1/*
2 * The copyright in this software is being made available under the 2-clauses
3 * BSD License, included below. This software may be subject to other third
4 * party and contributor rights, including patent rights, and no such rights
5 * are granted under this license.
6 *
7 * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
8 * Copyright (c) 2002-2014, Professor Benoit Macq
9 * Copyright (c) 2001-2003, David Janssens
10 * Copyright (c) 2002-2003, Yannick Verschueren
11 * Copyright (c) 2003-2007, Francois-Olivier Devaux
12 * Copyright (c) 2003-2014, Antonin Descampe
13 * Copyright (c) 2005, Herve Drolon, FreeImage Team
14 * Copyright (c) 2007, Jonathan Ballard <dzonatas@dzonux.net>
15 * Copyright (c) 2007, Callum Lerwick <seg@haxxed.com>
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 * 1. Redistributions of source code must retain the above copyright
22 *    notice, this list of conditions and the following disclaimer.
23 * 2. Redistributions in binary form must reproduce the above copyright
24 *    notice, this list of conditions and the following disclaimer in the
25 *    documentation and/or other materials provided with the distribution.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
28 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
31 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40#ifdef __SSE__
41#include <xmmintrin.h>
42#endif
43
44#include "opj_includes.h"
45
46/** @defgroup DWT DWT - Implementation of a discrete wavelet transform */
47/*@{*/
48
49#define OPJ_WS(i) v->mem[(i)*2]
50#define OPJ_WD(i) v->mem[(1+(i)*2)]
51
52/** @name Local data structures */
53/*@{*/
54
55typedef struct dwt_local {
56	OPJ_INT32* mem;
57	OPJ_INT32 dn;
58	OPJ_INT32 sn;
59	OPJ_INT32 cas;
60} opj_dwt_t;
61
62typedef union {
63	OPJ_FLOAT32	f[4];
64} opj_v4_t;
65
66typedef struct v4dwt_local {
67	opj_v4_t*	wavelet ;
68	OPJ_INT32		dn ;
69	OPJ_INT32		sn ;
70	OPJ_INT32		cas ;
71} opj_v4dwt_t ;
72
73static const OPJ_FLOAT32 opj_dwt_alpha =  1.586134342f; /*  12994 */
74static const OPJ_FLOAT32 opj_dwt_beta  =  0.052980118f; /*    434 */
75static const OPJ_FLOAT32 opj_dwt_gamma = -0.882911075f; /*  -7233 */
76static const OPJ_FLOAT32 opj_dwt_delta = -0.443506852f; /*  -3633 */
77
78static const OPJ_FLOAT32 opj_K      = 1.230174105f; /*  10078 */
79static const OPJ_FLOAT32 opj_c13318 = 1.625732422f;
80
81/*@}*/
82
83/**
84Virtual function type for wavelet transform in 1-D
85*/
86typedef void (*DWT1DFN)(opj_dwt_t* v);
87
88/** @name Local static functions */
89/*@{*/
90
91/**
92Forward lazy transform (horizontal)
93*/
94static void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
95/**
96Forward lazy transform (vertical)
97*/
98static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas);
99/**
100Inverse lazy transform (horizontal)
101*/
102static void opj_dwt_interleave_h(opj_dwt_t* h, OPJ_INT32 *a);
103/**
104Inverse lazy transform (vertical)
105*/
106static void opj_dwt_interleave_v(opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x);
107/**
108Forward 5-3 wavelet transform in 1-D
109*/
110static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
111/**
112Inverse 5-3 wavelet transform in 1-D
113*/
114static void opj_dwt_decode_1(opj_dwt_t *v);
115static void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
116/**
117Forward 9-7 wavelet transform in 1-D
118*/
119static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
120/**
121Explicit calculation of the Quantization Stepsizes
122*/
123static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, opj_stepsize_t *bandno_stepsize);
124/**
125Inverse wavelet transform in 2-D.
126*/
127static OPJ_BOOL opj_dwt_decode_tile(opj_tcd_tilecomp_t* tilec, OPJ_UINT32 i, DWT1DFN fn);
128
129static OPJ_BOOL opj_dwt_encode_procedure(	opj_tcd_tilecomp_t * tilec,
130										    void (*p_function)(OPJ_INT32 *, OPJ_INT32,OPJ_INT32,OPJ_INT32) );
131
132static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* restrict r, OPJ_UINT32 i);
133
134/* <summary>                             */
135/* Inverse 9-7 wavelet transform in 1-D. */
136/* </summary>                            */
137static void opj_v4dwt_decode(opj_v4dwt_t* restrict dwt);
138
139static void opj_v4dwt_interleave_h(opj_v4dwt_t* restrict w, OPJ_FLOAT32* restrict a, OPJ_INT32 x, OPJ_INT32 size);
140
141static void opj_v4dwt_interleave_v(opj_v4dwt_t* restrict v , OPJ_FLOAT32* restrict a , OPJ_INT32 x, OPJ_INT32 nb_elts_read);
142
143#ifdef __SSE__
144static void opj_v4dwt_decode_step1_sse(opj_v4_t* w, OPJ_INT32 count, const __m128 c);
145
146static void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, __m128 c);
147
148#else
149static void opj_v4dwt_decode_step1(opj_v4_t* w, OPJ_INT32 count, const OPJ_FLOAT32 c);
150
151static void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, OPJ_FLOAT32 c);
152
153#endif
154
155/*@}*/
156
157/*@}*/
158
159#define OPJ_S(i) a[(i)*2]
160#define OPJ_D(i) a[(1+(i)*2)]
161#define OPJ_S_(i) ((i)<0?OPJ_S(0):((i)>=sn?OPJ_S(sn-1):OPJ_S(i)))
162#define OPJ_D_(i) ((i)<0?OPJ_D(0):((i)>=dn?OPJ_D(dn-1):OPJ_D(i)))
163/* new */
164#define OPJ_SS_(i) ((i)<0?OPJ_S(0):((i)>=dn?OPJ_S(dn-1):OPJ_S(i)))
165#define OPJ_DD_(i) ((i)<0?OPJ_D(0):((i)>=sn?OPJ_D(sn-1):OPJ_D(i)))
166
167/* <summary>                                                              */
168/* This table contains the norms of the 5-3 wavelets for different bands. */
169/* </summary>                                                             */
170static const OPJ_FLOAT64 opj_dwt_norms[4][10] = {
171	{1.000, 1.500, 2.750, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3},
172	{1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
173	{1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
174	{.7186, .9218, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93}
175};
176
177/* <summary>                                                              */
178/* This table contains the norms of the 9-7 wavelets for different bands. */
179/* </summary>                                                             */
180static const OPJ_FLOAT64 opj_dwt_norms_real[4][10] = {
181	{1.000, 1.965, 4.177, 8.403, 16.90, 33.84, 67.69, 135.3, 270.6, 540.9},
182	{2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0},
183	{2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0},
184	{2.080, 3.865, 8.307, 17.18, 34.71, 69.59, 139.3, 278.6, 557.2}
185};
186
187/*
188==========================================================
189   local functions
190==========================================================
191*/
192
193/* <summary>			                 */
194/* Forward lazy transform (horizontal).  */
195/* </summary>                            */
196void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) {
197	OPJ_INT32 i;
198	OPJ_INT32 * l_dest = b;
199	OPJ_INT32 * l_src = a+cas;
200
201    for (i=0; i<sn; ++i) {
202		*l_dest++ = *l_src;
203		l_src += 2;
204	}
205
206    l_dest = b + sn;
207	l_src = a + 1 - cas;
208
209    for	(i=0; i<dn; ++i)  {
210		*l_dest++=*l_src;
211		l_src += 2;
212	}
213}
214
215/* <summary>                             */
216/* Forward lazy transform (vertical).    */
217/* </summary>                            */
218void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas) {
219    OPJ_INT32 i = sn;
220	OPJ_INT32 * l_dest = b;
221	OPJ_INT32 * l_src = a+cas;
222
223    while (i--) {
224		*l_dest = *l_src;
225		l_dest += x;
226		l_src += 2;
227		} /* b[i*x]=a[2*i+cas]; */
228
229	l_dest = b + sn * x;
230	l_src = a + 1 - cas;
231
232	i = dn;
233    while (i--) {
234		*l_dest = *l_src;
235		l_dest += x;
236		l_src += 2;
237        } /*b[(sn+i)*x]=a[(2*i+1-cas)];*/
238}
239
240/* <summary>                             */
241/* Inverse lazy transform (horizontal).  */
242/* </summary>                            */
243void opj_dwt_interleave_h(opj_dwt_t* h, OPJ_INT32 *a) {
244    OPJ_INT32 *ai = a;
245    OPJ_INT32 *bi = h->mem + h->cas;
246    OPJ_INT32  i	= h->sn;
247    while( i-- ) {
248      *bi = *(ai++);
249	  bi += 2;
250    }
251    ai	= a + h->sn;
252    bi	= h->mem + 1 - h->cas;
253    i	= h->dn ;
254    while( i-- ) {
255      *bi = *(ai++);
256	  bi += 2;
257    }
258}
259
260/* <summary>                             */
261/* Inverse lazy transform (vertical).    */
262/* </summary>                            */
263void opj_dwt_interleave_v(opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x) {
264    OPJ_INT32 *ai = a;
265    OPJ_INT32 *bi = v->mem + v->cas;
266    OPJ_INT32  i = v->sn;
267    while( i-- ) {
268      *bi = *ai;
269	  bi += 2;
270	  ai += x;
271    }
272    ai = a + (v->sn * x);
273    bi = v->mem + 1 - v->cas;
274    i = v->dn ;
275    while( i-- ) {
276      *bi = *ai;
277	  bi += 2;
278	  ai += x;
279    }
280}
281
282
283/* <summary>                            */
284/* Forward 5-3 wavelet transform in 1-D. */
285/* </summary>                           */
286void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) {
287	OPJ_INT32 i;
288
289	if (!cas) {
290		if ((dn > 0) || (sn > 1)) {	/* NEW :  CASE ONE ELEMENT */
291			for (i = 0; i < dn; i++) OPJ_D(i) -= (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
292			for (i = 0; i < sn; i++) OPJ_S(i) += (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
293		}
294	} else {
295		if (!sn && dn == 1)		    /* NEW :  CASE ONE ELEMENT */
296			OPJ_S(0) *= 2;
297		else {
298			for (i = 0; i < dn; i++) OPJ_S(i) -= (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1;
299			for (i = 0; i < sn; i++) OPJ_D(i) += (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2;
300		}
301	}
302}
303
304/* <summary>                            */
305/* Inverse 5-3 wavelet transform in 1-D. */
306/* </summary>                           */
307void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) {
308	OPJ_INT32 i;
309
310	if (!cas) {
311		if ((dn > 0) || (sn > 1)) { /* NEW :  CASE ONE ELEMENT */
312			for (i = 0; i < sn; i++) OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
313			for (i = 0; i < dn; i++) OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
314		}
315	} else {
316		if (!sn  && dn == 1)          /* NEW :  CASE ONE ELEMENT */
317			OPJ_S(0) /= 2;
318		else {
319			for (i = 0; i < sn; i++) OPJ_D(i) -= (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2;
320			for (i = 0; i < dn; i++) OPJ_S(i) += (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1;
321		}
322	}
323}
324
325/* <summary>                            */
326/* Inverse 5-3 wavelet transform in 1-D. */
327/* </summary>                           */
328void opj_dwt_decode_1(opj_dwt_t *v) {
329	opj_dwt_decode_1_(v->mem, v->dn, v->sn, v->cas);
330}
331
332/* <summary>                             */
333/* Forward 9-7 wavelet transform in 1-D. */
334/* </summary>                            */
335void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) {
336	OPJ_INT32 i;
337	if (!cas) {
338		if ((dn > 0) || (sn > 1)) {	/* NEW :  CASE ONE ELEMENT */
339			for (i = 0; i < dn; i++)
340				OPJ_D(i) -= opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 12993);
341			for (i = 0; i < sn; i++)
342				OPJ_S(i) -= opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 434);
343			for (i = 0; i < dn; i++)
344				OPJ_D(i) += opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 7233);
345			for (i = 0; i < sn; i++)
346				OPJ_S(i) += opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 3633);
347			for (i = 0; i < dn; i++)
348				OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 5038);	/*5038 */
349			for (i = 0; i < sn; i++)
350				OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 6659);	/*6660 */
351		}
352	} else {
353		if ((sn > 0) || (dn > 1)) {	/* NEW :  CASE ONE ELEMENT */
354			for (i = 0; i < dn; i++)
355				OPJ_S(i) -= opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 12993);
356			for (i = 0; i < sn; i++)
357				OPJ_D(i) -= opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 434);
358			for (i = 0; i < dn; i++)
359				OPJ_S(i) += opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 7233);
360			for (i = 0; i < sn; i++)
361				OPJ_D(i) += opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 3633);
362			for (i = 0; i < dn; i++)
363				OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 5038);	/*5038 */
364			for (i = 0; i < sn; i++)
365				OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 6659);	/*6660 */
366		}
367	}
368}
369
370void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, opj_stepsize_t *bandno_stepsize) {
371	OPJ_INT32 p, n;
372	p = opj_int_floorlog2(stepsize) - 13;
373	n = 11 - opj_int_floorlog2(stepsize);
374	bandno_stepsize->mant = (n < 0 ? stepsize >> -n : stepsize << n) & 0x7ff;
375	bandno_stepsize->expn = numbps - p;
376}
377
378/*
379==========================================================
380   DWT interface
381==========================================================
382*/
383
384
385/* <summary>                            */
386/* Forward 5-3 wavelet transform in 2-D. */
387/* </summary>                           */
388INLINE OPJ_BOOL opj_dwt_encode_procedure(opj_tcd_tilecomp_t * tilec,void (*p_function)(OPJ_INT32 *, OPJ_INT32,OPJ_INT32,OPJ_INT32) )
389{
390	OPJ_INT32 i, j, k;
391	OPJ_INT32 *a = 00;
392	OPJ_INT32 *aj = 00;
393	OPJ_INT32 *bj = 00;
394	OPJ_INT32 w, l;
395
396	OPJ_INT32 rw;			/* width of the resolution level computed   */
397	OPJ_INT32 rh;			/* height of the resolution level computed  */
398	OPJ_UINT32 l_data_size;
399
400	opj_tcd_resolution_t * l_cur_res = 0;
401	opj_tcd_resolution_t * l_last_res = 0;
402
403	w = tilec->x1-tilec->x0;
404	l = (OPJ_INT32)tilec->numresolutions-1;
405	a = tilec->data;
406
407	l_cur_res = tilec->resolutions + l;
408	l_last_res = l_cur_res - 1;
409
410	l_data_size = opj_dwt_max_resolution( tilec->resolutions,tilec->numresolutions) * (OPJ_UINT32)sizeof(OPJ_INT32);
411	bj = (OPJ_INT32*)opj_malloc((size_t)l_data_size);
412	if (! bj) {
413		return OPJ_FALSE;
414	}
415	i = l;
416
417	while (i--) {
418		OPJ_INT32 rw1;		/* width of the resolution level once lower than computed one                                       */
419		OPJ_INT32 rh1;		/* height of the resolution level once lower than computed one                                      */
420		OPJ_INT32 cas_col;	/* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */
421		OPJ_INT32 cas_row;	/* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering   */
422		OPJ_INT32 dn, sn;
423
424		rw  = l_cur_res->x1 - l_cur_res->x0;
425		rh  = l_cur_res->y1 - l_cur_res->y0;
426		rw1 = l_last_res->x1 - l_last_res->x0;
427		rh1 = l_last_res->y1 - l_last_res->y0;
428
429		cas_row = l_cur_res->x0 & 1;
430		cas_col = l_cur_res->y0 & 1;
431
432		sn = rh1;
433		dn = rh - rh1;
434		for (j = 0; j < rw; ++j) {
435			aj = a + j;
436			for (k = 0; k < rh; ++k) {
437				bj[k] = aj[k*w];
438			}
439
440			(*p_function) (bj, dn, sn, cas_col);
441
442			opj_dwt_deinterleave_v(bj, aj, dn, sn, w, cas_col);
443		}
444
445		sn = rw1;
446		dn = rw - rw1;
447
448		for (j = 0; j < rh; j++) {
449			aj = a + j * w;
450			for (k = 0; k < rw; k++)  bj[k] = aj[k];
451			(*p_function) (bj, dn, sn, cas_row);
452			opj_dwt_deinterleave_h(bj, aj, dn, sn, cas_row);
453		}
454
455		l_cur_res = l_last_res;
456
457		--l_last_res;
458	}
459
460	opj_free(bj);
461	return OPJ_TRUE;
462}
463
464/* Forward 5-3 wavelet transform in 2-D. */
465/* </summary>                           */
466OPJ_BOOL opj_dwt_encode(opj_tcd_tilecomp_t * tilec)
467{
468	return opj_dwt_encode_procedure(tilec,opj_dwt_encode_1);
469}
470
471/* <summary>                            */
472/* Inverse 5-3 wavelet transform in 2-D. */
473/* </summary>                           */
474OPJ_BOOL opj_dwt_decode(opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres) {
475	return opj_dwt_decode_tile(tilec, numres, &opj_dwt_decode_1);
476}
477
478
479/* <summary>                          */
480/* Get gain of 5-3 wavelet transform. */
481/* </summary>                         */
482OPJ_UINT32 opj_dwt_getgain(OPJ_UINT32 orient) {
483	if (orient == 0)
484		return 0;
485	if (orient == 1 || orient == 2)
486		return 1;
487	return 2;
488}
489
490/* <summary>                */
491/* Get norm of 5-3 wavelet. */
492/* </summary>               */
493OPJ_FLOAT64 opj_dwt_getnorm(OPJ_UINT32 level, OPJ_UINT32 orient) {
494	return opj_dwt_norms[orient][level];
495}
496
497/* <summary>                             */
498/* Forward 9-7 wavelet transform in 2-D. */
499/* </summary>                            */
500OPJ_BOOL opj_dwt_encode_real(opj_tcd_tilecomp_t * tilec)
501{
502	return opj_dwt_encode_procedure(tilec,opj_dwt_encode_1_real);
503}
504
505/* <summary>                          */
506/* Get gain of 9-7 wavelet transform. */
507/* </summary>                         */
508OPJ_UINT32 opj_dwt_getgain_real(OPJ_UINT32 orient) {
509	(void)orient;
510	return 0;
511}
512
513/* <summary>                */
514/* Get norm of 9-7 wavelet. */
515/* </summary>               */
516OPJ_FLOAT64 opj_dwt_getnorm_real(OPJ_UINT32 level, OPJ_UINT32 orient) {
517	return opj_dwt_norms_real[orient][level];
518}
519
520void opj_dwt_calc_explicit_stepsizes(opj_tccp_t * tccp, OPJ_UINT32 prec) {
521	OPJ_UINT32 numbands, bandno;
522	numbands = 3 * tccp->numresolutions - 2;
523	for (bandno = 0; bandno < numbands; bandno++) {
524		OPJ_FLOAT64 stepsize;
525		OPJ_UINT32 resno, level, orient, gain;
526
527		resno = (bandno == 0) ? 0 : ((bandno - 1) / 3 + 1);
528		orient = (bandno == 0) ? 0 : ((bandno - 1) % 3 + 1);
529		level = tccp->numresolutions - 1 - resno;
530		gain = (tccp->qmfbid == 0) ? 0 : ((orient == 0) ? 0 : (((orient == 1) || (orient == 2)) ? 1 : 2));
531		if (tccp->qntsty == J2K_CCP_QNTSTY_NOQNT) {
532			stepsize = 1.0;
533		} else {
534			OPJ_FLOAT64 norm = opj_dwt_norms_real[orient][level];
535			stepsize = (1 << (gain)) / norm;
536		}
537		opj_dwt_encode_stepsize((OPJ_INT32) floor(stepsize * 8192.0), (OPJ_INT32)(prec + gain), &tccp->stepsizes[bandno]);
538	}
539}
540
541/* <summary>                             */
542/* Determine maximum computed resolution level for inverse wavelet transform */
543/* </summary>                            */
544OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* restrict r, OPJ_UINT32 i) {
545	OPJ_UINT32 mr	= 0;
546	OPJ_UINT32 w;
547	while( --i ) {
548		++r;
549		if( mr < ( w = (OPJ_UINT32)(r->x1 - r->x0) ) )
550			mr = w ;
551		if( mr < ( w = (OPJ_UINT32)(r->y1 - r->y0) ) )
552			mr = w ;
553	}
554	return mr ;
555}
556
557/* <summary>                            */
558/* Inverse wavelet transform in 2-D.     */
559/* </summary>                           */
560OPJ_BOOL opj_dwt_decode_tile(opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres, DWT1DFN dwt_1D) {
561	opj_dwt_t h;
562	opj_dwt_t v;
563
564	opj_tcd_resolution_t* tr = tilec->resolutions;
565
566	OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 - tr->x0);	/* width of the resolution level computed */
567	OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 - tr->y0);	/* height of the resolution level computed */
568
569	OPJ_UINT32 w = (OPJ_UINT32)(tilec->x1 - tilec->x0);
570
571	h.mem = (OPJ_INT32*)
572	opj_aligned_malloc(opj_dwt_max_resolution(tr, numres) * sizeof(OPJ_INT32));
573	if (! h.mem){
574		return OPJ_FALSE;
575	}
576
577	v.mem = h.mem;
578
579	while( --numres) {
580		OPJ_INT32 * restrict tiledp = tilec->data;
581		OPJ_UINT32 j;
582
583		++tr;
584		h.sn = (OPJ_INT32)rw;
585		v.sn = (OPJ_INT32)rh;
586
587		rw = (OPJ_UINT32)(tr->x1 - tr->x0);
588		rh = (OPJ_UINT32)(tr->y1 - tr->y0);
589
590		h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
591		h.cas = tr->x0 % 2;
592
593		for(j = 0; j < rh; ++j) {
594			opj_dwt_interleave_h(&h, &tiledp[j*w]);
595			(dwt_1D)(&h);
596			memcpy(&tiledp[j*w], h.mem, rw * sizeof(OPJ_INT32));
597		}
598
599		v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
600		v.cas = tr->y0 % 2;
601
602		for(j = 0; j < rw; ++j){
603			OPJ_UINT32 k;
604			opj_dwt_interleave_v(&v, &tiledp[j], (OPJ_INT32)w);
605			(dwt_1D)(&v);
606			for(k = 0; k < rh; ++k) {
607				tiledp[k * w + j] = v.mem[k];
608			}
609		}
610	}
611	opj_aligned_free(h.mem);
612	return OPJ_TRUE;
613}
614
615void opj_v4dwt_interleave_h(opj_v4dwt_t* restrict w, OPJ_FLOAT32* restrict a, OPJ_INT32 x, OPJ_INT32 size){
616	OPJ_FLOAT32* restrict bi = (OPJ_FLOAT32*) (w->wavelet + w->cas);
617	OPJ_INT32 count = w->sn;
618	OPJ_INT32 i, k;
619
620	for(k = 0; k < 2; ++k){
621		if ( count + 3 * x < size && ((size_t) a & 0x0f) == 0 && ((size_t) bi & 0x0f) == 0 && (x & 0x0f) == 0 ) {
622			/* Fast code path */
623			for(i = 0; i < count; ++i){
624				OPJ_INT32 j = i;
625				bi[i*8    ] = a[j];
626				j += x;
627				bi[i*8 + 1] = a[j];
628				j += x;
629				bi[i*8 + 2] = a[j];
630				j += x;
631				bi[i*8 + 3] = a[j];
632			}
633		}
634		else {
635			/* Slow code path */
636			for(i = 0; i < count; ++i){
637				OPJ_INT32 j = i;
638				bi[i*8    ] = a[j];
639				j += x;
640				if(j >= size) continue;
641				bi[i*8 + 1] = a[j];
642				j += x;
643				if(j >= size) continue;
644				bi[i*8 + 2] = a[j];
645				j += x;
646				if(j >= size) continue;
647				bi[i*8 + 3] = a[j]; /* This one*/
648			}
649		}
650
651		bi = (OPJ_FLOAT32*) (w->wavelet + 1 - w->cas);
652		a += w->sn;
653		size -= w->sn;
654		count = w->dn;
655	}
656}
657
658void opj_v4dwt_interleave_v(opj_v4dwt_t* restrict v , OPJ_FLOAT32* restrict a , OPJ_INT32 x, OPJ_INT32 nb_elts_read){
659	opj_v4_t* restrict bi = v->wavelet + v->cas;
660	OPJ_INT32 i;
661
662	for(i = 0; i < v->sn; ++i){
663		memcpy(&bi[i*2], &a[i*x], (size_t)nb_elts_read * sizeof(OPJ_FLOAT32));
664	}
665
666	a += v->sn * x;
667	bi = v->wavelet + 1 - v->cas;
668
669	for(i = 0; i < v->dn; ++i){
670		memcpy(&bi[i*2], &a[i*x], (size_t)nb_elts_read * sizeof(OPJ_FLOAT32));
671	}
672}
673
674#ifdef __SSE__
675
676void opj_v4dwt_decode_step1_sse(opj_v4_t* w, OPJ_INT32 count, const __m128 c){
677	__m128* restrict vw = (__m128*) w;
678	OPJ_INT32 i;
679	/* 4x unrolled loop */
680	for(i = 0; i < count >> 2; ++i){
681		*vw = _mm_mul_ps(*vw, c);
682		vw += 2;
683		*vw = _mm_mul_ps(*vw, c);
684		vw += 2;
685		*vw = _mm_mul_ps(*vw, c);
686		vw += 2;
687		*vw = _mm_mul_ps(*vw, c);
688		vw += 2;
689	}
690	count &= 3;
691	for(i = 0; i < count; ++i){
692		*vw = _mm_mul_ps(*vw, c);
693		vw += 2;
694	}
695}
696
697void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, __m128 c){
698	__m128* restrict vl = (__m128*) l;
699	__m128* restrict vw = (__m128*) w;
700	OPJ_INT32 i;
701	__m128 tmp1, tmp2, tmp3;
702	tmp1 = vl[0];
703	for(i = 0; i < m; ++i){
704		tmp2 = vw[-1];
705		tmp3 = vw[ 0];
706		vw[-1] = _mm_add_ps(tmp2, _mm_mul_ps(_mm_add_ps(tmp1, tmp3), c));
707		tmp1 = tmp3;
708		vw += 2;
709	}
710	vl = vw - 2;
711	if(m >= k){
712		return;
713	}
714	c = _mm_add_ps(c, c);
715	c = _mm_mul_ps(c, vl[0]);
716	for(; m < k; ++m){
717		__m128 tmp = vw[-1];
718		vw[-1] = _mm_add_ps(tmp, c);
719		vw += 2;
720	}
721}
722
723#else
724
725void opj_v4dwt_decode_step1(opj_v4_t* w, OPJ_INT32 count, const OPJ_FLOAT32 c)
726{
727	OPJ_FLOAT32* restrict fw = (OPJ_FLOAT32*) w;
728	OPJ_INT32 i;
729	for(i = 0; i < count; ++i){
730		OPJ_FLOAT32 tmp1 = fw[i*8    ];
731		OPJ_FLOAT32 tmp2 = fw[i*8 + 1];
732		OPJ_FLOAT32 tmp3 = fw[i*8 + 2];
733		OPJ_FLOAT32 tmp4 = fw[i*8 + 3];
734		fw[i*8    ] = tmp1 * c;
735		fw[i*8 + 1] = tmp2 * c;
736		fw[i*8 + 2] = tmp3 * c;
737		fw[i*8 + 3] = tmp4 * c;
738	}
739}
740
741void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, OPJ_FLOAT32 c)
742{
743	OPJ_FLOAT32* restrict fl = (OPJ_FLOAT32*) l;
744	OPJ_FLOAT32* restrict fw = (OPJ_FLOAT32*) w;
745	OPJ_INT32 i;
746	for(i = 0; i < m; ++i){
747		OPJ_FLOAT32 tmp1_1 = fl[0];
748		OPJ_FLOAT32 tmp1_2 = fl[1];
749		OPJ_FLOAT32 tmp1_3 = fl[2];
750		OPJ_FLOAT32 tmp1_4 = fl[3];
751		OPJ_FLOAT32 tmp2_1 = fw[-4];
752		OPJ_FLOAT32 tmp2_2 = fw[-3];
753		OPJ_FLOAT32 tmp2_3 = fw[-2];
754		OPJ_FLOAT32 tmp2_4 = fw[-1];
755		OPJ_FLOAT32 tmp3_1 = fw[0];
756		OPJ_FLOAT32 tmp3_2 = fw[1];
757		OPJ_FLOAT32 tmp3_3 = fw[2];
758		OPJ_FLOAT32 tmp3_4 = fw[3];
759		fw[-4] = tmp2_1 + ((tmp1_1 + tmp3_1) * c);
760		fw[-3] = tmp2_2 + ((tmp1_2 + tmp3_2) * c);
761		fw[-2] = tmp2_3 + ((tmp1_3 + tmp3_3) * c);
762		fw[-1] = tmp2_4 + ((tmp1_4 + tmp3_4) * c);
763		fl = fw;
764		fw += 8;
765	}
766	if(m < k){
767		OPJ_FLOAT32 c1;
768		OPJ_FLOAT32 c2;
769		OPJ_FLOAT32 c3;
770		OPJ_FLOAT32 c4;
771		c += c;
772		c1 = fl[0] * c;
773		c2 = fl[1] * c;
774		c3 = fl[2] * c;
775		c4 = fl[3] * c;
776		for(; m < k; ++m){
777			OPJ_FLOAT32 tmp1 = fw[-4];
778			OPJ_FLOAT32 tmp2 = fw[-3];
779			OPJ_FLOAT32 tmp3 = fw[-2];
780			OPJ_FLOAT32 tmp4 = fw[-1];
781			fw[-4] = tmp1 + c1;
782			fw[-3] = tmp2 + c2;
783			fw[-2] = tmp3 + c3;
784			fw[-1] = tmp4 + c4;
785			fw += 8;
786		}
787	}
788}
789
790#endif
791
792/* <summary>                             */
793/* Inverse 9-7 wavelet transform in 1-D. */
794/* </summary>                            */
795void opj_v4dwt_decode(opj_v4dwt_t* restrict dwt)
796{
797	OPJ_INT32 a, b;
798	if(dwt->cas == 0) {
799		if(!((dwt->dn > 0) || (dwt->sn > 1))){
800			return;
801		}
802		a = 0;
803		b = 1;
804	}else{
805		if(!((dwt->sn > 0) || (dwt->dn > 1))) {
806			return;
807		}
808		a = 1;
809		b = 0;
810	}
811#ifdef __SSE__
812	opj_v4dwt_decode_step1_sse(dwt->wavelet+a, dwt->sn, _mm_set1_ps(opj_K));
813	opj_v4dwt_decode_step1_sse(dwt->wavelet+b, dwt->dn, _mm_set1_ps(opj_c13318));
814	opj_v4dwt_decode_step2_sse(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), _mm_set1_ps(opj_dwt_delta));
815	opj_v4dwt_decode_step2_sse(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), _mm_set1_ps(opj_dwt_gamma));
816	opj_v4dwt_decode_step2_sse(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), _mm_set1_ps(opj_dwt_beta));
817	opj_v4dwt_decode_step2_sse(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), _mm_set1_ps(opj_dwt_alpha));
818#else
819	opj_v4dwt_decode_step1(dwt->wavelet+a, dwt->sn, opj_K);
820	opj_v4dwt_decode_step1(dwt->wavelet+b, dwt->dn, opj_c13318);
821	opj_v4dwt_decode_step2(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), opj_dwt_delta);
822	opj_v4dwt_decode_step2(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), opj_dwt_gamma);
823	opj_v4dwt_decode_step2(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), opj_dwt_beta);
824	opj_v4dwt_decode_step2(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), opj_dwt_alpha);
825#endif
826}
827
828
829/* <summary>                             */
830/* Inverse 9-7 wavelet transform in 2-D. */
831/* </summary>                            */
832OPJ_BOOL opj_dwt_decode_real(opj_tcd_tilecomp_t* restrict tilec, OPJ_UINT32 numres)
833{
834	opj_v4dwt_t h;
835	opj_v4dwt_t v;
836
837	opj_tcd_resolution_t* res = tilec->resolutions;
838
839	OPJ_UINT32 rw = (OPJ_UINT32)(res->x1 - res->x0);	/* width of the resolution level computed */
840	OPJ_UINT32 rh = (OPJ_UINT32)(res->y1 - res->y0);	/* height of the resolution level computed */
841
842	OPJ_UINT32 w = (OPJ_UINT32)(tilec->x1 - tilec->x0);
843
844	h.wavelet = (opj_v4_t*) opj_aligned_malloc((opj_dwt_max_resolution(res, numres)+5) * sizeof(opj_v4_t));
845	v.wavelet = h.wavelet;
846
847	while( --numres) {
848		OPJ_FLOAT32 * restrict aj = (OPJ_FLOAT32*) tilec->data;
849		OPJ_UINT32 bufsize = (OPJ_UINT32)((tilec->x1 - tilec->x0) * (tilec->y1 - tilec->y0));
850		OPJ_INT32 j;
851
852		h.sn = (OPJ_INT32)rw;
853		v.sn = (OPJ_INT32)rh;
854
855		++res;
856
857		rw = (OPJ_UINT32)(res->x1 - res->x0);	/* width of the resolution level computed */
858		rh = (OPJ_UINT32)(res->y1 - res->y0);	/* height of the resolution level computed */
859
860		h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
861		h.cas = res->x0 % 2;
862
863		for(j = (OPJ_INT32)rh; j > 3; j -= 4) {
864			OPJ_INT32 k;
865			opj_v4dwt_interleave_h(&h, aj, (OPJ_INT32)w, (OPJ_INT32)bufsize);
866			opj_v4dwt_decode(&h);
867
868			for(k = (OPJ_INT32)rw; --k >= 0;){
869				aj[k               ] = h.wavelet[k].f[0];
870				aj[k+(OPJ_INT32)w  ] = h.wavelet[k].f[1];
871				aj[k+(OPJ_INT32)w*2] = h.wavelet[k].f[2];
872				aj[k+(OPJ_INT32)w*3] = h.wavelet[k].f[3];
873			}
874
875			aj += w*4;
876			bufsize -= w*4;
877		}
878
879		if (rh & 0x03) {
880			OPJ_INT32 k;
881			j = rh & 0x03;
882			opj_v4dwt_interleave_h(&h, aj, (OPJ_INT32)w, (OPJ_INT32)bufsize);
883			opj_v4dwt_decode(&h);
884			for(k = (OPJ_INT32)rw; --k >= 0;){
885				switch(j) {
886					case 3: aj[k+(OPJ_INT32)w*2] = h.wavelet[k].f[2];
887					case 2: aj[k+(OPJ_INT32)w  ] = h.wavelet[k].f[1];
888					case 1: aj[k               ] = h.wavelet[k].f[0];
889				}
890			}
891		}
892
893		v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
894		v.cas = res->y0 % 2;
895
896		aj = (OPJ_FLOAT32*) tilec->data;
897		for(j = (OPJ_INT32)rw; j > 3; j -= 4){
898			OPJ_UINT32 k;
899
900			opj_v4dwt_interleave_v(&v, aj, (OPJ_INT32)w, 4);
901			opj_v4dwt_decode(&v);
902
903			for(k = 0; k < rh; ++k){
904				memcpy(&aj[k*w], &v.wavelet[k], 4 * sizeof(OPJ_FLOAT32));
905			}
906			aj += 4;
907		}
908
909		if (rw & 0x03){
910			OPJ_UINT32 k;
911
912			j = rw & 0x03;
913
914			opj_v4dwt_interleave_v(&v, aj, (OPJ_INT32)w, j);
915			opj_v4dwt_decode(&v);
916
917			for(k = 0; k < rh; ++k){
918				memcpy(&aj[k*w], &v.wavelet[k], (size_t)j * sizeof(OPJ_FLOAT32));
919			}
920		}
921	}
922
923	opj_aligned_free(h.wavelet);
924	return OPJ_TRUE;
925}
926