1#if !defined(_FX_JPEG_TURBO_)
2/*
3 * jddctmgr.c
4 *
5 * Copyright (C) 1994-1996, Thomas G. Lane.
6 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file.
8 *
9 * This file contains the inverse-DCT management logic.
10 * This code selects a particular IDCT implementation to be used,
11 * and it performs related housekeeping chores.  No code in this file
12 * is executed per IDCT step, only during output pass setup.
13 *
14 * Note that the IDCT routines are responsible for performing coefficient
15 * dequantization as well as the IDCT proper.  This module sets up the
16 * dequantization multiplier table needed by the IDCT routine.
17 */
18
19#define JPEG_INTERNALS
20#include "jinclude.h"
21#include "jpeglib.h"
22#include "jdct.h"		/* Private declarations for DCT subsystem */
23
24
25/*
26 * The decompressor input side (jdinput.c) saves away the appropriate
27 * quantization table for each component at the start of the first scan
28 * involving that component.  (This is necessary in order to correctly
29 * decode files that reuse Q-table slots.)
30 * When we are ready to make an output pass, the saved Q-table is converted
31 * to a multiplier table that will actually be used by the IDCT routine.
32 * The multiplier table contents are IDCT-method-dependent.  To support
33 * application changes in IDCT method between scans, we can remake the
34 * multiplier tables if necessary.
35 * In buffered-image mode, the first output pass may occur before any data
36 * has been seen for some components, and thus before their Q-tables have
37 * been saved away.  To handle this case, multiplier tables are preset
38 * to zeroes; the result of the IDCT will be a neutral gray level.
39 */
40
41
42/* Private subobject for this module */
43
44typedef struct {
45  struct jpeg_inverse_dct pub;	/* public fields */
46
47  /* This array contains the IDCT method code that each multiplier table
48   * is currently set up for, or -1 if it's not yet set up.
49   * The actual multiplier tables are pointed to by dct_table in the
50   * per-component comp_info structures.
51   */
52  int cur_method[MAX_COMPONENTS];
53} my_idct_controller;
54
55typedef my_idct_controller * my_idct_ptr;
56
57
58/* Allocated multiplier tables: big enough for any supported variant */
59
60typedef union {
61  ISLOW_MULT_TYPE islow_array[DCTSIZE2];
62#ifdef DCT_IFAST_SUPPORTED
63  IFAST_MULT_TYPE ifast_array[DCTSIZE2];
64#endif
65#ifdef DCT_FLOAT_SUPPORTED
66  FLOAT_MULT_TYPE float_array[DCTSIZE2];
67#endif
68} multiplier_table;
69
70
71/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
72 * so be sure to compile that code if either ISLOW or SCALING is requested.
73 */
74#ifdef DCT_ISLOW_SUPPORTED
75#define PROVIDE_ISLOW_TABLES
76#else
77#ifdef IDCT_SCALING_SUPPORTED
78#define PROVIDE_ISLOW_TABLES
79#endif
80#endif
81
82
83/*
84 * Prepare for an output pass.
85 * Here we select the proper IDCT routine for each component and build
86 * a matching multiplier table.
87 */
88
89METHODDEF(void)
90start_pass (j_decompress_ptr cinfo)
91{
92  my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
93  int ci, i;
94  jpeg_component_info *compptr;
95  int method = 0;
96  inverse_DCT_method_ptr method_ptr = NULL;
97  JQUANT_TBL * qtbl;
98
99  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
100       ci++, compptr++) {
101    /* Select the proper IDCT routine for this component's scaling */
102    switch (compptr->DCT_scaled_size) {
103#ifdef IDCT_SCALING_SUPPORTED
104    case 1:
105      method_ptr = jpeg_idct_1x1;
106      method = JDCT_ISLOW;	/* jidctred uses islow-style table */
107      break;
108    case 2:
109      method_ptr = jpeg_idct_2x2;
110      method = JDCT_ISLOW;	/* jidctred uses islow-style table */
111      break;
112    case 4:
113      method_ptr = jpeg_idct_4x4;
114      method = JDCT_ISLOW;	/* jidctred uses islow-style table */
115      break;
116#endif
117    case DCTSIZE:
118      switch (cinfo->dct_method) {
119#ifdef DCT_ISLOW_SUPPORTED
120      case JDCT_ISLOW:
121	method_ptr = jpeg_idct_islow;
122	method = JDCT_ISLOW;
123	break;
124#endif
125#ifdef DCT_IFAST_SUPPORTED
126      case JDCT_IFAST:
127	method_ptr = jpeg_idct_ifast;
128	method = JDCT_IFAST;
129	break;
130#endif
131#ifdef DCT_FLOAT_SUPPORTED
132      case JDCT_FLOAT:
133	method_ptr = jpeg_idct_float;
134	method = JDCT_FLOAT;
135	break;
136#endif
137      default:
138	ERREXIT(cinfo, JERR_NOT_COMPILED);
139	break;
140      }
141      break;
142    default:
143      ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size);
144      break;
145    }
146    idct->pub.inverse_DCT[ci] = method_ptr;
147    /* Create multiplier table from quant table.
148     * However, we can skip this if the component is uninteresting
149     * or if we already built the table.  Also, if no quant table
150     * has yet been saved for the component, we leave the
151     * multiplier table all-zero; we'll be reading zeroes from the
152     * coefficient controller's buffer anyway.
153     */
154    if (! compptr->component_needed || idct->cur_method[ci] == method)
155      continue;
156    qtbl = compptr->quant_table;
157    if (qtbl == NULL)		/* happens if no data yet for component */
158      continue;
159    idct->cur_method[ci] = method;
160    switch (method) {
161#ifdef PROVIDE_ISLOW_TABLES
162    case JDCT_ISLOW:
163      {
164	/* For LL&M IDCT method, multipliers are equal to raw quantization
165	 * coefficients, but are stored as ints to ensure access efficiency.
166	 */
167	ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
168	for (i = 0; i < DCTSIZE2; i++) {
169	  ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
170	}
171      }
172      break;
173#endif
174#ifdef DCT_IFAST_SUPPORTED
175    case JDCT_IFAST:
176      {
177	/* For AA&N IDCT method, multipliers are equal to quantization
178	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
179	 *   scalefactor[0] = 1
180	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
181	 * For integer operation, the multiplier table is to be scaled by
182	 * IFAST_SCALE_BITS.
183	 */
184	IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
185#define CONST_BITS 14
186	static const INT16 aanscales[DCTSIZE2] = {
187	  /* precomputed values scaled up by 14 bits */
188	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
189	  22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
190	  21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
191	  19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
192	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
193	  12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
194	   8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
195	   4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
196	};
197	SHIFT_TEMPS
198
199	for (i = 0; i < DCTSIZE2; i++) {
200	  ifmtbl[i] = (IFAST_MULT_TYPE)
201	    DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
202				  (INT32) aanscales[i]),
203		    CONST_BITS-IFAST_SCALE_BITS);
204	}
205      }
206      break;
207#endif
208#ifdef DCT_FLOAT_SUPPORTED
209    case JDCT_FLOAT:
210      {
211	/* For float AA&N IDCT method, multipliers are equal to quantization
212	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
213	 *   scalefactor[0] = 1
214	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
215	 */
216	FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
217	int row, col;
218	static const double aanscalefactor[DCTSIZE] = {
219	  1.0, 1.387039845, 1.306562965, 1.175875602,
220	  1.0, 0.785694958, 0.541196100, 0.275899379
221	};
222
223	i = 0;
224	for (row = 0; row < DCTSIZE; row++) {
225	  for (col = 0; col < DCTSIZE; col++) {
226	    fmtbl[i] = (FLOAT_MULT_TYPE)
227	      ((double) qtbl->quantval[i] *
228	       aanscalefactor[row] * aanscalefactor[col]);
229	    i++;
230	  }
231	}
232      }
233      break;
234#endif
235    default:
236      ERREXIT(cinfo, JERR_NOT_COMPILED);
237      break;
238    }
239  }
240}
241
242
243/*
244 * Initialize IDCT manager.
245 */
246
247GLOBAL(void)
248jinit_inverse_dct (j_decompress_ptr cinfo)
249{
250  my_idct_ptr idct;
251  int ci;
252  jpeg_component_info *compptr;
253
254  idct = (my_idct_ptr)
255    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
256				SIZEOF(my_idct_controller));
257  cinfo->idct = (struct jpeg_inverse_dct *) idct;
258  idct->pub.start_pass = start_pass;
259
260  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
261       ci++, compptr++) {
262    /* Allocate and pre-zero a multiplier table for each component */
263    compptr->dct_table =
264      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
265				  SIZEOF(multiplier_table));
266    MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
267    /* Mark multiplier table not yet set up for any method */
268    idct->cur_method[ci] = -1;
269  }
270}
271
272#endif //_FX_JPEG_TURBO_
273