1#if !defined(_FX_JPEG_TURBO_)
2/*
3 * jcsample.c
4 *
5 * Copyright (C) 1991-1996, Thomas G. Lane.
6 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file.
8 *
9 * This file contains downsampling routines.
10 *
11 * Downsampling input data is counted in "row groups".  A row group
12 * is defined to be max_v_samp_factor pixel rows of each component,
13 * from which the downsampler produces v_samp_factor sample rows.
14 * A single row group is processed in each call to the downsampler module.
15 *
16 * The downsampler is responsible for edge-expansion of its output data
17 * to fill an integral number of DCT blocks horizontally.  The source buffer
18 * may be modified if it is helpful for this purpose (the source buffer is
19 * allocated wide enough to correspond to the desired output width).
20 * The caller (the prep controller) is responsible for vertical padding.
21 *
22 * The downsampler may request "context rows" by setting need_context_rows
23 * during startup.  In this case, the input arrays will contain at least
24 * one row group's worth of pixels above and below the passed-in data;
25 * the caller will create dummy rows at image top and bottom by replicating
26 * the first or last real pixel row.
27 *
28 * An excellent reference for image resampling is
29 *   Digital Image Warping, George Wolberg, 1990.
30 *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
31 *
32 * The downsampling algorithm used here is a simple average of the source
33 * pixels covered by the output pixel.  The hi-falutin sampling literature
34 * refers to this as a "box filter".  In general the characteristics of a box
35 * filter are not very good, but for the specific cases we normally use (1:1
36 * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
37 * nearly so bad.  If you intend to use other sampling ratios, you'd be well
38 * advised to improve this code.
39 *
40 * A simple input-smoothing capability is provided.  This is mainly intended
41 * for cleaning up color-dithered GIF input files (if you find it inadequate,
42 * we suggest using an external filtering program such as pnmconvol).  When
43 * enabled, each input pixel P is replaced by a weighted sum of itself and its
44 * eight neighbors.  P's weight is 1-8*SF and each neighbor's weight is SF,
45 * where SF = (smoothing_factor / 1024).
46 * Currently, smoothing is only supported for 2h2v sampling factors.
47 */
48
49#define JPEG_INTERNALS
50#include "jinclude.h"
51#include "jpeglib.h"
52
53
54/* Pointer to routine to downsample a single component */
55typedef JMETHOD(void, downsample1_ptr,
56		(j_compress_ptr cinfo, jpeg_component_info * compptr,
57		 JSAMPARRAY input_data, JSAMPARRAY output_data));
58
59/* Private subobject */
60
61typedef struct {
62  struct jpeg_downsampler pub;	/* public fields */
63
64  /* Downsampling method pointers, one per component */
65  downsample1_ptr methods[MAX_COMPONENTS];
66} my_downsampler;
67
68typedef my_downsampler * my_downsample_ptr;
69
70
71/*
72 * Initialize for a downsampling pass.
73 */
74
75METHODDEF(void)
76start_pass_downsample (j_compress_ptr cinfo)
77{
78  /* no work for now */
79}
80
81
82/*
83 * Expand a component horizontally from width input_cols to width output_cols,
84 * by duplicating the rightmost samples.
85 */
86
87LOCAL(void)
88expand_right_edge (JSAMPARRAY image_data, int num_rows,
89		   JDIMENSION input_cols, JDIMENSION output_cols)
90{
91  register JSAMPROW ptr;
92  register JSAMPLE pixval;
93  register int count;
94  int row;
95  int numcols = (int) (output_cols - input_cols);
96
97  if (numcols > 0) {
98    for (row = 0; row < num_rows; row++) {
99      ptr = image_data[row] + input_cols;
100      pixval = ptr[-1];		/* don't need GETJSAMPLE() here */
101      for (count = numcols; count > 0; count--)
102	*ptr++ = pixval;
103    }
104  }
105}
106
107
108/*
109 * Do downsampling for a whole row group (all components).
110 *
111 * In this version we simply downsample each component independently.
112 */
113
114METHODDEF(void)
115sep_downsample (j_compress_ptr cinfo,
116		JSAMPIMAGE input_buf, JDIMENSION in_row_index,
117		JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
118{
119  my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
120  int ci;
121  jpeg_component_info * compptr;
122  JSAMPARRAY in_ptr, out_ptr;
123
124  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
125       ci++, compptr++) {
126    in_ptr = input_buf[ci] + in_row_index;
127    out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor);
128    (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
129  }
130}
131
132
133/*
134 * Downsample pixel values of a single component.
135 * One row group is processed per call.
136 * This version handles arbitrary integral sampling ratios, without smoothing.
137 * Note that this version is not actually used for customary sampling ratios.
138 */
139
140METHODDEF(void)
141int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
142		JSAMPARRAY input_data, JSAMPARRAY output_data)
143{
144  int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
145  JDIMENSION outcol, outcol_h;	/* outcol_h == outcol*h_expand */
146  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
147  JSAMPROW inptr, outptr;
148  INT32 outvalue;
149
150  h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor;
151  v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor;
152  numpix = h_expand * v_expand;
153  numpix2 = numpix/2;
154
155  /* Expand input data enough to let all the output samples be generated
156   * by the standard loop.  Special-casing padded output would be more
157   * efficient.
158   */
159  expand_right_edge(input_data, cinfo->max_v_samp_factor,
160		    cinfo->image_width, output_cols * h_expand);
161
162  inrow = 0;
163  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
164    outptr = output_data[outrow];
165    for (outcol = 0, outcol_h = 0; outcol < output_cols;
166	 outcol++, outcol_h += h_expand) {
167      outvalue = 0;
168      for (v = 0; v < v_expand; v++) {
169	inptr = input_data[inrow+v] + outcol_h;
170	for (h = 0; h < h_expand; h++) {
171	  outvalue += (INT32) GETJSAMPLE(*inptr++);
172	}
173      }
174      *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
175    }
176    inrow += v_expand;
177  }
178}
179
180
181/*
182 * Downsample pixel values of a single component.
183 * This version handles the special case of a full-size component,
184 * without smoothing.
185 */
186
187METHODDEF(void)
188fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
189		     JSAMPARRAY input_data, JSAMPARRAY output_data)
190{
191  /* Copy the data */
192  jcopy_sample_rows(input_data, 0, output_data, 0,
193		    cinfo->max_v_samp_factor, cinfo->image_width);
194  /* Edge-expand */
195  expand_right_edge(output_data, cinfo->max_v_samp_factor,
196		    cinfo->image_width, compptr->width_in_blocks * DCTSIZE);
197}
198
199
200/*
201 * Downsample pixel values of a single component.
202 * This version handles the common case of 2:1 horizontal and 1:1 vertical,
203 * without smoothing.
204 *
205 * A note about the "bias" calculations: when rounding fractional values to
206 * integer, we do not want to always round 0.5 up to the next integer.
207 * If we did that, we'd introduce a noticeable bias towards larger values.
208 * Instead, this code is arranged so that 0.5 will be rounded up or down at
209 * alternate pixel locations (a simple ordered dither pattern).
210 */
211
212METHODDEF(void)
213h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
214		 JSAMPARRAY input_data, JSAMPARRAY output_data)
215{
216  int outrow;
217  JDIMENSION outcol;
218  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
219  register JSAMPROW inptr, outptr;
220  register int bias;
221
222  /* Expand input data enough to let all the output samples be generated
223   * by the standard loop.  Special-casing padded output would be more
224   * efficient.
225   */
226  expand_right_edge(input_data, cinfo->max_v_samp_factor,
227		    cinfo->image_width, output_cols * 2);
228
229  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
230    outptr = output_data[outrow];
231    inptr = input_data[outrow];
232    bias = 0;			/* bias = 0,1,0,1,... for successive samples */
233    for (outcol = 0; outcol < output_cols; outcol++) {
234      *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
235			      + bias) >> 1);
236      bias ^= 1;		/* 0=>1, 1=>0 */
237      inptr += 2;
238    }
239  }
240}
241
242
243/*
244 * Downsample pixel values of a single component.
245 * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
246 * without smoothing.
247 */
248
249METHODDEF(void)
250h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
251		 JSAMPARRAY input_data, JSAMPARRAY output_data)
252{
253  int inrow, outrow;
254  JDIMENSION outcol;
255  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
256  register JSAMPROW inptr0, inptr1, outptr;
257  register int bias;
258
259  /* Expand input data enough to let all the output samples be generated
260   * by the standard loop.  Special-casing padded output would be more
261   * efficient.
262   */
263  expand_right_edge(input_data, cinfo->max_v_samp_factor,
264		    cinfo->image_width, output_cols * 2);
265
266  inrow = 0;
267  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
268    outptr = output_data[outrow];
269    inptr0 = input_data[inrow];
270    inptr1 = input_data[inrow+1];
271    bias = 1;			/* bias = 1,2,1,2,... for successive samples */
272    for (outcol = 0; outcol < output_cols; outcol++) {
273      *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
274			      GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
275			      + bias) >> 2);
276      bias ^= 3;		/* 1=>2, 2=>1 */
277      inptr0 += 2; inptr1 += 2;
278    }
279    inrow += 2;
280  }
281}
282
283
284#ifdef INPUT_SMOOTHING_SUPPORTED
285
286/*
287 * Downsample pixel values of a single component.
288 * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
289 * with smoothing.  One row of context is required.
290 */
291
292METHODDEF(void)
293h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
294			JSAMPARRAY input_data, JSAMPARRAY output_data)
295{
296  int inrow, outrow;
297  JDIMENSION colctr;
298  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
299  register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
300  INT32 membersum, neighsum, memberscale, neighscale;
301
302  /* Expand input data enough to let all the output samples be generated
303   * by the standard loop.  Special-casing padded output would be more
304   * efficient.
305   */
306  expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
307		    cinfo->image_width, output_cols * 2);
308
309  /* We don't bother to form the individual "smoothed" input pixel values;
310   * we can directly compute the output which is the average of the four
311   * smoothed values.  Each of the four member pixels contributes a fraction
312   * (1-8*SF) to its own smoothed image and a fraction SF to each of the three
313   * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
314   * output.  The four corner-adjacent neighbor pixels contribute a fraction
315   * SF to just one smoothed pixel, or SF/4 to the final output; while the
316   * eight edge-adjacent neighbors contribute SF to each of two smoothed
317   * pixels, or SF/2 overall.  In order to use integer arithmetic, these
318   * factors are scaled by 2^16 = 65536.
319   * Also recall that SF = smoothing_factor / 1024.
320   */
321
322  memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
323  neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
324
325  inrow = 0;
326  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
327    outptr = output_data[outrow];
328    inptr0 = input_data[inrow];
329    inptr1 = input_data[inrow+1];
330    above_ptr = input_data[inrow-1];
331    below_ptr = input_data[inrow+2];
332
333    /* Special case for first column: pretend column -1 is same as column 0 */
334    membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
335		GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
336    neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
337	       GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
338	       GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
339	       GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
340    neighsum += neighsum;
341    neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
342		GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
343    membersum = membersum * memberscale + neighsum * neighscale;
344    *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
345    inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
346
347    for (colctr = output_cols - 2; colctr > 0; colctr--) {
348      /* sum of pixels directly mapped to this output element */
349      membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
350		  GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
351      /* sum of edge-neighbor pixels */
352      neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
353		 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
354		 GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
355		 GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
356      /* The edge-neighbors count twice as much as corner-neighbors */
357      neighsum += neighsum;
358      /* Add in the corner-neighbors */
359      neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
360		  GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
361      /* form final output scaled up by 2^16 */
362      membersum = membersum * memberscale + neighsum * neighscale;
363      /* round, descale and output it */
364      *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
365      inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
366    }
367
368    /* Special case for last column */
369    membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
370		GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
371    neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
372	       GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
373	       GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
374	       GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
375    neighsum += neighsum;
376    neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
377		GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
378    membersum = membersum * memberscale + neighsum * neighscale;
379    *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
380
381    inrow += 2;
382  }
383}
384
385
386/*
387 * Downsample pixel values of a single component.
388 * This version handles the special case of a full-size component,
389 * with smoothing.  One row of context is required.
390 */
391
392METHODDEF(void)
393fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
394			    JSAMPARRAY input_data, JSAMPARRAY output_data)
395{
396  int outrow;
397  JDIMENSION colctr;
398  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
399  register JSAMPROW inptr, above_ptr, below_ptr, outptr;
400  INT32 membersum, neighsum, memberscale, neighscale;
401  int colsum, lastcolsum, nextcolsum;
402
403  /* Expand input data enough to let all the output samples be generated
404   * by the standard loop.  Special-casing padded output would be more
405   * efficient.
406   */
407  expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
408		    cinfo->image_width, output_cols);
409
410  /* Each of the eight neighbor pixels contributes a fraction SF to the
411   * smoothed pixel, while the main pixel contributes (1-8*SF).  In order
412   * to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
413   * Also recall that SF = smoothing_factor / 1024.
414   */
415
416  memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
417  neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
418
419  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
420    outptr = output_data[outrow];
421    inptr = input_data[outrow];
422    above_ptr = input_data[outrow-1];
423    below_ptr = input_data[outrow+1];
424
425    /* Special case for first column */
426    colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
427	     GETJSAMPLE(*inptr);
428    membersum = GETJSAMPLE(*inptr++);
429    nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
430		 GETJSAMPLE(*inptr);
431    neighsum = colsum + (colsum - membersum) + nextcolsum;
432    membersum = membersum * memberscale + neighsum * neighscale;
433    *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
434    lastcolsum = colsum; colsum = nextcolsum;
435
436    for (colctr = output_cols - 2; colctr > 0; colctr--) {
437      membersum = GETJSAMPLE(*inptr++);
438      above_ptr++; below_ptr++;
439      nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
440		   GETJSAMPLE(*inptr);
441      neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
442      membersum = membersum * memberscale + neighsum * neighscale;
443      *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
444      lastcolsum = colsum; colsum = nextcolsum;
445    }
446
447    /* Special case for last column */
448    membersum = GETJSAMPLE(*inptr);
449    neighsum = lastcolsum + (colsum - membersum) + colsum;
450    membersum = membersum * memberscale + neighsum * neighscale;
451    *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
452
453  }
454}
455
456#endif /* INPUT_SMOOTHING_SUPPORTED */
457
458
459/*
460 * Module initialization routine for downsampling.
461 * Note that we must select a routine for each component.
462 */
463
464GLOBAL(void)
465jinit_downsampler (j_compress_ptr cinfo)
466{
467  my_downsample_ptr downsample;
468  int ci;
469  jpeg_component_info * compptr;
470  boolean smoothok = TRUE;
471
472  downsample = (my_downsample_ptr)
473    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
474				SIZEOF(my_downsampler));
475  cinfo->downsample = (struct jpeg_downsampler *) downsample;
476  downsample->pub.start_pass = start_pass_downsample;
477  downsample->pub.downsample = sep_downsample;
478  downsample->pub.need_context_rows = FALSE;
479
480  if (cinfo->CCIR601_sampling)
481    ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
482
483  /* Verify we can handle the sampling factors, and set up method pointers */
484  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
485       ci++, compptr++) {
486    if (compptr->h_samp_factor == cinfo->max_h_samp_factor &&
487	compptr->v_samp_factor == cinfo->max_v_samp_factor) {
488#ifdef INPUT_SMOOTHING_SUPPORTED
489      if (cinfo->smoothing_factor) {
490	downsample->methods[ci] = fullsize_smooth_downsample;
491	downsample->pub.need_context_rows = TRUE;
492      } else
493#endif
494	downsample->methods[ci] = fullsize_downsample;
495    } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
496	       compptr->v_samp_factor == cinfo->max_v_samp_factor) {
497      smoothok = FALSE;
498      downsample->methods[ci] = h2v1_downsample;
499    } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
500	       compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) {
501#ifdef INPUT_SMOOTHING_SUPPORTED
502      if (cinfo->smoothing_factor) {
503	downsample->methods[ci] = h2v2_smooth_downsample;
504	downsample->pub.need_context_rows = TRUE;
505      } else
506#endif
507	downsample->methods[ci] = h2v2_downsample;
508    } else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 &&
509	       (cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) {
510      smoothok = FALSE;
511      downsample->methods[ci] = int_downsample;
512    } else
513      ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
514  }
515
516#ifdef INPUT_SMOOTHING_SUPPORTED
517  if (cinfo->smoothing_factor && !smoothok)
518    TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
519#endif
520}
521
522#endif //_FX_JPEG_TURBO_
523