1/***************************************************************************/
2/*                                                                         */
3/*  ftcalc.c                                                               */
4/*                                                                         */
5/*    Arithmetic computations (body).                                      */
6/*                                                                         */
7/*  Copyright 1996-2006, 2008, 2012-2013 by                                */
8/*  David Turner, Robert Wilhelm, and Werner Lemberg.                      */
9/*                                                                         */
10/*  This file is part of the FreeType project, and may only be used,       */
11/*  modified, and distributed under the terms of the FreeType project      */
12/*  license, LICENSE.TXT.  By continuing to use, modify, or distribute     */
13/*  this file you indicate that you have read the license and              */
14/*  understand and accept it fully.                                        */
15/*                                                                         */
16/***************************************************************************/
17
18  /*************************************************************************/
19  /*                                                                       */
20  /* Support for 1-complement arithmetic has been totally dropped in this  */
21  /* release.  You can still write your own code if you need it.           */
22  /*                                                                       */
23  /*************************************************************************/
24
25  /*************************************************************************/
26  /*                                                                       */
27  /* Implementing basic computation routines.                              */
28  /*                                                                       */
29  /* FT_MulDiv(), FT_MulFix(), FT_DivFix(), FT_RoundFix(), FT_CeilFix(),   */
30  /* and FT_FloorFix() are declared in freetype.h.                         */
31  /*                                                                       */
32  /*************************************************************************/
33
34
35#include "../../include/ft2build.h"
36#include "../../include/freetype/ftglyph.h"
37#include "../../include/freetype/fttrigon.h"
38#include "../../include/freetype/internal/ftcalc.h"
39#include "../../include/freetype/internal/ftdebug.h"
40#include "../../include/freetype/internal/ftobjs.h"
41
42
43/* we need to emulate a 64-bit data type if a real one isn't available */
44
45#ifndef FT_LONG64
46
47  typedef struct  FT_Int64_
48  {
49    FT_UInt32  lo;
50    FT_UInt32  hi;
51
52  } FT_Int64;
53
54#endif /* !FT_LONG64 */
55
56
57  /*************************************************************************/
58  /*                                                                       */
59  /* The macro FT_COMPONENT is used in trace mode.  It is an implicit      */
60  /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log  */
61  /* messages during execution.                                            */
62  /*                                                                       */
63#undef  FT_COMPONENT
64#define FT_COMPONENT  trace_calc
65
66
67  /* The following three functions are available regardless of whether */
68  /* FT_LONG64 is defined.                                             */
69
70  /* documentation is in freetype.h */
71
72  FT_EXPORT_DEF( FT_Fixed )
73  FT_RoundFix( FT_Fixed  a )
74  {
75    return ( a >= 0 ) ?   ( a + 0x8000L ) & ~0xFFFFL
76                      : -((-a + 0x8000L ) & ~0xFFFFL );
77  }
78
79
80  /* documentation is in freetype.h */
81
82  FT_EXPORT_DEF( FT_Fixed )
83  FT_CeilFix( FT_Fixed  a )
84  {
85    return ( a >= 0 ) ?   ( a + 0xFFFFL ) & ~0xFFFFL
86                      : -((-a + 0xFFFFL ) & ~0xFFFFL );
87  }
88
89
90  /* documentation is in freetype.h */
91
92  FT_EXPORT_DEF( FT_Fixed )
93  FT_FloorFix( FT_Fixed  a )
94  {
95    return ( a >= 0 ) ?   a & ~0xFFFFL
96                      : -((-a) & ~0xFFFFL );
97  }
98
99
100  FT_BASE_DEF ( FT_Int )
101  FT_MSB( FT_UInt32 z )
102  {
103    FT_Int shift = 0;
104
105    /* determine msb bit index in `shift' */
106    if ( z >= ( 1L << 16 ) )
107    {
108      z     >>= 16;
109      shift  += 16;
110    }
111    if ( z >= ( 1L << 8 ) )
112    {
113      z     >>= 8;
114      shift  += 8;
115    }
116    if ( z >= ( 1L << 4 ) )
117    {
118      z     >>= 4;
119      shift  += 4;
120    }
121    if ( z >= ( 1L << 2 ) )
122    {
123      z     >>= 2;
124      shift  += 2;
125    }
126    if ( z >= ( 1L << 1 ) )
127    {
128      z     >>= 1;
129      shift  += 1;
130    }
131
132    return shift;
133  }
134
135
136  /* documentation is in ftcalc.h */
137
138  FT_BASE_DEF( FT_Fixed )
139  FT_Hypot( FT_Fixed  x,
140            FT_Fixed  y )
141  {
142    FT_Vector  v;
143
144
145    v.x = x;
146    v.y = y;
147
148    return FT_Vector_Length( &v );
149  }
150
151
152#ifdef FT_LONG64
153
154
155  /* documentation is in freetype.h */
156
157  FT_EXPORT_DEF( FT_Long )
158  FT_MulDiv( FT_Long  a,
159             FT_Long  b,
160             FT_Long  c )
161  {
162    FT_Int   s;
163    FT_Long  d;
164
165
166    s = 1;
167    if ( a < 0 ) { a = -a; s = -1; }
168    if ( b < 0 ) { b = -b; s = -s; }
169    if ( c < 0 ) { c = -c; s = -s; }
170
171    d = (FT_Long)( c > 0 ? ( (FT_Int64)a * b + ( c >> 1 ) ) / c
172                         : 0x7FFFFFFFL );
173
174    return ( s > 0 ) ? d : -d;
175  }
176
177
178  /* documentation is in ftcalc.h */
179
180  FT_BASE_DEF( FT_Long )
181  FT_MulDiv_No_Round( FT_Long  a,
182                      FT_Long  b,
183                      FT_Long  c )
184  {
185    FT_Int   s;
186    FT_Long  d;
187
188
189    s = 1;
190    if ( a < 0 ) { a = -a; s = -1; }
191    if ( b < 0 ) { b = -b; s = -s; }
192    if ( c < 0 ) { c = -c; s = -s; }
193
194    d = (FT_Long)( c > 0 ? (FT_Int64)a * b / c
195                         : 0x7FFFFFFFL );
196
197    return ( s > 0 ) ? d : -d;
198  }
199
200
201  /* documentation is in freetype.h */
202   /* if defined FT_MULFIX_INLINED, use the inline FT_MULFIX_ASSEMBLER function. */
203#ifndef FT_MULFIX_INLINED
204  FT_EXPORT_DEF( FT_Long )
205  FT_MulFix( FT_Long  a,
206             FT_Long  b )
207  {
208#ifdef FT_MULFIX_ASSEMBLER
209
210    return FT_MULFIX_ASSEMBLER( a, b );
211
212#else
213
214    FT_Int   s = 1;
215    FT_Long  c;
216
217
218    if ( a < 0 )
219    {
220      a = -a;
221      s = -1;
222    }
223
224    if ( b < 0 )
225    {
226      b = -b;
227      s = -s;
228    }
229
230    c = (FT_Long)( ( (FT_Int64)a * b + 0x8000L ) >> 16 );
231
232    return ( s > 0 ) ? c : -c;
233
234#endif /* FT_MULFIX_ASSEMBLER */
235  }
236  #endif/* FT_MULFIX_INLINED */
237
238  /* documentation is in freetype.h */
239
240  FT_EXPORT_DEF( FT_Long )
241  FT_DivFix( FT_Long  a,
242             FT_Long  b )
243  {
244    FT_Int32   s;
245    FT_UInt32  q;
246
247
248    s = 1;
249    if ( a < 0 )
250    {
251      a = -a;
252      s = -1;
253    }
254    if ( b < 0 )
255    {
256      b = -b;
257      s = -s;
258    }
259
260    if ( b == 0 )
261      /* check for division by 0 */
262      q = 0x7FFFFFFFL;
263    else
264      /* compute result directly */
265      q = (FT_UInt32)( ( ( (FT_UInt64)a << 16 ) + ( b >> 1 ) ) / b );
266
267    return ( s < 0 ? -(FT_Long)q : (FT_Long)q );
268  }
269
270
271#else /* !FT_LONG64 */
272
273
274  static void
275  ft_multo64( FT_UInt32  x,
276              FT_UInt32  y,
277              FT_Int64  *z )
278  {
279    FT_UInt32  lo1, hi1, lo2, hi2, lo, hi, i1, i2;
280
281
282    lo1 = x & 0x0000FFFFU;  hi1 = x >> 16;
283    lo2 = y & 0x0000FFFFU;  hi2 = y >> 16;
284
285    lo = lo1 * lo2;
286    i1 = lo1 * hi2;
287    i2 = lo2 * hi1;
288    hi = hi1 * hi2;
289
290    /* Check carry overflow of i1 + i2 */
291    i1 += i2;
292    hi += (FT_UInt32)( i1 < i2 ) << 16;
293
294    hi += i1 >> 16;
295    i1  = i1 << 16;
296
297    /* Check carry overflow of i1 + lo */
298    lo += i1;
299    hi += ( lo < i1 );
300
301    z->lo = lo;
302    z->hi = hi;
303  }
304
305
306  static FT_UInt32
307  ft_div64by32( FT_UInt32  hi,
308                FT_UInt32  lo,
309                FT_UInt32  y )
310  {
311    FT_UInt32  r, q;
312    FT_Int     i;
313
314
315    q = 0;
316    r = hi;
317
318    if ( r >= y )
319      return (FT_UInt32)0x7FFFFFFFL;
320
321    i = 32;
322    do
323    {
324      r <<= 1;
325      q <<= 1;
326      r  |= lo >> 31;
327
328      if ( r >= y )
329      {
330        r -= y;
331        q |= 1;
332      }
333      lo <<= 1;
334    } while ( --i );
335
336    return q;
337  }
338
339
340  static void
341  FT_Add64( FT_Int64*  x,
342            FT_Int64*  y,
343            FT_Int64  *z )
344  {
345    register FT_UInt32  lo, hi;
346
347
348    lo = x->lo + y->lo;
349    hi = x->hi + y->hi + ( lo < x->lo );
350
351    z->lo = lo;
352    z->hi = hi;
353  }
354
355
356  /* documentation is in freetype.h */
357
358  /* The FT_MulDiv function has been optimized thanks to ideas from      */
359  /* Graham Asher.  The trick is to optimize computation when everything */
360  /* fits within 32-bits (a rather common case).                         */
361  /*                                                                     */
362  /*  we compute 'a*b+c/2', then divide it by 'c'. (positive values)     */
363  /*                                                                     */
364  /*  46340 is FLOOR(SQRT(2^31-1)).                                      */
365  /*                                                                     */
366  /*  if ( a <= 46340 && b <= 46340 ) then ( a*b <= 0x7FFEA810 )         */
367  /*                                                                     */
368  /*  0x7FFFFFFF - 0x7FFEA810 = 0x157F0                                  */
369  /*                                                                     */
370  /*  if ( c < 0x157F0*2 ) then ( a*b+c/2 <= 0x7FFFFFFF )                */
371  /*                                                                     */
372  /*  and 2*0x157F0 = 176096                                             */
373  /*                                                                     */
374
375  FT_EXPORT_DEF( FT_Long )
376  FT_MulDiv( FT_Long  a,
377             FT_Long  b,
378             FT_Long  c )
379  {
380    long  s;
381
382
383    /* XXX: this function does not allow 64-bit arguments */
384    if ( a == 0 || b == c )
385      return a;
386
387    s  = a; a = FT_ABS( a );
388    s ^= b; b = FT_ABS( b );
389    s ^= c; c = FT_ABS( c );
390
391    if ( a <= 46340L && b <= 46340L && c <= 176095L && c > 0 )
392      a = ( a * b + ( c >> 1 ) ) / c;
393
394    else if ( (FT_Int32)c > 0 )
395    {
396      FT_Int64  temp, temp2;
397
398
399      ft_multo64( (FT_Int32)a, (FT_Int32)b, &temp );
400
401      temp2.hi = 0;
402      temp2.lo = (FT_UInt32)(c >> 1);
403      FT_Add64( &temp, &temp2, &temp );
404      a = ft_div64by32( temp.hi, temp.lo, (FT_Int32)c );
405    }
406    else
407      a = 0x7FFFFFFFL;
408
409    return ( s < 0 ? -a : a );
410  }
411
412
413  FT_BASE_DEF( FT_Long )
414  FT_MulDiv_No_Round( FT_Long  a,
415                      FT_Long  b,
416                      FT_Long  c )
417  {
418    long  s;
419
420
421    if ( a == 0 || b == c )
422      return a;
423
424    s  = a; a = FT_ABS( a );
425    s ^= b; b = FT_ABS( b );
426    s ^= c; c = FT_ABS( c );
427
428    if ( a <= 46340L && b <= 46340L && c > 0 )
429      a = a * b / c;
430
431    else if ( (FT_Int32)c > 0 )
432    {
433      FT_Int64  temp;
434
435
436      ft_multo64( (FT_Int32)a, (FT_Int32)b, &temp );
437      a = ft_div64by32( temp.hi, temp.lo, (FT_Int32)c );
438    }
439    else
440      a = 0x7FFFFFFFL;
441
442    return ( s < 0 ? -a : a );
443  }
444
445
446  /* documentation is in freetype.h */
447  #ifndef FT_MULFIX_INLINED
448  FT_EXPORT_DEF( FT_Long )
449  FT_MulFix( FT_Long  a,
450             FT_Long  b )
451  {
452#ifdef FT_MULFIX_ASSEMBLER
453
454    return FT_MULFIX_ASSEMBLER( a, b );
455
456#elif 0
457
458    /*
459     *  This code is nonportable.  See comment below.
460     *
461     *  However, on a platform where right-shift of a signed quantity fills
462     *  the leftmost bits by copying the sign bit, it might be faster.
463     */
464
465    FT_Long   sa, sb;
466    FT_ULong  ua, ub;
467
468
469    if ( a == 0 || b == 0x10000L )
470      return a;
471
472    /*
473     *  This is a clever way of converting a signed number `a' into its
474     *  absolute value (stored back into `a') and its sign.  The sign is
475     *  stored in `sa'; 0 means `a' was positive or zero, and -1 means `a'
476     *  was negative.  (Similarly for `b' and `sb').
477     *
478     *  Unfortunately, it doesn't work (at least not portably).
479     *
480     *  It makes the assumption that right-shift on a negative signed value
481     *  fills the leftmost bits by copying the sign bit.  This is wrong.
482     *  According to K&R 2nd ed, section `A7.8 Shift Operators' on page 206,
483     *  the result of right-shift of a negative signed value is
484     *  implementation-defined.  At least one implementation fills the
485     *  leftmost bits with 0s (i.e., it is exactly the same as an unsigned
486     *  right shift).  This means that when `a' is negative, `sa' ends up
487     *  with the value 1 rather than -1.  After that, everything else goes
488     *  wrong.
489     */
490    sa = ( a >> ( sizeof ( a ) * 8 - 1 ) );
491    a  = ( a ^ sa ) - sa;
492    sb = ( b >> ( sizeof ( b ) * 8 - 1 ) );
493    b  = ( b ^ sb ) - sb;
494
495    ua = (FT_ULong)a;
496    ub = (FT_ULong)b;
497
498    if ( ua <= 2048 && ub <= 1048576L )
499      ua = ( ua * ub + 0x8000U ) >> 16;
500    else
501    {
502      FT_ULong  al = ua & 0xFFFFU;
503
504
505      ua = ( ua >> 16 ) * ub +  al * ( ub >> 16 ) +
506           ( ( al * ( ub & 0xFFFFU ) + 0x8000U ) >> 16 );
507    }
508
509    sa ^= sb,
510    ua  = (FT_ULong)(( ua ^ sa ) - sa);
511
512    return (FT_Long)ua;
513
514#else /* 0 */
515
516    FT_Long   s;
517    FT_ULong  ua, ub;
518
519
520    if ( a == 0 || b == 0x10000L )
521      return a;
522
523    s  = a; a = FT_ABS( a );
524    s ^= b; b = FT_ABS( b );
525
526    ua = (FT_ULong)a;
527    ub = (FT_ULong)b;
528
529    if ( ua <= 2048 && ub <= 1048576L )
530      ua = ( ua * ub + 0x8000UL ) >> 16;
531    else
532    {
533      FT_ULong  al = ua & 0xFFFFUL;
534
535
536      ua = ( ua >> 16 ) * ub +  al * ( ub >> 16 ) +
537           ( ( al * ( ub & 0xFFFFUL ) + 0x8000UL ) >> 16 );
538    }
539
540    return ( s < 0 ? -(FT_Long)ua : (FT_Long)ua );
541
542#endif /* 0 */
543
544  }
545#endif
546
547  /* documentation is in freetype.h */
548
549  FT_EXPORT_DEF( FT_Long )
550  FT_DivFix( FT_Long  a,
551             FT_Long  b )
552  {
553    FT_Int32   s;
554    FT_UInt32  q;
555
556
557    /* XXX: this function does not allow 64-bit arguments */
558    s  = (FT_Int32)a; a = FT_ABS( a );
559    s ^= (FT_Int32)b; b = FT_ABS( b );
560
561    if ( (FT_UInt32)b == 0 )
562    {
563      /* check for division by 0 */
564      q = (FT_UInt32)0x7FFFFFFFL;
565    }
566    else if ( ( a >> 16 ) == 0 )
567    {
568      /* compute result directly */
569      q = (FT_UInt32)( ( (FT_ULong)a << 16 ) + ( b >> 1 ) ) / (FT_UInt32)b;
570    }
571    else
572    {
573      /* we need more bits; we have to do it by hand */
574      FT_Int64  temp, temp2;
575
576
577      temp.hi  = (FT_Int32)( a >> 16 );
578      temp.lo  = (FT_UInt32)a << 16;
579      temp2.hi = 0;
580      temp2.lo = (FT_UInt32)( b >> 1 );
581      FT_Add64( &temp, &temp2, &temp );
582      q = ft_div64by32( temp.hi, temp.lo, (FT_Int32)b );
583    }
584
585    return ( s < 0 ? -(FT_Int32)q : (FT_Int32)q );
586  }
587
588
589#if 0
590
591  /* documentation is in ftcalc.h */
592
593  FT_EXPORT_DEF( void )
594  FT_MulTo64( FT_Int32   x,
595              FT_Int32   y,
596              FT_Int64  *z )
597  {
598    FT_Int32  s;
599
600
601    s  = x; x = FT_ABS( x );
602    s ^= y; y = FT_ABS( y );
603
604    ft_multo64( x, y, z );
605
606    if ( s < 0 )
607    {
608      z->lo = (FT_UInt32)-(FT_Int32)z->lo;
609      z->hi = ~z->hi + !( z->lo );
610    }
611  }
612
613
614  /* apparently, the second version of this code is not compiled correctly */
615  /* on Mac machines with the MPW C compiler..  tsk, tsk, tsk...           */
616
617#if 1
618
619  FT_EXPORT_DEF( FT_Int32 )
620  FT_Div64by32( FT_Int64*  x,
621                FT_Int32   y )
622  {
623    FT_Int32   s;
624    FT_UInt32  q, r, i, lo;
625
626
627    s  = x->hi;
628    if ( s < 0 )
629    {
630      x->lo = (FT_UInt32)-(FT_Int32)x->lo;
631      x->hi = ~x->hi + !x->lo;
632    }
633    s ^= y;  y = FT_ABS( y );
634
635    /* Shortcut */
636    if ( x->hi == 0 )
637    {
638      if ( y > 0 )
639        q = x->lo / y;
640      else
641        q = 0x7FFFFFFFL;
642
643      return ( s < 0 ? -(FT_Int32)q : (FT_Int32)q );
644    }
645
646    r  = x->hi;
647    lo = x->lo;
648
649    if ( r >= (FT_UInt32)y ) /* we know y is to be treated as unsigned here */
650      return ( s < 0 ? 0x80000001UL : 0x7FFFFFFFUL );
651                             /* Return Max/Min Int32 if division overflow. */
652                             /* This includes division by zero!            */
653    q = 0;
654    for ( i = 0; i < 32; i++ )
655    {
656      r <<= 1;
657      q <<= 1;
658      r  |= lo >> 31;
659
660      if ( r >= (FT_UInt32)y )
661      {
662        r -= y;
663        q |= 1;
664      }
665      lo <<= 1;
666    }
667
668    return ( s < 0 ? -(FT_Int32)q : (FT_Int32)q );
669  }
670
671#else /* 0 */
672
673  FT_EXPORT_DEF( FT_Int32 )
674  FT_Div64by32( FT_Int64*  x,
675                FT_Int32   y )
676  {
677    FT_Int32   s;
678    FT_UInt32  q;
679
680
681    s  = x->hi;
682    if ( s < 0 )
683    {
684      x->lo = (FT_UInt32)-(FT_Int32)x->lo;
685      x->hi = ~x->hi + !x->lo;
686    }
687    s ^= y;  y = FT_ABS( y );
688
689    /* Shortcut */
690    if ( x->hi == 0 )
691    {
692      if ( y > 0 )
693        q = ( x->lo + ( y >> 1 ) ) / y;
694      else
695        q = 0x7FFFFFFFL;
696
697      return ( s < 0 ? -(FT_Int32)q : (FT_Int32)q );
698    }
699
700    q = ft_div64by32( x->hi, x->lo, y );
701
702    return ( s < 0 ? -(FT_Int32)q : (FT_Int32)q );
703  }
704
705#endif /* 0 */
706
707#endif /* 0 */
708
709
710#endif /* FT_LONG64 */
711
712
713  /* documentation is in ftglyph.h */
714
715  FT_EXPORT_DEF( void )
716  FT_Matrix_Multiply( const FT_Matrix*  a,
717                      FT_Matrix        *b )
718  {
719    FT_Fixed  xx, xy, yx, yy;
720
721
722    if ( !a || !b )
723      return;
724
725    xx = FT_MulFix( a->xx, b->xx ) + FT_MulFix( a->xy, b->yx );
726    xy = FT_MulFix( a->xx, b->xy ) + FT_MulFix( a->xy, b->yy );
727    yx = FT_MulFix( a->yx, b->xx ) + FT_MulFix( a->yy, b->yx );
728    yy = FT_MulFix( a->yx, b->xy ) + FT_MulFix( a->yy, b->yy );
729
730    b->xx = xx;  b->xy = xy;
731    b->yx = yx;  b->yy = yy;
732  }
733
734
735  /* documentation is in ftglyph.h */
736
737  FT_EXPORT_DEF( FT_Error )
738  FT_Matrix_Invert( FT_Matrix*  matrix )
739  {
740    FT_Pos  delta, xx, yy;
741
742
743    if ( !matrix )
744      return FT_THROW( Invalid_Argument );
745
746    /* compute discriminant */
747    delta = FT_MulFix( matrix->xx, matrix->yy ) -
748            FT_MulFix( matrix->xy, matrix->yx );
749
750    if ( !delta )
751      return FT_THROW( Invalid_Argument );  /* matrix can't be inverted */
752
753    matrix->xy = - FT_DivFix( matrix->xy, delta );
754    matrix->yx = - FT_DivFix( matrix->yx, delta );
755
756    xx = matrix->xx;
757    yy = matrix->yy;
758
759    matrix->xx = FT_DivFix( yy, delta );
760    matrix->yy = FT_DivFix( xx, delta );
761
762    return FT_Err_Ok;
763  }
764
765
766  /* documentation is in ftcalc.h */
767
768  FT_BASE_DEF( void )
769  FT_Matrix_Multiply_Scaled( const FT_Matrix*  a,
770                             FT_Matrix        *b,
771                             FT_Long           scaling )
772  {
773    FT_Fixed  xx, xy, yx, yy;
774
775    FT_Long   val = 0x10000L * scaling;
776
777
778    if ( !a || !b )
779      return;
780
781    xx = FT_MulDiv( a->xx, b->xx, val ) + FT_MulDiv( a->xy, b->yx, val );
782    xy = FT_MulDiv( a->xx, b->xy, val ) + FT_MulDiv( a->xy, b->yy, val );
783    yx = FT_MulDiv( a->yx, b->xx, val ) + FT_MulDiv( a->yy, b->yx, val );
784    yy = FT_MulDiv( a->yx, b->xy, val ) + FT_MulDiv( a->yy, b->yy, val );
785
786    b->xx = xx;  b->xy = xy;
787    b->yx = yx;  b->yy = yy;
788  }
789
790
791  /* documentation is in ftcalc.h */
792
793  FT_BASE_DEF( void )
794  FT_Vector_Transform_Scaled( FT_Vector*        vector,
795                              const FT_Matrix*  matrix,
796                              FT_Long           scaling )
797  {
798    FT_Pos   xz, yz;
799
800    FT_Long  val = 0x10000L * scaling;
801
802
803    if ( !vector || !matrix )
804      return;
805
806    xz = FT_MulDiv( vector->x, matrix->xx, val ) +
807         FT_MulDiv( vector->y, matrix->xy, val );
808
809    yz = FT_MulDiv( vector->x, matrix->yx, val ) +
810         FT_MulDiv( vector->y, matrix->yy, val );
811
812    vector->x = xz;
813    vector->y = yz;
814  }
815
816
817  /* documentation is in ftcalc.h */
818
819  FT_BASE_DEF( FT_Int32 )
820  FT_SqrtFixed( FT_Int32  x )
821  {
822    FT_UInt32  root, rem_hi, rem_lo, test_div;
823    FT_Int     count;
824
825
826    root = 0;
827
828    if ( x > 0 )
829    {
830      rem_hi = 0;
831      rem_lo = x;
832      count  = 24;
833      do
834      {
835        rem_hi   = ( rem_hi << 2 ) | ( rem_lo >> 30 );
836        rem_lo <<= 2;
837        root   <<= 1;
838        test_div = ( root << 1 ) + 1;
839
840        if ( rem_hi >= test_div )
841        {
842          rem_hi -= test_div;
843          root   += 1;
844        }
845      } while ( --count );
846    }
847
848    return (FT_Int32)root;
849  }
850
851
852  /* documentation is in ftcalc.h */
853
854  FT_BASE_DEF( FT_Int )
855  ft_corner_orientation( FT_Pos  in_x,
856                         FT_Pos  in_y,
857                         FT_Pos  out_x,
858                         FT_Pos  out_y )
859  {
860    FT_Long  result; /* avoid overflow on 16-bit system */
861
862
863    /* deal with the trivial cases quickly */
864    if ( in_y == 0 )
865    {
866      if ( in_x >= 0 )
867        result = out_y;
868      else
869        result = -out_y;
870    }
871    else if ( in_x == 0 )
872    {
873      if ( in_y >= 0 )
874        result = -out_x;
875      else
876        result = out_x;
877    }
878    else if ( out_y == 0 )
879    {
880      if ( out_x >= 0 )
881        result = in_y;
882      else
883        result = -in_y;
884    }
885    else if ( out_x == 0 )
886    {
887      if ( out_y >= 0 )
888        result = -in_x;
889      else
890        result =  in_x;
891    }
892    else /* general case */
893    {
894#ifdef FT_LONG64
895
896      FT_Int64  delta = (FT_Int64)in_x * out_y - (FT_Int64)in_y * out_x;
897
898
899      if ( delta == 0 )
900        result = 0;
901      else
902        result = 1 - 2 * ( delta < 0 );
903
904#else
905
906      FT_Int64  z1, z2;
907
908
909      /* XXX: this function does not allow 64-bit arguments */
910      ft_multo64( (FT_Int32)in_x, (FT_Int32)out_y, &z1 );
911      ft_multo64( (FT_Int32)in_y, (FT_Int32)out_x, &z2 );
912
913      if ( z1.hi > z2.hi )
914        result = +1;
915      else if ( z1.hi < z2.hi )
916        result = -1;
917      else if ( z1.lo > z2.lo )
918        result = +1;
919      else if ( z1.lo < z2.lo )
920        result = -1;
921      else
922        result = 0;
923
924#endif
925    }
926
927    /* XXX: only the sign of return value, +1/0/-1 must be used */
928    return (FT_Int)result;
929  }
930
931
932  /* documentation is in ftcalc.h */
933
934  FT_BASE_DEF( FT_Int )
935  ft_corner_is_flat( FT_Pos  in_x,
936                     FT_Pos  in_y,
937                     FT_Pos  out_x,
938                     FT_Pos  out_y )
939  {
940    FT_Pos  ax = in_x;
941    FT_Pos  ay = in_y;
942
943    FT_Pos  d_in, d_out, d_corner;
944
945
946    if ( ax < 0 )
947      ax = -ax;
948    if ( ay < 0 )
949      ay = -ay;
950    d_in = ax + ay;
951
952    ax = out_x;
953    if ( ax < 0 )
954      ax = -ax;
955    ay = out_y;
956    if ( ay < 0 )
957      ay = -ay;
958    d_out = ax + ay;
959
960    ax = out_x + in_x;
961    if ( ax < 0 )
962      ax = -ax;
963    ay = out_y + in_y;
964    if ( ay < 0 )
965      ay = -ay;
966    d_corner = ax + ay;
967
968    return ( d_in + d_out - d_corner ) < ( d_corner >> 4 );
969  }
970
971
972/* END */
973