1/*
2 * Contributed to the OpenSSL Project by the American Registry for
3 * Internet Numbers ("ARIN").
4 */
5/* ====================================================================
6 * Copyright (c) 2006 The OpenSSL Project.  All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in
17 *    the documentation and/or other materials provided with the
18 *    distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 *    software must display the following acknowledgment:
22 *    "This product includes software developed by the OpenSSL Project
23 *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 *    endorse or promote products derived from this software without
27 *    prior written permission. For written permission, please contact
28 *    licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 *    nor may "OpenSSL" appear in their names without prior written
32 *    permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 *    acknowledgment:
36 *    "This product includes software developed by the OpenSSL Project
37 *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ====================================================================
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com).  This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 */
57
58/*
59 * Implementation of RFC 3779 section 2.2.
60 */
61
62#include <stdio.h>
63#include <stdlib.h>
64
65#include "cryptlib.h"
66#include <openssl/conf.h>
67#include <openssl/asn1.h>
68#include <openssl/asn1t.h>
69#include <openssl/buffer.h>
70#include <openssl/x509v3.h>
71
72#ifndef OPENSSL_NO_RFC3779
73
74/*
75 * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
76 */
77
78ASN1_SEQUENCE(IPAddressRange) = {
79  ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
80  ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
81} ASN1_SEQUENCE_END(IPAddressRange)
82
83ASN1_CHOICE(IPAddressOrRange) = {
84  ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
85  ASN1_SIMPLE(IPAddressOrRange, u.addressRange,  IPAddressRange)
86} ASN1_CHOICE_END(IPAddressOrRange)
87
88ASN1_CHOICE(IPAddressChoice) = {
89  ASN1_SIMPLE(IPAddressChoice,      u.inherit,           ASN1_NULL),
90  ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
91} ASN1_CHOICE_END(IPAddressChoice)
92
93ASN1_SEQUENCE(IPAddressFamily) = {
94  ASN1_SIMPLE(IPAddressFamily, addressFamily,   ASN1_OCTET_STRING),
95  ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
96} ASN1_SEQUENCE_END(IPAddressFamily)
97
98ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
99  ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
100			IPAddrBlocks, IPAddressFamily)
101ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
102
103IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
104IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
105IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
106IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
107
108/*
109 * How much buffer space do we need for a raw address?
110 */
111#define ADDR_RAW_BUF_LEN	16
112
113/*
114 * What's the address length associated with this AFI?
115 */
116static int length_from_afi(const unsigned afi)
117{
118  switch (afi) {
119  case IANA_AFI_IPV4:
120    return 4;
121  case IANA_AFI_IPV6:
122    return 16;
123  default:
124    return 0;
125  }
126}
127
128/*
129 * Extract the AFI from an IPAddressFamily.
130 */
131unsigned int v3_addr_get_afi(const IPAddressFamily *f)
132{
133  return ((f != NULL &&
134	   f->addressFamily != NULL &&
135	   f->addressFamily->data != NULL)
136	  ? ((f->addressFamily->data[0] << 8) |
137	     (f->addressFamily->data[1]))
138	  : 0);
139}
140
141/*
142 * Expand the bitstring form of an address into a raw byte array.
143 * At the moment this is coded for simplicity, not speed.
144 */
145static int addr_expand(unsigned char *addr,
146			const ASN1_BIT_STRING *bs,
147			const int length,
148			const unsigned char fill)
149{
150  if (bs->length < 0 || bs->length > length)
151    return 0;
152  if (bs->length > 0) {
153    memcpy(addr, bs->data, bs->length);
154    if ((bs->flags & 7) != 0) {
155      unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
156      if (fill == 0)
157	addr[bs->length - 1] &= ~mask;
158      else
159	addr[bs->length - 1] |= mask;
160    }
161  }
162  memset(addr + bs->length, fill, length - bs->length);
163  return 1;
164}
165
166/*
167 * Extract the prefix length from a bitstring.
168 */
169#define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
170
171/*
172 * i2r handler for one address bitstring.
173 */
174static int i2r_address(BIO *out,
175		       const unsigned afi,
176		       const unsigned char fill,
177		       const ASN1_BIT_STRING *bs)
178{
179  unsigned char addr[ADDR_RAW_BUF_LEN];
180  int i, n;
181
182  if (bs->length < 0)
183    return 0;
184  switch (afi) {
185  case IANA_AFI_IPV4:
186    if (!addr_expand(addr, bs, 4, fill))
187      return 0;
188    BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
189    break;
190  case IANA_AFI_IPV6:
191    if (!addr_expand(addr, bs, 16, fill))
192      return 0;
193    for (n = 16; n > 1 && addr[n-1] == 0x00 && addr[n-2] == 0x00; n -= 2)
194      ;
195    for (i = 0; i < n; i += 2)
196      BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i+1], (i < 14 ? ":" : ""));
197    if (i < 16)
198      BIO_puts(out, ":");
199    if (i == 0)
200      BIO_puts(out, ":");
201    break;
202  default:
203    for (i = 0; i < bs->length; i++)
204      BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
205    BIO_printf(out, "[%d]", (int) (bs->flags & 7));
206    break;
207  }
208  return 1;
209}
210
211/*
212 * i2r handler for a sequence of addresses and ranges.
213 */
214static int i2r_IPAddressOrRanges(BIO *out,
215				 const int indent,
216				 const IPAddressOrRanges *aors,
217				 const unsigned afi)
218{
219  int i;
220  for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
221    const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
222    BIO_printf(out, "%*s", indent, "");
223    switch (aor->type) {
224    case IPAddressOrRange_addressPrefix:
225      if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
226	return 0;
227      BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
228      continue;
229    case IPAddressOrRange_addressRange:
230      if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
231	return 0;
232      BIO_puts(out, "-");
233      if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
234	return 0;
235      BIO_puts(out, "\n");
236      continue;
237    }
238  }
239  return 1;
240}
241
242/*
243 * i2r handler for an IPAddrBlocks extension.
244 */
245static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
246			    void *ext,
247			    BIO *out,
248			    int indent)
249{
250  const IPAddrBlocks *addr = ext;
251  int i;
252  for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
253    IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
254    const unsigned int afi = v3_addr_get_afi(f);
255    switch (afi) {
256    case IANA_AFI_IPV4:
257      BIO_printf(out, "%*sIPv4", indent, "");
258      break;
259    case IANA_AFI_IPV6:
260      BIO_printf(out, "%*sIPv6", indent, "");
261      break;
262    default:
263      BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
264      break;
265    }
266    if (f->addressFamily->length > 2) {
267      switch (f->addressFamily->data[2]) {
268      case   1:
269	BIO_puts(out, " (Unicast)");
270	break;
271      case   2:
272	BIO_puts(out, " (Multicast)");
273	break;
274      case   3:
275	BIO_puts(out, " (Unicast/Multicast)");
276	break;
277      case   4:
278	BIO_puts(out, " (MPLS)");
279	break;
280      case  64:
281	BIO_puts(out, " (Tunnel)");
282	break;
283      case  65:
284	BIO_puts(out, " (VPLS)");
285	break;
286      case  66:
287	BIO_puts(out, " (BGP MDT)");
288	break;
289      case 128:
290	BIO_puts(out, " (MPLS-labeled VPN)");
291	break;
292      default:
293	BIO_printf(out, " (Unknown SAFI %u)",
294		   (unsigned) f->addressFamily->data[2]);
295	break;
296      }
297    }
298    switch (f->ipAddressChoice->type) {
299    case IPAddressChoice_inherit:
300      BIO_puts(out, ": inherit\n");
301      break;
302    case IPAddressChoice_addressesOrRanges:
303      BIO_puts(out, ":\n");
304      if (!i2r_IPAddressOrRanges(out,
305				 indent + 2,
306				 f->ipAddressChoice->u.addressesOrRanges,
307				 afi))
308	return 0;
309      break;
310    }
311  }
312  return 1;
313}
314
315/*
316 * Sort comparison function for a sequence of IPAddressOrRange
317 * elements.
318 *
319 * There's no sane answer we can give if addr_expand() fails, and an
320 * assertion failure on externally supplied data is seriously uncool,
321 * so we just arbitrarily declare that if given invalid inputs this
322 * function returns -1.  If this messes up your preferred sort order
323 * for garbage input, tough noogies.
324 */
325static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
326				const IPAddressOrRange *b,
327				const int length)
328{
329  unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
330  int prefixlen_a = 0, prefixlen_b = 0;
331  int r;
332
333  switch (a->type) {
334  case IPAddressOrRange_addressPrefix:
335    if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
336      return -1;
337    prefixlen_a = addr_prefixlen(a->u.addressPrefix);
338    break;
339  case IPAddressOrRange_addressRange:
340    if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
341      return -1;
342    prefixlen_a = length * 8;
343    break;
344  }
345
346  switch (b->type) {
347  case IPAddressOrRange_addressPrefix:
348    if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
349      return -1;
350    prefixlen_b = addr_prefixlen(b->u.addressPrefix);
351    break;
352  case IPAddressOrRange_addressRange:
353    if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
354      return -1;
355    prefixlen_b = length * 8;
356    break;
357  }
358
359  if ((r = memcmp(addr_a, addr_b, length)) != 0)
360    return r;
361  else
362    return prefixlen_a - prefixlen_b;
363}
364
365/*
366 * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
367 * comparision routines are only allowed two arguments.
368 */
369static int v4IPAddressOrRange_cmp(const IPAddressOrRange * const *a,
370				  const IPAddressOrRange * const *b)
371{
372  return IPAddressOrRange_cmp(*a, *b, 4);
373}
374
375/*
376 * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
377 * comparision routines are only allowed two arguments.
378 */
379static int v6IPAddressOrRange_cmp(const IPAddressOrRange * const *a,
380				  const IPAddressOrRange * const *b)
381{
382  return IPAddressOrRange_cmp(*a, *b, 16);
383}
384
385/*
386 * Calculate whether a range collapses to a prefix.
387 * See last paragraph of RFC 3779 2.2.3.7.
388 */
389static int range_should_be_prefix(const unsigned char *min,
390				  const unsigned char *max,
391				  const int length)
392{
393  unsigned char mask;
394  int i, j;
395
396  OPENSSL_assert(memcmp(min, max, length) <= 0);
397  for (i = 0; i < length && min[i] == max[i]; i++)
398    ;
399  for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--)
400    ;
401  if (i < j)
402    return -1;
403  if (i > j)
404    return i * 8;
405  mask = min[i] ^ max[i];
406  switch (mask) {
407  case 0x01: j = 7; break;
408  case 0x03: j = 6; break;
409  case 0x07: j = 5; break;
410  case 0x0F: j = 4; break;
411  case 0x1F: j = 3; break;
412  case 0x3F: j = 2; break;
413  case 0x7F: j = 1; break;
414  default:   return -1;
415  }
416  if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
417    return -1;
418  else
419    return i * 8 + j;
420}
421
422/*
423 * Construct a prefix.
424 */
425static int make_addressPrefix(IPAddressOrRange **result,
426			      unsigned char *addr,
427			      const int prefixlen)
428{
429  int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
430  IPAddressOrRange *aor = IPAddressOrRange_new();
431
432  if (aor == NULL)
433    return 0;
434  aor->type = IPAddressOrRange_addressPrefix;
435  if (aor->u.addressPrefix == NULL &&
436      (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
437    goto err;
438  if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
439    goto err;
440  aor->u.addressPrefix->flags &= ~7;
441  aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
442  if (bitlen > 0) {
443    aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
444    aor->u.addressPrefix->flags |= 8 - bitlen;
445  }
446
447  *result = aor;
448  return 1;
449
450 err:
451  IPAddressOrRange_free(aor);
452  return 0;
453}
454
455/*
456 * Construct a range.  If it can be expressed as a prefix,
457 * return a prefix instead.  Doing this here simplifies
458 * the rest of the code considerably.
459 */
460static int make_addressRange(IPAddressOrRange **result,
461			     unsigned char *min,
462			     unsigned char *max,
463			     const int length)
464{
465  IPAddressOrRange *aor;
466  int i, prefixlen;
467
468  if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
469    return make_addressPrefix(result, min, prefixlen);
470
471  if ((aor = IPAddressOrRange_new()) == NULL)
472    return 0;
473  aor->type = IPAddressOrRange_addressRange;
474  OPENSSL_assert(aor->u.addressRange == NULL);
475  if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
476    goto err;
477  if (aor->u.addressRange->min == NULL &&
478      (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
479    goto err;
480  if (aor->u.addressRange->max == NULL &&
481      (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
482    goto err;
483
484  for (i = length; i > 0 && min[i - 1] == 0x00; --i)
485    ;
486  if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
487    goto err;
488  aor->u.addressRange->min->flags &= ~7;
489  aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
490  if (i > 0) {
491    unsigned char b = min[i - 1];
492    int j = 1;
493    while ((b & (0xFFU >> j)) != 0)
494      ++j;
495    aor->u.addressRange->min->flags |= 8 - j;
496  }
497
498  for (i = length; i > 0 && max[i - 1] == 0xFF; --i)
499    ;
500  if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
501    goto err;
502  aor->u.addressRange->max->flags &= ~7;
503  aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
504  if (i > 0) {
505    unsigned char b = max[i - 1];
506    int j = 1;
507    while ((b & (0xFFU >> j)) != (0xFFU >> j))
508      ++j;
509    aor->u.addressRange->max->flags |= 8 - j;
510  }
511
512  *result = aor;
513  return 1;
514
515 err:
516  IPAddressOrRange_free(aor);
517  return 0;
518}
519
520/*
521 * Construct a new address family or find an existing one.
522 */
523static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
524					     const unsigned afi,
525					     const unsigned *safi)
526{
527  IPAddressFamily *f;
528  unsigned char key[3];
529  unsigned keylen;
530  int i;
531
532  key[0] = (afi >> 8) & 0xFF;
533  key[1] = afi & 0xFF;
534  if (safi != NULL) {
535    key[2] = *safi & 0xFF;
536    keylen = 3;
537  } else {
538    keylen = 2;
539  }
540
541  for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
542    f = sk_IPAddressFamily_value(addr, i);
543    OPENSSL_assert(f->addressFamily->data != NULL);
544    if (f->addressFamily->length == keylen &&
545	!memcmp(f->addressFamily->data, key, keylen))
546      return f;
547  }
548
549  if ((f = IPAddressFamily_new()) == NULL)
550    goto err;
551  if (f->ipAddressChoice == NULL &&
552      (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
553    goto err;
554  if (f->addressFamily == NULL &&
555      (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
556    goto err;
557  if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
558    goto err;
559  if (!sk_IPAddressFamily_push(addr, f))
560    goto err;
561
562  return f;
563
564 err:
565  IPAddressFamily_free(f);
566  return NULL;
567}
568
569/*
570 * Add an inheritance element.
571 */
572int v3_addr_add_inherit(IPAddrBlocks *addr,
573			const unsigned afi,
574			const unsigned *safi)
575{
576  IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
577  if (f == NULL ||
578      f->ipAddressChoice == NULL ||
579      (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
580       f->ipAddressChoice->u.addressesOrRanges != NULL))
581    return 0;
582  if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
583      f->ipAddressChoice->u.inherit != NULL)
584    return 1;
585  if (f->ipAddressChoice->u.inherit == NULL &&
586      (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
587    return 0;
588  f->ipAddressChoice->type = IPAddressChoice_inherit;
589  return 1;
590}
591
592/*
593 * Construct an IPAddressOrRange sequence, or return an existing one.
594 */
595static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
596					       const unsigned afi,
597					       const unsigned *safi)
598{
599  IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
600  IPAddressOrRanges *aors = NULL;
601
602  if (f == NULL ||
603      f->ipAddressChoice == NULL ||
604      (f->ipAddressChoice->type == IPAddressChoice_inherit &&
605       f->ipAddressChoice->u.inherit != NULL))
606    return NULL;
607  if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
608    aors = f->ipAddressChoice->u.addressesOrRanges;
609  if (aors != NULL)
610    return aors;
611  if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
612    return NULL;
613  switch (afi) {
614  case IANA_AFI_IPV4:
615    (void) sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
616    break;
617  case IANA_AFI_IPV6:
618    (void) sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
619    break;
620  }
621  f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
622  f->ipAddressChoice->u.addressesOrRanges = aors;
623  return aors;
624}
625
626/*
627 * Add a prefix.
628 */
629int v3_addr_add_prefix(IPAddrBlocks *addr,
630		       const unsigned afi,
631		       const unsigned *safi,
632		       unsigned char *a,
633		       const int prefixlen)
634{
635  IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
636  IPAddressOrRange *aor;
637  if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
638    return 0;
639  if (sk_IPAddressOrRange_push(aors, aor))
640    return 1;
641  IPAddressOrRange_free(aor);
642  return 0;
643}
644
645/*
646 * Add a range.
647 */
648int v3_addr_add_range(IPAddrBlocks *addr,
649		      const unsigned afi,
650		      const unsigned *safi,
651		      unsigned char *min,
652		      unsigned char *max)
653{
654  IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
655  IPAddressOrRange *aor;
656  int length = length_from_afi(afi);
657  if (aors == NULL)
658    return 0;
659  if (!make_addressRange(&aor, min, max, length))
660    return 0;
661  if (sk_IPAddressOrRange_push(aors, aor))
662    return 1;
663  IPAddressOrRange_free(aor);
664  return 0;
665}
666
667/*
668 * Extract min and max values from an IPAddressOrRange.
669 */
670static int extract_min_max(IPAddressOrRange *aor,
671			    unsigned char *min,
672			    unsigned char *max,
673			    int length)
674{
675  if (aor == NULL || min == NULL || max == NULL)
676    return 0;
677  switch (aor->type) {
678  case IPAddressOrRange_addressPrefix:
679    return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
680	    addr_expand(max, aor->u.addressPrefix, length, 0xFF));
681  case IPAddressOrRange_addressRange:
682    return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
683	    addr_expand(max, aor->u.addressRange->max, length, 0xFF));
684  }
685  return 0;
686}
687
688/*
689 * Public wrapper for extract_min_max().
690 */
691int v3_addr_get_range(IPAddressOrRange *aor,
692		      const unsigned afi,
693		      unsigned char *min,
694		      unsigned char *max,
695		      const int length)
696{
697  int afi_length = length_from_afi(afi);
698  if (aor == NULL || min == NULL || max == NULL ||
699      afi_length == 0 || length < afi_length ||
700      (aor->type != IPAddressOrRange_addressPrefix &&
701       aor->type != IPAddressOrRange_addressRange) ||
702      !extract_min_max(aor, min, max, afi_length))
703    return 0;
704
705  return afi_length;
706}
707
708/*
709 * Sort comparision function for a sequence of IPAddressFamily.
710 *
711 * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
712 * the ordering: I can read it as meaning that IPv6 without a SAFI
713 * comes before IPv4 with a SAFI, which seems pretty weird.  The
714 * examples in appendix B suggest that the author intended the
715 * null-SAFI rule to apply only within a single AFI, which is what I
716 * would have expected and is what the following code implements.
717 */
718static int IPAddressFamily_cmp(const IPAddressFamily * const *a_,
719			       const IPAddressFamily * const *b_)
720{
721  const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
722  const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
723  int len = ((a->length <= b->length) ? a->length : b->length);
724  int cmp = memcmp(a->data, b->data, len);
725  return cmp ? cmp : a->length - b->length;
726}
727
728/*
729 * Check whether an IPAddrBLocks is in canonical form.
730 */
731int v3_addr_is_canonical(IPAddrBlocks *addr)
732{
733  unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
734  unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
735  IPAddressOrRanges *aors;
736  int i, j, k;
737
738  /*
739   * Empty extension is cannonical.
740   */
741  if (addr == NULL)
742    return 1;
743
744  /*
745   * Check whether the top-level list is in order.
746   */
747  for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
748    const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
749    const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
750    if (IPAddressFamily_cmp(&a, &b) >= 0)
751      return 0;
752  }
753
754  /*
755   * Top level's ok, now check each address family.
756   */
757  for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
758    IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
759    int length = length_from_afi(v3_addr_get_afi(f));
760
761    /*
762     * Inheritance is canonical.  Anything other than inheritance or
763     * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
764     */
765    if (f == NULL || f->ipAddressChoice == NULL)
766      return 0;
767    switch (f->ipAddressChoice->type) {
768    case IPAddressChoice_inherit:
769      continue;
770    case IPAddressChoice_addressesOrRanges:
771      break;
772    default:
773      return 0;
774    }
775
776    /*
777     * It's an IPAddressOrRanges sequence, check it.
778     */
779    aors = f->ipAddressChoice->u.addressesOrRanges;
780    if (sk_IPAddressOrRange_num(aors) == 0)
781      return 0;
782    for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
783      IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
784      IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
785
786      if (!extract_min_max(a, a_min, a_max, length) ||
787	  !extract_min_max(b, b_min, b_max, length))
788	return 0;
789
790      /*
791       * Punt misordered list, overlapping start, or inverted range.
792       */
793      if (memcmp(a_min, b_min, length) >= 0 ||
794	  memcmp(a_min, a_max, length) > 0 ||
795	  memcmp(b_min, b_max, length) > 0)
796	return 0;
797
798      /*
799       * Punt if adjacent or overlapping.  Check for adjacency by
800       * subtracting one from b_min first.
801       */
802      for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--)
803	;
804      if (memcmp(a_max, b_min, length) >= 0)
805	return 0;
806
807      /*
808       * Check for range that should be expressed as a prefix.
809       */
810      if (a->type == IPAddressOrRange_addressRange &&
811	  range_should_be_prefix(a_min, a_max, length) >= 0)
812	return 0;
813    }
814
815    /*
816     * Check range to see if it's inverted or should be a
817     * prefix.
818     */
819    j = sk_IPAddressOrRange_num(aors) - 1;
820    {
821      IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
822      if (a != NULL && a->type == IPAddressOrRange_addressRange) {
823	if (!extract_min_max(a, a_min, a_max, length))
824	  return 0;
825	if (memcmp(a_min, a_max, length) > 0 ||
826	    range_should_be_prefix(a_min, a_max, length) >= 0)
827	  return 0;
828      }
829    }
830  }
831
832  /*
833   * If we made it through all that, we're happy.
834   */
835  return 1;
836}
837
838/*
839 * Whack an IPAddressOrRanges into canonical form.
840 */
841static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
842				      const unsigned afi)
843{
844  int i, j, length = length_from_afi(afi);
845
846  /*
847   * Sort the IPAddressOrRanges sequence.
848   */
849  sk_IPAddressOrRange_sort(aors);
850
851  /*
852   * Clean up representation issues, punt on duplicates or overlaps.
853   */
854  for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
855    IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
856    IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
857    unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
858    unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
859
860    if (!extract_min_max(a, a_min, a_max, length) ||
861	!extract_min_max(b, b_min, b_max, length))
862      return 0;
863
864    /*
865     * Punt inverted ranges.
866     */
867    if (memcmp(a_min, a_max, length) > 0 ||
868	memcmp(b_min, b_max, length) > 0)
869      return 0;
870
871    /*
872     * Punt overlaps.
873     */
874    if (memcmp(a_max, b_min, length) >= 0)
875      return 0;
876
877    /*
878     * Merge if a and b are adjacent.  We check for
879     * adjacency by subtracting one from b_min first.
880     */
881    for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--)
882      ;
883    if (memcmp(a_max, b_min, length) == 0) {
884      IPAddressOrRange *merged;
885      if (!make_addressRange(&merged, a_min, b_max, length))
886	return 0;
887      (void) sk_IPAddressOrRange_set(aors, i, merged);
888      (void) sk_IPAddressOrRange_delete(aors, i + 1);
889      IPAddressOrRange_free(a);
890      IPAddressOrRange_free(b);
891      --i;
892      continue;
893    }
894  }
895
896  /*
897   * Check for inverted final range.
898   */
899  j = sk_IPAddressOrRange_num(aors) - 1;
900  {
901    IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
902    if (a != NULL && a->type == IPAddressOrRange_addressRange) {
903      unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
904      extract_min_max(a, a_min, a_max, length);
905      if (memcmp(a_min, a_max, length) > 0)
906	return 0;
907    }
908  }
909
910  return 1;
911}
912
913/*
914 * Whack an IPAddrBlocks extension into canonical form.
915 */
916int v3_addr_canonize(IPAddrBlocks *addr)
917{
918  int i;
919  for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
920    IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
921    if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
922	!IPAddressOrRanges_canonize(f->ipAddressChoice->u.addressesOrRanges,
923				    v3_addr_get_afi(f)))
924      return 0;
925  }
926  (void) sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
927  sk_IPAddressFamily_sort(addr);
928  OPENSSL_assert(v3_addr_is_canonical(addr));
929  return 1;
930}
931
932/*
933 * v2i handler for the IPAddrBlocks extension.
934 */
935static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
936			      struct v3_ext_ctx *ctx,
937			      STACK_OF(CONF_VALUE) *values)
938{
939  static const char v4addr_chars[] = "0123456789.";
940  static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
941  IPAddrBlocks *addr = NULL;
942  char *s = NULL, *t;
943  int i;
944
945  if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
946    X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
947    return NULL;
948  }
949
950  for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
951    CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
952    unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
953    unsigned afi, *safi = NULL, safi_;
954    const char *addr_chars;
955    int prefixlen, i1, i2, delim, length;
956
957    if (       !name_cmp(val->name, "IPv4")) {
958      afi = IANA_AFI_IPV4;
959    } else if (!name_cmp(val->name, "IPv6")) {
960      afi = IANA_AFI_IPV6;
961    } else if (!name_cmp(val->name, "IPv4-SAFI")) {
962      afi = IANA_AFI_IPV4;
963      safi = &safi_;
964    } else if (!name_cmp(val->name, "IPv6-SAFI")) {
965      afi = IANA_AFI_IPV6;
966      safi = &safi_;
967    } else {
968      X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_NAME_ERROR);
969      X509V3_conf_err(val);
970      goto err;
971    }
972
973    switch (afi) {
974    case IANA_AFI_IPV4:
975      addr_chars = v4addr_chars;
976      break;
977    case IANA_AFI_IPV6:
978      addr_chars = v6addr_chars;
979      break;
980    }
981
982    length = length_from_afi(afi);
983
984    /*
985     * Handle SAFI, if any, and BUF_strdup() so we can null-terminate
986     * the other input values.
987     */
988    if (safi != NULL) {
989      *safi = strtoul(val->value, &t, 0);
990      t += strspn(t, " \t");
991      if (*safi > 0xFF || *t++ != ':') {
992	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
993	X509V3_conf_err(val);
994	goto err;
995      }
996      t += strspn(t, " \t");
997      s = BUF_strdup(t);
998    } else {
999      s = BUF_strdup(val->value);
1000    }
1001    if (s == NULL) {
1002      X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1003      goto err;
1004    }
1005
1006    /*
1007     * Check for inheritance.  Not worth additional complexity to
1008     * optimize this (seldom-used) case.
1009     */
1010    if (!strcmp(s, "inherit")) {
1011      if (!v3_addr_add_inherit(addr, afi, safi)) {
1012	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_INHERITANCE);
1013	X509V3_conf_err(val);
1014	goto err;
1015      }
1016      OPENSSL_free(s);
1017      s = NULL;
1018      continue;
1019    }
1020
1021    i1 = strspn(s, addr_chars);
1022    i2 = i1 + strspn(s + i1, " \t");
1023    delim = s[i2++];
1024    s[i1] = '\0';
1025
1026    if (a2i_ipadd(min, s) != length) {
1027      X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
1028      X509V3_conf_err(val);
1029      goto err;
1030    }
1031
1032    switch (delim) {
1033    case '/':
1034      prefixlen = (int) strtoul(s + i2, &t, 10);
1035      if (t == s + i2 || *t != '\0') {
1036	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
1037	X509V3_conf_err(val);
1038	goto err;
1039      }
1040      if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
1041	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1042	goto err;
1043      }
1044      break;
1045    case '-':
1046      i1 = i2 + strspn(s + i2, " \t");
1047      i2 = i1 + strspn(s + i1, addr_chars);
1048      if (i1 == i2 || s[i2] != '\0') {
1049	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
1050	X509V3_conf_err(val);
1051	goto err;
1052      }
1053      if (a2i_ipadd(max, s + i1) != length) {
1054	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
1055	X509V3_conf_err(val);
1056	goto err;
1057      }
1058      if (memcmp(min, max, length_from_afi(afi)) > 0) {
1059	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
1060	X509V3_conf_err(val);
1061	goto err;
1062      }
1063      if (!v3_addr_add_range(addr, afi, safi, min, max)) {
1064	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1065	goto err;
1066      }
1067      break;
1068    case '\0':
1069      if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1070	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1071	goto err;
1072      }
1073      break;
1074    default:
1075      X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
1076      X509V3_conf_err(val);
1077      goto err;
1078    }
1079
1080    OPENSSL_free(s);
1081    s = NULL;
1082  }
1083
1084  /*
1085   * Canonize the result, then we're done.
1086   */
1087  if (!v3_addr_canonize(addr))
1088    goto err;
1089  return addr;
1090
1091 err:
1092  OPENSSL_free(s);
1093  sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1094  return NULL;
1095}
1096
1097/*
1098 * OpenSSL dispatch
1099 */
1100const X509V3_EXT_METHOD v3_addr = {
1101  NID_sbgp_ipAddrBlock,		/* nid */
1102  0,				/* flags */
1103  ASN1_ITEM_ref(IPAddrBlocks),	/* template */
1104  0, 0, 0, 0,			/* old functions, ignored */
1105  0,				/* i2s */
1106  0,				/* s2i */
1107  0,				/* i2v */
1108  v2i_IPAddrBlocks,		/* v2i */
1109  i2r_IPAddrBlocks,		/* i2r */
1110  0,				/* r2i */
1111  NULL				/* extension-specific data */
1112};
1113
1114/*
1115 * Figure out whether extension sues inheritance.
1116 */
1117int v3_addr_inherits(IPAddrBlocks *addr)
1118{
1119  int i;
1120  if (addr == NULL)
1121    return 0;
1122  for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1123    IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1124    if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1125      return 1;
1126  }
1127  return 0;
1128}
1129
1130/*
1131 * Figure out whether parent contains child.
1132 */
1133static int addr_contains(IPAddressOrRanges *parent,
1134			 IPAddressOrRanges *child,
1135			 int length)
1136{
1137  unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1138  unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1139  int p, c;
1140
1141  if (child == NULL || parent == child)
1142    return 1;
1143  if (parent == NULL)
1144    return 0;
1145
1146  p = 0;
1147  for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1148    if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
1149			 c_min, c_max, length))
1150      return -1;
1151    for (;; p++) {
1152      if (p >= sk_IPAddressOrRange_num(parent))
1153	return 0;
1154      if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
1155			   p_min, p_max, length))
1156	return 0;
1157      if (memcmp(p_max, c_max, length) < 0)
1158	continue;
1159      if (memcmp(p_min, c_min, length) > 0)
1160	return 0;
1161      break;
1162    }
1163  }
1164
1165  return 1;
1166}
1167
1168/*
1169 * Test whether a is a subset of b.
1170 */
1171int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1172{
1173  int i;
1174  if (a == NULL || a == b)
1175    return 1;
1176  if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b))
1177    return 0;
1178  (void) sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1179  for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1180    IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1181    int j = sk_IPAddressFamily_find(b, fa);
1182    IPAddressFamily *fb;
1183    fb = sk_IPAddressFamily_value(b, j);
1184    if (fb == NULL)
1185       return 0;
1186    if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1187		       fa->ipAddressChoice->u.addressesOrRanges,
1188		       length_from_afi(v3_addr_get_afi(fb))))
1189      return 0;
1190  }
1191  return 1;
1192}
1193
1194/*
1195 * Validation error handling via callback.
1196 */
1197#define validation_err(_err_)		\
1198  do {					\
1199    if (ctx != NULL) {			\
1200      ctx->error = _err_;		\
1201      ctx->error_depth = i;		\
1202      ctx->current_cert = x;		\
1203      ret = ctx->verify_cb(0, ctx);	\
1204    } else {				\
1205      ret = 0;				\
1206    }					\
1207    if (!ret)				\
1208      goto done;			\
1209  } while (0)
1210
1211/*
1212 * Core code for RFC 3779 2.3 path validation.
1213 */
1214static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx,
1215					  STACK_OF(X509) *chain,
1216					  IPAddrBlocks *ext)
1217{
1218  IPAddrBlocks *child = NULL;
1219  int i, j, ret = 1;
1220  X509 *x;
1221
1222  OPENSSL_assert(chain != NULL && sk_X509_num(chain) > 0);
1223  OPENSSL_assert(ctx != NULL || ext != NULL);
1224  OPENSSL_assert(ctx == NULL || ctx->verify_cb != NULL);
1225
1226  /*
1227   * Figure out where to start.  If we don't have an extension to
1228   * check, we're done.  Otherwise, check canonical form and
1229   * set up for walking up the chain.
1230   */
1231  if (ext != NULL) {
1232    i = -1;
1233    x = NULL;
1234  } else {
1235    i = 0;
1236    x = sk_X509_value(chain, i);
1237    OPENSSL_assert(x != NULL);
1238    if ((ext = x->rfc3779_addr) == NULL)
1239      goto done;
1240  }
1241  if (!v3_addr_is_canonical(ext))
1242    validation_err(X509_V_ERR_INVALID_EXTENSION);
1243  (void) sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1244  if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1245    X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL, ERR_R_MALLOC_FAILURE);
1246    ret = 0;
1247    goto done;
1248  }
1249
1250  /*
1251   * Now walk up the chain.  No cert may list resources that its
1252   * parent doesn't list.
1253   */
1254  for (i++; i < sk_X509_num(chain); i++) {
1255    x = sk_X509_value(chain, i);
1256    OPENSSL_assert(x != NULL);
1257    if (!v3_addr_is_canonical(x->rfc3779_addr))
1258      validation_err(X509_V_ERR_INVALID_EXTENSION);
1259    if (x->rfc3779_addr == NULL) {
1260      for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1261	IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1262	if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1263	  validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1264	  break;
1265	}
1266      }
1267      continue;
1268    }
1269    (void) sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr, IPAddressFamily_cmp);
1270    for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1271      IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1272      int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1273      IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, k);
1274      if (fp == NULL) {
1275	if (fc->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
1276	  validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1277	  break;
1278	}
1279	continue;
1280      }
1281      if (fp->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
1282	if (fc->ipAddressChoice->type == IPAddressChoice_inherit ||
1283	    addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1284			  fc->ipAddressChoice->u.addressesOrRanges,
1285			  length_from_afi(v3_addr_get_afi(fc))))
1286	  sk_IPAddressFamily_set(child, j, fp);
1287	else
1288	  validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1289      }
1290    }
1291  }
1292
1293  /*
1294   * Trust anchor can't inherit.
1295   */
1296  OPENSSL_assert(x != NULL);
1297  if (x->rfc3779_addr != NULL) {
1298    for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1299      IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j);
1300      if (fp->ipAddressChoice->type == IPAddressChoice_inherit &&
1301	  sk_IPAddressFamily_find(child, fp) >= 0)
1302	validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1303    }
1304  }
1305
1306 done:
1307  sk_IPAddressFamily_free(child);
1308  return ret;
1309}
1310
1311#undef validation_err
1312
1313/*
1314 * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1315 */
1316int v3_addr_validate_path(X509_STORE_CTX *ctx)
1317{
1318  return v3_addr_validate_path_internal(ctx, ctx->chain, NULL);
1319}
1320
1321/*
1322 * RFC 3779 2.3 path validation of an extension.
1323 * Test whether chain covers extension.
1324 */
1325int v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1326				  IPAddrBlocks *ext,
1327				  int allow_inheritance)
1328{
1329  if (ext == NULL)
1330    return 1;
1331  if (chain == NULL || sk_X509_num(chain) == 0)
1332    return 0;
1333  if (!allow_inheritance && v3_addr_inherits(ext))
1334    return 0;
1335  return v3_addr_validate_path_internal(NULL, chain, ext);
1336}
1337
1338#endif /* OPENSSL_NO_RFC3779 */
1339