1// Copyright 2006 The RE2 Authors.  All Rights Reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// DESCRIPTION
6//
7// SparseArray<T>(m) is a map from integers in [0, m) to T values.
8// It requires (sizeof(T)+sizeof(int))*m memory, but it provides
9// fast iteration through the elements in the array and fast clearing
10// of the array.  The array has a concept of certain elements being
11// uninitialized (having no value).
12//
13// Insertion and deletion are constant time operations.
14//
15// Allocating the array is a constant time operation
16// when memory allocation is a constant time operation.
17//
18// Clearing the array is a constant time operation (unusual!).
19//
20// Iterating through the array is an O(n) operation, where n
21// is the number of items in the array (not O(m)).
22//
23// The array iterator visits entries in the order they were first
24// inserted into the array.  It is safe to add items to the array while
25// using an iterator: the iterator will visit indices added to the array
26// during the iteration, but will not re-visit indices whose values
27// change after visiting.  Thus SparseArray can be a convenient
28// implementation of a work queue.
29//
30// The SparseArray implementation is NOT thread-safe.  It is up to the
31// caller to make sure only one thread is accessing the array.  (Typically
32// these arrays are temporary values and used in situations where speed is
33// important.)
34//
35// The SparseArray interface does not present all the usual STL bells and
36// whistles.
37//
38// Implemented with reference to Briggs & Torczon, An Efficient
39// Representation for Sparse Sets, ACM Letters on Programming Languages
40// and Systems, Volume 2, Issue 1-4 (March-Dec.  1993), pp.  59-69.
41//
42// Briggs & Torczon popularized this technique, but it had been known
43// long before their paper.  They point out that Aho, Hopcroft, and
44// Ullman's 1974 Design and Analysis of Computer Algorithms and Bentley's
45// 1986 Programming Pearls both hint at the technique in exercises to the
46// reader (in Aho & Hopcroft, exercise 2.12; in Bentley, column 1
47// exercise 8).
48//
49// Briggs & Torczon describe a sparse set implementation.  I have
50// trivially generalized it to create a sparse array (actually the original
51// target of the AHU and Bentley exercises).
52
53// IMPLEMENTATION
54//
55// SparseArray uses a vector dense_ and an array sparse_to_dense_, both of
56// size max_size_. At any point, the number of elements in the sparse array is
57// size_.
58//
59// The vector dense_ contains the size_ elements in the sparse array (with
60// their indices),
61// in the order that the elements were first inserted.  This array is dense:
62// the size_ pairs are dense_[0] through dense_[size_-1].
63//
64// The array sparse_to_dense_ maps from indices in [0,m) to indices in
65// [0,size_).
66// For indices present in the array, dense_[sparse_to_dense_[i]].index_ == i.
67// For indices not present in the array, sparse_to_dense_ can contain
68// any value at all, perhaps outside the range [0, size_) but perhaps not.
69//
70// The lax requirement on sparse_to_dense_ values makes clearing
71// the array very easy: set size_ to 0.  Lookups are slightly more
72// complicated.  An index i has a value in the array if and only if:
73//   sparse_to_dense_[i] is in [0, size_) AND
74//   dense_[sparse_to_dense_[i]].index_ == i.
75// If both these properties hold, only then it is safe to refer to
76//   dense_[sparse_to_dense_[i]].value_
77// as the value associated with index i.
78//
79// To insert a new entry, set sparse_to_dense_[i] to size_,
80// initialize dense_[size_], and then increment size_.
81//
82// Deletion of specific values from the array is implemented by
83// swapping dense_[size_-1] and the dense_ being deleted and then
84// updating the appropriate sparse_to_dense_ entries.
85//
86// To make the sparse array as efficient as possible for non-primitive types,
87// elements may or may not be destroyed when they are deleted from the sparse
88// array through a call to erase(), erase_existing() or resize(). They
89// immediately become inaccessible, but they are only guaranteed to be
90// destroyed when the SparseArray destructor is called.
91
92#ifndef RE2_UTIL_SPARSE_ARRAY_H__
93#define RE2_UTIL_SPARSE_ARRAY_H__
94
95#include "util/util.h"
96
97namespace re2 {
98
99template<typename Value>
100class SparseArray {
101 public:
102  SparseArray();
103  SparseArray(int max_size);
104  ~SparseArray();
105
106  // IndexValue pairs: exposed in SparseArray::iterator.
107  class IndexValue;
108
109  typedef IndexValue value_type;
110  typedef typename vector<IndexValue>::iterator iterator;
111  typedef typename vector<IndexValue>::const_iterator const_iterator;
112
113  inline const IndexValue& iv(int i) const;
114
115  // Return the number of entries in the array.
116  int size() const {
117    return size_;
118  }
119
120  // Iterate over the array.
121  iterator begin() {
122    return dense_.begin();
123  }
124  iterator end() {
125    return dense_.begin() + size_;
126  }
127
128  const_iterator begin() const {
129    return dense_.begin();
130  }
131  const_iterator end() const {
132    return dense_.begin() + size_;
133  }
134
135  // Change the maximum size of the array.
136  // Invalidates all iterators.
137  void resize(int max_size);
138
139  // Return the maximum size of the array.
140  // Indices can be in the range [0, max_size).
141  int max_size() const {
142    return max_size_;
143  }
144
145  // Clear the array.
146  void clear() {
147    size_ = 0;
148  }
149
150  // Check whether index i is in the array.
151  inline bool has_index(int i) const;
152
153  // Comparison function for sorting.
154  // Can sort the sparse array so that future iterations
155  // will visit indices in increasing order using
156  // sort(arr.begin(), arr.end(), arr.less);
157  static bool less(const IndexValue& a, const IndexValue& b);
158
159 public:
160  // Set the value at index i to v.
161  inline iterator set(int i, Value v);
162
163  pair<iterator, bool> insert(const value_type& new_value);
164
165  // Returns the value at index i
166  // or defaultv if index i is not initialized in the array.
167  inline Value get(int i, Value defaultv) const;
168
169  iterator find(int i);
170
171  const_iterator find(int i) const;
172
173  // Change the value at index i to v.
174  // Fast but unsafe: only use if has_index(i) is true.
175  inline iterator set_existing(int i, Value v);
176
177  // Set the value at the new index i to v.
178  // Fast but unsafe: only use if has_index(i) is false.
179  inline iterator set_new(int i, Value v);
180
181  // Get the value at index i from the array..
182  // Fast but unsafe: only use if has_index(i) is true.
183  inline Value get_existing(int i) const;
184
185  // Erasing items from the array during iteration is in general
186  // NOT safe.  There is one special case, which is that the current
187  // index-value pair can be erased as long as the iterator is then
188  // checked for being at the end before being incremented.
189  // For example:
190  //
191  //   for (i = m.begin(); i != m.end(); ++i) {
192  //     if (ShouldErase(i->index(), i->value())) {
193  //       m.erase(i->index());
194  //       --i;
195  //     }
196  //   }
197  //
198  // Except in the specific case just described, elements must
199  // not be erased from the array (including clearing the array)
200  // while iterators are walking over the array.  Otherwise,
201  // the iterators could walk past the end of the array.
202
203  // Erases the element at index i from the array.
204  inline void erase(int i);
205
206  // Erases the element at index i from the array.
207  // Fast but unsafe: only use if has_index(i) is true.
208  inline void erase_existing(int i);
209
210 private:
211  // Add the index i to the array.
212  // Only use if has_index(i) is known to be false.
213  // Since it doesn't set the value associated with i,
214  // this function is private, only intended as a helper
215  // for other methods.
216  inline void create_index(int i);
217
218  // In debug mode, verify that some invariant properties of the class
219  // are being maintained. This is called at the end of the constructor
220  // and at the beginning and end of all public non-const member functions.
221  inline void DebugCheckInvariants() const;
222
223  int size_;
224  int max_size_;
225  int* sparse_to_dense_;
226  vector<IndexValue> dense_;
227  bool valgrind_;
228
229  DISALLOW_EVIL_CONSTRUCTORS(SparseArray);
230};
231
232template<typename Value>
233SparseArray<Value>::SparseArray()
234    : size_(0), max_size_(0), sparse_to_dense_(NULL), dense_(), valgrind_(RunningOnValgrind()) {}
235
236// IndexValue pairs: exposed in SparseArray::iterator.
237template<typename Value>
238class SparseArray<Value>::IndexValue {
239  friend class SparseArray;
240 public:
241  typedef int first_type;
242  typedef Value second_type;
243
244  IndexValue() {}
245  IndexValue(int index, const Value& value) : second(value), index_(index) {}
246
247  int index() const { return index_; }
248  Value value() const { return second; }
249
250  // Provide the data in the 'second' member so that the utilities
251  // in map-util work.
252  Value second;
253
254 private:
255  int index_;
256};
257
258template<typename Value>
259const typename SparseArray<Value>::IndexValue&
260SparseArray<Value>::iv(int i) const {
261  DCHECK_GE(i, 0);
262  DCHECK_LT(i, size_);
263  return dense_[i];
264}
265
266// Change the maximum size of the array.
267// Invalidates all iterators.
268template<typename Value>
269void SparseArray<Value>::resize(int new_max_size) {
270  DebugCheckInvariants();
271  if (new_max_size > max_size_) {
272    int* a = new int[new_max_size];
273    if (sparse_to_dense_) {
274      memmove(a, sparse_to_dense_, max_size_*sizeof a[0]);
275      // Don't need to zero the memory but appease Valgrind.
276      if (valgrind_) {
277        for (int i = max_size_; i < new_max_size; i++)
278          a[i] = 0xababababU;
279      }
280      delete[] sparse_to_dense_;
281    }
282    sparse_to_dense_ = a;
283
284    dense_.resize(new_max_size);
285  }
286  max_size_ = new_max_size;
287  if (size_ > max_size_)
288    size_ = max_size_;
289  DebugCheckInvariants();
290}
291
292// Check whether index i is in the array.
293template<typename Value>
294bool SparseArray<Value>::has_index(int i) const {
295  DCHECK_GE(i, 0);
296  DCHECK_LT(i, max_size_);
297  if (static_cast<uint>(i) >= max_size_) {
298    return false;
299  }
300  // Unsigned comparison avoids checking sparse_to_dense_[i] < 0.
301  return (uint)sparse_to_dense_[i] < (uint)size_ &&
302    dense_[sparse_to_dense_[i]].index_ == i;
303}
304
305// Set the value at index i to v.
306template<typename Value>
307typename SparseArray<Value>::iterator SparseArray<Value>::set(int i, Value v) {
308  DebugCheckInvariants();
309  if (static_cast<uint>(i) >= max_size_) {
310    // Semantically, end() would be better here, but we already know
311    // the user did something stupid, so begin() insulates them from
312    // dereferencing an invalid pointer.
313    return begin();
314  }
315  if (!has_index(i))
316    create_index(i);
317  return set_existing(i, v);
318}
319
320template<typename Value>
321pair<typename SparseArray<Value>::iterator, bool> SparseArray<Value>::insert(
322    const value_type& new_value) {
323  DebugCheckInvariants();
324  pair<typename SparseArray<Value>::iterator, bool> p;
325  if (has_index(new_value.index_)) {
326    p = make_pair(dense_.begin() + sparse_to_dense_[new_value.index_], false);
327  } else {
328    p = make_pair(set_new(new_value.index_, new_value.second), true);
329  }
330  DebugCheckInvariants();
331  return p;
332}
333
334template<typename Value>
335Value SparseArray<Value>::get(int i, Value defaultv) const {
336  if (!has_index(i))
337    return defaultv;
338  return get_existing(i);
339}
340
341template<typename Value>
342typename SparseArray<Value>::iterator SparseArray<Value>::find(int i) {
343  if (has_index(i))
344    return dense_.begin() + sparse_to_dense_[i];
345  return end();
346}
347
348template<typename Value>
349typename SparseArray<Value>::const_iterator
350SparseArray<Value>::find(int i) const {
351  if (has_index(i)) {
352    return dense_.begin() + sparse_to_dense_[i];
353  }
354  return end();
355}
356
357template<typename Value>
358typename SparseArray<Value>::iterator
359SparseArray<Value>::set_existing(int i, Value v) {
360  DebugCheckInvariants();
361  DCHECK(has_index(i));
362  dense_[sparse_to_dense_[i]].second = v;
363  DebugCheckInvariants();
364  return dense_.begin() + sparse_to_dense_[i];
365}
366
367template<typename Value>
368typename SparseArray<Value>::iterator
369SparseArray<Value>::set_new(int i, Value v) {
370  DebugCheckInvariants();
371  if (static_cast<uint>(i) >= max_size_) {
372    // Semantically, end() would be better here, but we already know
373    // the user did something stupid, so begin() insulates them from
374    // dereferencing an invalid pointer.
375    return begin();
376  }
377  DCHECK(!has_index(i));
378  create_index(i);
379  return set_existing(i, v);
380}
381
382template<typename Value>
383Value SparseArray<Value>::get_existing(int i) const {
384  DCHECK(has_index(i));
385  return dense_[sparse_to_dense_[i]].second;
386}
387
388template<typename Value>
389void SparseArray<Value>::erase(int i) {
390  DebugCheckInvariants();
391  if (has_index(i))
392    erase_existing(i);
393  DebugCheckInvariants();
394}
395
396template<typename Value>
397void SparseArray<Value>::erase_existing(int i) {
398  DebugCheckInvariants();
399  DCHECK(has_index(i));
400  int di = sparse_to_dense_[i];
401  if (di < size_ - 1) {
402    dense_[di] = dense_[size_ - 1];
403    sparse_to_dense_[dense_[di].index_] = di;
404  }
405  size_--;
406  DebugCheckInvariants();
407}
408
409template<typename Value>
410void SparseArray<Value>::create_index(int i) {
411  DCHECK(!has_index(i));
412  DCHECK_LT(size_, max_size_);
413  sparse_to_dense_[i] = size_;
414  dense_[size_].index_ = i;
415  size_++;
416}
417
418template<typename Value> SparseArray<Value>::SparseArray(int max_size) {
419  max_size_ = max_size;
420  sparse_to_dense_ = new int[max_size];
421  valgrind_ = RunningOnValgrind();
422  dense_.resize(max_size);
423  // Don't need to zero the new memory, but appease Valgrind.
424  if (valgrind_) {
425    for (int i = 0; i < max_size; i++) {
426      sparse_to_dense_[i] = 0xababababU;
427      dense_[i].index_ = 0xababababU;
428    }
429  }
430  size_ = 0;
431  DebugCheckInvariants();
432}
433
434template<typename Value> SparseArray<Value>::~SparseArray() {
435  DebugCheckInvariants();
436  delete[] sparse_to_dense_;
437}
438
439template<typename Value> void SparseArray<Value>::DebugCheckInvariants() const {
440  DCHECK_LE(0, size_);
441  DCHECK_LE(size_, max_size_);
442  DCHECK(size_ == 0 || sparse_to_dense_ != NULL);
443}
444
445// Comparison function for sorting.
446template<typename Value> bool SparseArray<Value>::less(const IndexValue& a,
447                                                       const IndexValue& b) {
448  return a.index_ < b.index_;
449}
450
451}  // namespace re2
452
453#endif  // RE2_UTIL_SPARSE_ARRAY_H__
454