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111
112#define OPENSSL_FIPSEVP
113
114#ifdef MD_RAND_DEBUG
115# ifndef NDEBUG
116#   define NDEBUG
117# endif
118#endif
119
120#include <assert.h>
121#include <stdio.h>
122#include <string.h>
123
124#include "e_os.h"
125
126#include <openssl/crypto.h>
127#include <openssl/rand.h>
128#include "rand_lcl.h"
129
130#include <openssl/err.h>
131
132#ifdef BN_DEBUG
133# define PREDICT
134#endif
135
136/* #define PREDICT	1 */
137
138#define STATE_SIZE	1023
139static int state_num=0,state_index=0;
140static unsigned char state[STATE_SIZE+MD_DIGEST_LENGTH];
141static unsigned char md[MD_DIGEST_LENGTH];
142static long md_count[2]={0,0};
143static double entropy=0;
144static int initialized=0;
145
146static unsigned int crypto_lock_rand = 0; /* may be set only when a thread
147                                           * holds CRYPTO_LOCK_RAND
148                                           * (to prevent double locking) */
149/* access to lockin_thread is synchronized by CRYPTO_LOCK_RAND2 */
150static CRYPTO_THREADID locking_threadid; /* valid iff crypto_lock_rand is set */
151
152
153#ifdef PREDICT
154int rand_predictable=0;
155#endif
156
157const char RAND_version[]="RAND" OPENSSL_VERSION_PTEXT;
158
159static void ssleay_rand_cleanup(void);
160static void ssleay_rand_seed(const void *buf, int num);
161static void ssleay_rand_add(const void *buf, int num, double add_entropy);
162static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num);
163static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num);
164static int ssleay_rand_status(void);
165
166RAND_METHOD rand_ssleay_meth={
167	ssleay_rand_seed,
168	ssleay_rand_nopseudo_bytes,
169	ssleay_rand_cleanup,
170	ssleay_rand_add,
171	ssleay_rand_pseudo_bytes,
172	ssleay_rand_status
173	};
174
175RAND_METHOD *RAND_SSLeay(void)
176	{
177	return(&rand_ssleay_meth);
178	}
179
180static void ssleay_rand_cleanup(void)
181	{
182	OPENSSL_cleanse(state,sizeof(state));
183	state_num=0;
184	state_index=0;
185	OPENSSL_cleanse(md,MD_DIGEST_LENGTH);
186	md_count[0]=0;
187	md_count[1]=0;
188	entropy=0;
189	initialized=0;
190	}
191
192static void ssleay_rand_add(const void *buf, int num, double add)
193	{
194	int i,j,k,st_idx;
195	long md_c[2];
196	unsigned char local_md[MD_DIGEST_LENGTH];
197	EVP_MD_CTX m;
198	int do_not_lock;
199
200	if (!num)
201		return;
202
203	/*
204	 * (Based on the rand(3) manpage)
205	 *
206	 * The input is chopped up into units of 20 bytes (or less for
207	 * the last block).  Each of these blocks is run through the hash
208	 * function as follows:  The data passed to the hash function
209	 * is the current 'md', the same number of bytes from the 'state'
210	 * (the location determined by in incremented looping index) as
211	 * the current 'block', the new key data 'block', and 'count'
212	 * (which is incremented after each use).
213	 * The result of this is kept in 'md' and also xored into the
214	 * 'state' at the same locations that were used as input into the
215         * hash function.
216	 */
217
218	/* check if we already have the lock */
219	if (crypto_lock_rand)
220		{
221		CRYPTO_THREADID cur;
222		CRYPTO_THREADID_current(&cur);
223		CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
224		do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
225		CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
226		}
227	else
228		do_not_lock = 0;
229
230	if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
231	st_idx=state_index;
232
233	/* use our own copies of the counters so that even
234	 * if a concurrent thread seeds with exactly the
235	 * same data and uses the same subarray there's _some_
236	 * difference */
237	md_c[0] = md_count[0];
238	md_c[1] = md_count[1];
239
240	memcpy(local_md, md, sizeof md);
241
242	/* state_index <= state_num <= STATE_SIZE */
243	state_index += num;
244	if (state_index >= STATE_SIZE)
245		{
246		state_index%=STATE_SIZE;
247		state_num=STATE_SIZE;
248		}
249	else if (state_num < STATE_SIZE)
250		{
251		if (state_index > state_num)
252			state_num=state_index;
253		}
254	/* state_index <= state_num <= STATE_SIZE */
255
256	/* state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE]
257	 * are what we will use now, but other threads may use them
258	 * as well */
259
260	md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0);
261
262	if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
263
264	EVP_MD_CTX_init(&m);
265	for (i=0; i<num; i+=MD_DIGEST_LENGTH)
266		{
267		j=(num-i);
268		j=(j > MD_DIGEST_LENGTH)?MD_DIGEST_LENGTH:j;
269
270		MD_Init(&m);
271		MD_Update(&m,local_md,MD_DIGEST_LENGTH);
272		k=(st_idx+j)-STATE_SIZE;
273		if (k > 0)
274			{
275			MD_Update(&m,&(state[st_idx]),j-k);
276			MD_Update(&m,&(state[0]),k);
277			}
278		else
279			MD_Update(&m,&(state[st_idx]),j);
280
281		/* DO NOT REMOVE THE FOLLOWING CALL TO MD_Update()! */
282		MD_Update(&m,buf,j);
283		/* We know that line may cause programs such as
284		   purify and valgrind to complain about use of
285		   uninitialized data.  The problem is not, it's
286		   with the caller.  Removing that line will make
287		   sure you get really bad randomness and thereby
288		   other problems such as very insecure keys. */
289
290		MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
291		MD_Final(&m,local_md);
292		md_c[1]++;
293
294		buf=(const char *)buf + j;
295
296		for (k=0; k<j; k++)
297			{
298			/* Parallel threads may interfere with this,
299			 * but always each byte of the new state is
300			 * the XOR of some previous value of its
301			 * and local_md (itermediate values may be lost).
302			 * Alway using locking could hurt performance more
303			 * than necessary given that conflicts occur only
304			 * when the total seeding is longer than the random
305			 * state. */
306			state[st_idx++]^=local_md[k];
307			if (st_idx >= STATE_SIZE)
308				st_idx=0;
309			}
310		}
311	EVP_MD_CTX_cleanup(&m);
312
313	if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
314	/* Don't just copy back local_md into md -- this could mean that
315	 * other thread's seeding remains without effect (except for
316	 * the incremented counter).  By XORing it we keep at least as
317	 * much entropy as fits into md. */
318	for (k = 0; k < (int)sizeof(md); k++)
319		{
320		md[k] ^= local_md[k];
321		}
322	if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */
323	    entropy += add;
324	if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
325
326#if !defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32)
327	assert(md_c[1] == md_count[1]);
328#endif
329	}
330
331static void ssleay_rand_seed(const void *buf, int num)
332	{
333	ssleay_rand_add(buf, num, (double)num);
334	}
335
336int ssleay_rand_bytes(unsigned char *buf, int num, int pseudo, int lock)
337	{
338	static volatile int stirred_pool = 0;
339	int i,j,k,st_num,st_idx;
340	int num_ceil;
341	int ok;
342	long md_c[2];
343	unsigned char local_md[MD_DIGEST_LENGTH];
344	EVP_MD_CTX m;
345#ifndef GETPID_IS_MEANINGLESS
346	pid_t curr_pid = getpid();
347#endif
348	int do_stir_pool = 0;
349
350#ifdef PREDICT
351	if (rand_predictable)
352		{
353		static unsigned char val=0;
354
355		for (i=0; i<num; i++)
356			buf[i]=val++;
357		return(1);
358		}
359#endif
360
361	if (num <= 0)
362		return 1;
363
364	EVP_MD_CTX_init(&m);
365	/* round upwards to multiple of MD_DIGEST_LENGTH/2 */
366	num_ceil = (1 + (num-1)/(MD_DIGEST_LENGTH/2)) * (MD_DIGEST_LENGTH/2);
367
368	/*
369	 * (Based on the rand(3) manpage:)
370	 *
371	 * For each group of 10 bytes (or less), we do the following:
372	 *
373	 * Input into the hash function the local 'md' (which is initialized from
374	 * the global 'md' before any bytes are generated), the bytes that are to
375	 * be overwritten by the random bytes, and bytes from the 'state'
376	 * (incrementing looping index). From this digest output (which is kept
377	 * in 'md'), the top (up to) 10 bytes are returned to the caller and the
378	 * bottom 10 bytes are xored into the 'state'.
379	 *
380	 * Finally, after we have finished 'num' random bytes for the
381	 * caller, 'count' (which is incremented) and the local and global 'md'
382	 * are fed into the hash function and the results are kept in the
383	 * global 'md'.
384	 */
385	if (lock)
386		CRYPTO_w_lock(CRYPTO_LOCK_RAND);
387
388	/* prevent ssleay_rand_bytes() from trying to obtain the lock again */
389	CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
390	CRYPTO_THREADID_current(&locking_threadid);
391	CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
392	crypto_lock_rand = 1;
393
394	if (!initialized)
395		{
396		RAND_poll();
397		initialized = 1;
398		}
399
400	if (!stirred_pool)
401		do_stir_pool = 1;
402
403	ok = (entropy >= ENTROPY_NEEDED);
404	if (!ok)
405		{
406		/* If the PRNG state is not yet unpredictable, then seeing
407		 * the PRNG output may help attackers to determine the new
408		 * state; thus we have to decrease the entropy estimate.
409		 * Once we've had enough initial seeding we don't bother to
410		 * adjust the entropy count, though, because we're not ambitious
411		 * to provide *information-theoretic* randomness.
412		 *
413		 * NOTE: This approach fails if the program forks before
414		 * we have enough entropy. Entropy should be collected
415		 * in a separate input pool and be transferred to the
416		 * output pool only when the entropy limit has been reached.
417		 */
418		entropy -= num;
419		if (entropy < 0)
420			entropy = 0;
421		}
422
423	if (do_stir_pool)
424		{
425		/* In the output function only half of 'md' remains secret,
426		 * so we better make sure that the required entropy gets
427		 * 'evenly distributed' through 'state', our randomness pool.
428		 * The input function (ssleay_rand_add) chains all of 'md',
429		 * which makes it more suitable for this purpose.
430		 */
431
432		int n = STATE_SIZE; /* so that the complete pool gets accessed */
433		while (n > 0)
434			{
435#if MD_DIGEST_LENGTH > 20
436# error "Please adjust DUMMY_SEED."
437#endif
438#define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */
439			/* Note that the seed does not matter, it's just that
440			 * ssleay_rand_add expects to have something to hash. */
441			ssleay_rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0);
442			n -= MD_DIGEST_LENGTH;
443			}
444		if (ok)
445			stirred_pool = 1;
446		}
447
448	st_idx=state_index;
449	st_num=state_num;
450	md_c[0] = md_count[0];
451	md_c[1] = md_count[1];
452	memcpy(local_md, md, sizeof md);
453
454	state_index+=num_ceil;
455	if (state_index > state_num)
456		state_index %= state_num;
457
458	/* state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num]
459	 * are now ours (but other threads may use them too) */
460
461	md_count[0] += 1;
462
463	/* before unlocking, we must clear 'crypto_lock_rand' */
464	crypto_lock_rand = 0;
465	if (lock)
466		CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
467
468	while (num > 0)
469		{
470		/* num_ceil -= MD_DIGEST_LENGTH/2 */
471		j=(num >= MD_DIGEST_LENGTH/2)?MD_DIGEST_LENGTH/2:num;
472		num-=j;
473		MD_Init(&m);
474#ifndef GETPID_IS_MEANINGLESS
475		if (curr_pid) /* just in the first iteration to save time */
476			{
477			MD_Update(&m,(unsigned char*)&curr_pid,sizeof curr_pid);
478			curr_pid = 0;
479			}
480#endif
481		MD_Update(&m,local_md,MD_DIGEST_LENGTH);
482		MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
483
484#ifndef PURIFY /* purify complains */
485		/* The following line uses the supplied buffer as a small
486		 * source of entropy: since this buffer is often uninitialised
487		 * it may cause programs such as purify or valgrind to
488		 * complain. So for those builds it is not used: the removal
489		 * of such a small source of entropy has negligible impact on
490		 * security.
491		 */
492		MD_Update(&m,buf,j);
493#endif
494
495		k=(st_idx+MD_DIGEST_LENGTH/2)-st_num;
496		if (k > 0)
497			{
498			MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2-k);
499			MD_Update(&m,&(state[0]),k);
500			}
501		else
502			MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2);
503		MD_Final(&m,local_md);
504
505		for (i=0; i<MD_DIGEST_LENGTH/2; i++)
506			{
507			state[st_idx++]^=local_md[i]; /* may compete with other threads */
508			if (st_idx >= st_num)
509				st_idx=0;
510			if (i < j)
511				*(buf++)=local_md[i+MD_DIGEST_LENGTH/2];
512			}
513		}
514
515	MD_Init(&m);
516	MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
517	MD_Update(&m,local_md,MD_DIGEST_LENGTH);
518	if (lock)
519		CRYPTO_w_lock(CRYPTO_LOCK_RAND);
520	MD_Update(&m,md,MD_DIGEST_LENGTH);
521	MD_Final(&m,md);
522	if (lock)
523		CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
524
525	EVP_MD_CTX_cleanup(&m);
526	if (ok)
527		return(1);
528	else if (pseudo)
529		return 0;
530	else
531		{
532		RANDerr(RAND_F_SSLEAY_RAND_BYTES,RAND_R_PRNG_NOT_SEEDED);
533		ERR_add_error_data(1, "You need to read the OpenSSL FAQ, "
534			"http://www.openssl.org/support/faq.html");
535		return(0);
536		}
537	}
538
539static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num)
540	{
541	return ssleay_rand_bytes(buf, num, 0, 1);
542	}
543
544/* pseudo-random bytes that are guaranteed to be unique but not
545   unpredictable */
546static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num)
547	{
548	return ssleay_rand_bytes(buf, num, 1, 1);
549	}
550
551static int ssleay_rand_status(void)
552	{
553	CRYPTO_THREADID cur;
554	int ret;
555	int do_not_lock;
556
557	CRYPTO_THREADID_current(&cur);
558	/* check if we already have the lock
559	 * (could happen if a RAND_poll() implementation calls RAND_status()) */
560	if (crypto_lock_rand)
561		{
562		CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
563		do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
564		CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
565		}
566	else
567		do_not_lock = 0;
568
569	if (!do_not_lock)
570		{
571		CRYPTO_w_lock(CRYPTO_LOCK_RAND);
572
573		/* prevent ssleay_rand_bytes() from trying to obtain the lock again */
574		CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
575		CRYPTO_THREADID_cpy(&locking_threadid, &cur);
576		CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
577		crypto_lock_rand = 1;
578		}
579
580	if (!initialized)
581		{
582		RAND_poll();
583		initialized = 1;
584		}
585
586	ret = entropy >= ENTROPY_NEEDED;
587
588	if (!do_not_lock)
589		{
590		/* before unlocking, we must clear 'crypto_lock_rand' */
591		crypto_lock_rand = 0;
592
593		CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
594		}
595
596	return ret;
597	}
598