1ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#if !defined(_FX_JPEG_TURBO_)
2ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov/*
3ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * jidctfst.c
4ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov *
5ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * Copyright (C) 1994-1998, Thomas G. Lane.
6ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * This file is part of the Independent JPEG Group's software.
7ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * For conditions of distribution and use, see the accompanying README file.
8ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov *
9ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * This file contains a fast, not so accurate integer implementation of the
10ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
11ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * must also perform dequantization of the input coefficients.
12ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov *
13ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
14ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * on each row (or vice versa, but it's more convenient to emit a row at
15ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * a time).  Direct algorithms are also available, but they are much more
16ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * complex and seem not to be any faster when reduced to code.
17ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov *
18ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * This implementation is based on Arai, Agui, and Nakajima's algorithm for
19ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
20ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * Japanese, but the algorithm is described in the Pennebaker & Mitchell
21ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * JPEG textbook (see REFERENCES section in file README).  The following code
22ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * is based directly on figure 4-8 in P&M.
23ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * While an 8-point DCT cannot be done in less than 11 multiplies, it is
24ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * possible to arrange the computation so that many of the multiplies are
25ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * simple scalings of the final outputs.  These multiplies can then be
26ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * folded into the multiplications or divisions by the JPEG quantization
27ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
28ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * to be done in the DCT itself.
29ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * The primary disadvantage of this method is that with fixed-point math,
30ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * accuracy is lost due to imprecise representation of the scaled
31ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * quantization values.  The smaller the quantization table entry, the less
32ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * precise the scaled value, so this implementation does worse with high-
33ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * quality-setting files than with low-quality ones.
34ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov */
35ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
36ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#define JPEG_INTERNALS
37ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#include "jinclude.h"
38ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#include "jpeglib.h"
39ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#include "jdct.h"		/* Private declarations for DCT subsystem */
40ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
41ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#ifdef DCT_IFAST_SUPPORTED
42ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
43ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
44ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov/*
45ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * This module is specialized to the case DCTSIZE = 8.
46ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov */
47ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
48ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#if DCTSIZE != 8
49ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
50ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#endif
51ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
52ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
53ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov/* Scaling decisions are generally the same as in the LL&M algorithm;
54ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * see jidctint.c for more details.  However, we choose to descale
55ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * (right shift) multiplication products as soon as they are formed,
56ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * rather than carrying additional fractional bits into subsequent additions.
57ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * This compromises accuracy slightly, but it lets us save a few shifts.
58ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
59ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * everywhere except in the multiplications proper; this saves a good deal
60ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * of work on 16-bit-int machines.
61ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov *
62ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * The dequantized coefficients are not integers because the AA&N scaling
63ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * factors have been incorporated.  We represent them scaled up by PASS1_BITS,
64ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * so that the first and second IDCT rounds have the same input scaling.
65ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
66ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * avoid a descaling shift; this compromises accuracy rather drastically
67ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * for small quantization table entries, but it saves a lot of shifts.
68ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
69ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * so we use a much larger scaling factor to preserve accuracy.
70ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov *
71ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * A final compromise is to represent the multiplicative constants to only
72ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * 8 fractional bits, rather than 13.  This saves some shifting work on some
73ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * machines, and may also reduce the cost of multiplication (since there
74ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * are fewer one-bits in the constants).
75ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov */
76ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
77ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#if BITS_IN_JSAMPLE == 8
78ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#define CONST_BITS  8
79ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#define PASS1_BITS  2
80ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#else
81ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#define CONST_BITS  8
82ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#define PASS1_BITS  1		/* lose a little precision to avoid overflow */
83ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#endif
84ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
85ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
86ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * causing a lot of useless floating-point operations at run time.
87ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * To get around this we use the following pre-calculated constants.
88ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * If you change CONST_BITS you may want to add appropriate values.
89ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * (With a reasonable C compiler, you can just rely on the FIX() macro...)
90ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov */
91ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
92ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#if CONST_BITS == 8
93ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#define FIX_1_082392200  ((INT32)  277)		/* FIX(1.082392200) */
94ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#define FIX_1_414213562  ((INT32)  362)		/* FIX(1.414213562) */
95ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#define FIX_1_847759065  ((INT32)  473)		/* FIX(1.847759065) */
96ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#define FIX_2_613125930  ((INT32)  669)		/* FIX(2.613125930) */
97ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#else
98ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#define FIX_1_082392200  FIX(1.082392200)
99ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#define FIX_1_414213562  FIX(1.414213562)
100ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#define FIX_1_847759065  FIX(1.847759065)
101ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#define FIX_2_613125930  FIX(2.613125930)
102ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#endif
103ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
104ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
105ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov/* We can gain a little more speed, with a further compromise in accuracy,
106ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * by omitting the addition in a descaling shift.  This yields an incorrectly
107ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * rounded result half the time...
108ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov */
109ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
110ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#ifndef USE_ACCURATE_ROUNDING
111ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#undef DESCALE
112ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#define DESCALE(x,n)  RIGHT_SHIFT(x, n)
113ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#endif
114ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
115ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
116ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov/* Multiply a DCTELEM variable by an INT32 constant, and immediately
117ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * descale to yield a DCTELEM result.
118ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov */
119ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
120ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
121ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
122ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
123ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov/* Dequantize a coefficient by multiplying it by the multiplier-table
124ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * entry; produce a DCTELEM result.  For 8-bit data a 16x16->16
125ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * multiplication will do.  For 12-bit data, the multiplier table is
126ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * declared INT32, so a 32-bit multiply will be used.
127ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov */
128ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
129ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#if BITS_IN_JSAMPLE == 8
130ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#define DEQUANTIZE(coef,quantval)  (((IFAST_MULT_TYPE) (coef)) * (quantval))
131ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#else
132ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#define DEQUANTIZE(coef,quantval)  \
133ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov	DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
134ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#endif
135ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
136ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
137ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov/* Like DESCALE, but applies to a DCTELEM and produces an int.
138ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * We assume that int right shift is unsigned if INT32 right shift is.
139ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov */
140ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
141ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#ifdef RIGHT_SHIFT_IS_UNSIGNED
142ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#define ISHIFT_TEMPS	DCTELEM ishift_temp;
143ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#if BITS_IN_JSAMPLE == 8
144ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#define DCTELEMBITS  16		/* DCTELEM may be 16 or 32 bits */
145ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#else
146ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#define DCTELEMBITS  32		/* DCTELEM must be 32 bits */
147ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#endif
148ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#define IRIGHT_SHIFT(x,shft)  \
149ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    ((ishift_temp = (x)) < 0 ? \
150ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov     (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
151ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov     (ishift_temp >> (shft)))
152ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#else
153ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#define ISHIFT_TEMPS
154ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
155ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#endif
156ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
157ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#ifdef USE_ACCURATE_ROUNDING
158ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#define IDESCALE(x,n)  ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
159ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#else
160ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#define IDESCALE(x,n)  ((int) IRIGHT_SHIFT(x, n))
161ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#endif
162ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
163ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
164ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov/*
165ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov * Perform dequantization and inverse DCT on one block of coefficients.
166ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov */
167ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
168ee451cb395940862dad63c85adfe8f2fd55e864cSvet GanovGLOBAL(void)
169ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganovjpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
170ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov		 JCOEFPTR coef_block,
171ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov		 JSAMPARRAY output_buf, JDIMENSION output_col)
172ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov{
173ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov  DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
174ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov  DCTELEM tmp10, tmp11, tmp12, tmp13;
175ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov  DCTELEM z5, z10, z11, z12, z13;
176ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov  JCOEFPTR inptr;
177ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov  IFAST_MULT_TYPE * quantptr;
178ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov  int * wsptr;
179ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov  JSAMPROW outptr;
180ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
181ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov  int ctr;
182ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov  int workspace[DCTSIZE2];	/* buffers data between passes */
183ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov  SHIFT_TEMPS			/* for DESCALE */
184ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov  ISHIFT_TEMPS			/* for IDESCALE */
185ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
186ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov  /* Pass 1: process columns from input, store into work array. */
187ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
188ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov  inptr = coef_block;
189ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov  quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
190ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov  wsptr = workspace;
191ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov  for (ctr = DCTSIZE; ctr > 0; ctr--) {
192ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    /* Due to quantization, we will usually find that many of the input
193ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov     * coefficients are zero, especially the AC terms.  We can exploit this
194ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov     * by short-circuiting the IDCT calculation for any column in which all
195ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov     * the AC terms are zero.  In that case each output is equal to the
196ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov     * DC coefficient (with scale factor as needed).
197ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov     * With typical images and quantization tables, half or more of the
198ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov     * column DCT calculations can be simplified this way.
199ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov     */
200ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
201ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
202ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
203ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
204ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov	inptr[DCTSIZE*7] == 0) {
205ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov      /* AC terms all zero */
206ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov      int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
207ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
208ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov      wsptr[DCTSIZE*0] = dcval;
209ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov      wsptr[DCTSIZE*1] = dcval;
210ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov      wsptr[DCTSIZE*2] = dcval;
211ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov      wsptr[DCTSIZE*3] = dcval;
212ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov      wsptr[DCTSIZE*4] = dcval;
213ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov      wsptr[DCTSIZE*5] = dcval;
214ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov      wsptr[DCTSIZE*6] = dcval;
215ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov      wsptr[DCTSIZE*7] = dcval;
216ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
217ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov      inptr++;			/* advance pointers to next column */
218ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov      quantptr++;
219ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov      wsptr++;
220ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov      continue;
221ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    }
222ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
223ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    /* Even part */
224ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
225ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
226ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
227ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
228ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
229ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
230ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp10 = tmp0 + tmp2;	/* phase 3 */
231ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp11 = tmp0 - tmp2;
232ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
233ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp13 = tmp1 + tmp3;	/* phases 5-3 */
234ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
235ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
236ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp0 = tmp10 + tmp13;	/* phase 2 */
237ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp3 = tmp10 - tmp13;
238ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp1 = tmp11 + tmp12;
239ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp2 = tmp11 - tmp12;
240ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
241ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    /* Odd part */
242ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
243ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
244ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
245ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
246ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
247ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
248ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    z13 = tmp6 + tmp5;		/* phase 6 */
249ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    z10 = tmp6 - tmp5;
250ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    z11 = tmp4 + tmp7;
251ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    z12 = tmp4 - tmp7;
252ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
253ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp7 = z11 + z13;		/* phase 5 */
254ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
255ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
256ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
257ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
258ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
259ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
260ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp6 = tmp12 - tmp7;	/* phase 2 */
261ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp5 = tmp11 - tmp6;
262ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp4 = tmp10 + tmp5;
263ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
264ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
265ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
266ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
267ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
268ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
269ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
270ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
271ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
272ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
273ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    inptr++;			/* advance pointers to next column */
274ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    quantptr++;
275ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    wsptr++;
276ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov  }
277ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
278ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov  /* Pass 2: process rows from work array, store into output array. */
279ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov  /* Note that we must descale the results by a factor of 8 == 2**3, */
280ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov  /* and also undo the PASS1_BITS scaling. */
281ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
282ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov  wsptr = workspace;
283ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov  for (ctr = 0; ctr < DCTSIZE; ctr++) {
284ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    outptr = output_buf[ctr] + output_col;
285ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    /* Rows of zeroes can be exploited in the same way as we did with columns.
286ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov     * However, the column calculation has created many nonzero AC terms, so
287ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov     * the simplification applies less often (typically 5% to 10% of the time).
288ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov     * On machines with very fast multiplication, it's possible that the
289ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov     * test takes more time than it's worth.  In that case this section
290ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov     * may be commented out.
291ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov     */
292ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
293ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#ifndef NO_ZERO_ROW_TEST
294ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
295ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
296ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov      /* AC terms all zero */
297ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov      JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
298ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov				  & RANGE_MASK];
299ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
300ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov      outptr[0] = dcval;
301ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov      outptr[1] = dcval;
302ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov      outptr[2] = dcval;
303ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov      outptr[3] = dcval;
304ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov      outptr[4] = dcval;
305ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov      outptr[5] = dcval;
306ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov      outptr[6] = dcval;
307ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov      outptr[7] = dcval;
308ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
309ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov      wsptr += DCTSIZE;		/* advance pointer to next row */
310ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov      continue;
311ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    }
312ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#endif
313ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
314ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    /* Even part */
315ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
316ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
317ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
318ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
319ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
320ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
321ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov	    - tmp13;
322ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
323ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp0 = tmp10 + tmp13;
324ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp3 = tmp10 - tmp13;
325ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp1 = tmp11 + tmp12;
326ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp2 = tmp11 - tmp12;
327ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
328ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    /* Odd part */
329ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
330ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
331ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
332ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
333ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
334ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
335ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp7 = z11 + z13;		/* phase 5 */
336ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
337ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
338ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
339ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
340ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
341ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
342ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp6 = tmp12 - tmp7;	/* phase 2 */
343ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp5 = tmp11 - tmp6;
344ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    tmp4 = tmp10 + tmp5;
345ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
346ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    /* Final output stage: scale down by a factor of 8 and range-limit */
347ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
348ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
349ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov			    & RANGE_MASK];
350ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
351ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov			    & RANGE_MASK];
352ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
353ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov			    & RANGE_MASK];
354ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
355ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov			    & RANGE_MASK];
356ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
357ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov			    & RANGE_MASK];
358ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
359ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov			    & RANGE_MASK];
360ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
361ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov			    & RANGE_MASK];
362ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
363ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov			    & RANGE_MASK];
364ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
365ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov    wsptr += DCTSIZE;		/* advance pointer to next row */
366ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov  }
367ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov}
368ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
369ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#endif /* DCT_IFAST_SUPPORTED */
370ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov
371ee451cb395940862dad63c85adfe8f2fd55e864cSvet Ganov#endif //_FX_JPEG_TURBO_
372