1#include "SkBitmapScaler.h"
2#include "SkBitmapFilter.h"
3#include "SkRect.h"
4#include "SkTArray.h"
5#include "SkErrorInternals.h"
6#include "SkConvolver.h"
7
8// SkResizeFilter ----------------------------------------------------------------
9
10// Encapsulates computation and storage of the filters required for one complete
11// resize operation.
12class SkResizeFilter {
13public:
14    SkResizeFilter(SkBitmapScaler::ResizeMethod method,
15                   int srcFullWidth, int srcFullHeight,
16                   float destWidth, float destHeight,
17                   const SkRect& destSubset,
18                   const SkConvolutionProcs& convolveProcs);
19    ~SkResizeFilter() {
20        SkDELETE( fBitmapFilter );
21    }
22
23    // Returns the filled filter values.
24    const SkConvolutionFilter1D& xFilter() { return fXFilter; }
25    const SkConvolutionFilter1D& yFilter() { return fYFilter; }
26
27private:
28
29    SkBitmapFilter* fBitmapFilter;
30
31    // Computes one set of filters either horizontally or vertically. The caller
32    // will specify the "min" and "max" rather than the bottom/top and
33    // right/bottom so that the same code can be re-used in each dimension.
34    //
35    // |srcDependLo| and |srcDependSize| gives the range for the source
36    // depend rectangle (horizontally or vertically at the caller's discretion
37    // -- see above for what this means).
38    //
39    // Likewise, the range of destination values to compute and the scale factor
40    // for the transform is also specified.
41
42    void computeFilters(int srcSize,
43                        float destSubsetLo, float destSubsetSize,
44                        float scale,
45                        SkConvolutionFilter1D* output,
46                        const SkConvolutionProcs& convolveProcs);
47
48    SkConvolutionFilter1D fXFilter;
49    SkConvolutionFilter1D fYFilter;
50};
51
52SkResizeFilter::SkResizeFilter(SkBitmapScaler::ResizeMethod method,
53                               int srcFullWidth, int srcFullHeight,
54                               float destWidth, float destHeight,
55                               const SkRect& destSubset,
56                               const SkConvolutionProcs& convolveProcs) {
57
58    // method will only ever refer to an "algorithm method".
59    SkASSERT((SkBitmapScaler::RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
60             (method <= SkBitmapScaler::RESIZE_LAST_ALGORITHM_METHOD));
61
62    switch(method) {
63        case SkBitmapScaler::RESIZE_BOX:
64            fBitmapFilter = SkNEW(SkBoxFilter);
65            break;
66        case SkBitmapScaler::RESIZE_TRIANGLE:
67            fBitmapFilter = SkNEW(SkTriangleFilter);
68            break;
69        case SkBitmapScaler::RESIZE_MITCHELL:
70            fBitmapFilter = SkNEW_ARGS(SkMitchellFilter, (1.f/3.f, 1.f/3.f));
71            break;
72        case SkBitmapScaler::RESIZE_HAMMING:
73            fBitmapFilter = SkNEW(SkHammingFilter);
74            break;
75        case SkBitmapScaler::RESIZE_LANCZOS3:
76            fBitmapFilter = SkNEW(SkLanczosFilter);
77            break;
78        default:
79            // NOTREACHED:
80            fBitmapFilter = SkNEW_ARGS(SkMitchellFilter, (1.f/3.f, 1.f/3.f));
81            break;
82    }
83
84
85    float scaleX = destWidth / srcFullWidth;
86    float scaleY = destHeight / srcFullHeight;
87
88    this->computeFilters(srcFullWidth, destSubset.fLeft, destSubset.width(),
89                         scaleX, &fXFilter, convolveProcs);
90    if (srcFullWidth == srcFullHeight &&
91        destSubset.fLeft == destSubset.fTop &&
92        destSubset.width() == destSubset.height()&&
93        scaleX == scaleY) {
94        fYFilter = fXFilter;
95    } else {
96        this->computeFilters(srcFullHeight, destSubset.fTop, destSubset.height(),
97                          scaleY, &fYFilter, convolveProcs);
98    }
99}
100
101// TODO(egouriou): Take advantage of periods in the convolution.
102// Practical resizing filters are periodic outside of the border area.
103// For Lanczos, a scaling by a (reduced) factor of p/q (q pixels in the
104// source become p pixels in the destination) will have a period of p.
105// A nice consequence is a period of 1 when downscaling by an integral
106// factor. Downscaling from typical display resolutions is also bound
107// to produce interesting periods as those are chosen to have multiple
108// small factors.
109// Small periods reduce computational load and improve cache usage if
110// the coefficients can be shared. For periods of 1 we can consider
111// loading the factors only once outside the borders.
112void SkResizeFilter::computeFilters(int srcSize,
113                                  float destSubsetLo, float destSubsetSize,
114                                  float scale,
115                                  SkConvolutionFilter1D* output,
116                                  const SkConvolutionProcs& convolveProcs) {
117  float destSubsetHi = destSubsetLo + destSubsetSize;  // [lo, hi)
118
119  // When we're doing a magnification, the scale will be larger than one. This
120  // means the destination pixels are much smaller than the source pixels, and
121  // that the range covered by the filter won't necessarily cover any source
122  // pixel boundaries. Therefore, we use these clamped values (max of 1) for
123  // some computations.
124  float clampedScale = SkTMin(1.0f, scale);
125
126  // This is how many source pixels from the center we need to count
127  // to support the filtering function.
128  float srcSupport = fBitmapFilter->width() / clampedScale;
129
130  // Speed up the divisions below by turning them into multiplies.
131  float invScale = 1.0f / scale;
132
133  SkTArray<float> filterValues(64);
134  SkTArray<short> fixedFilterValues(64);
135
136  // Loop over all pixels in the output range. We will generate one set of
137  // filter values for each one. Those values will tell us how to blend the
138  // source pixels to compute the destination pixel.
139  for (int destSubsetI = SkScalarFloorToInt(destSubsetLo); destSubsetI < SkScalarCeilToInt(destSubsetHi);
140       destSubsetI++) {
141    // Reset the arrays. We don't declare them inside so they can re-use the
142    // same malloc-ed buffer.
143    filterValues.reset();
144    fixedFilterValues.reset();
145
146    // This is the pixel in the source directly under the pixel in the dest.
147    // Note that we base computations on the "center" of the pixels. To see
148    // why, observe that the destination pixel at coordinates (0, 0) in a 5.0x
149    // downscale should "cover" the pixels around the pixel with *its center*
150    // at coordinates (2.5, 2.5) in the source, not those around (0, 0).
151    // Hence we need to scale coordinates (0.5, 0.5), not (0, 0).
152    float srcPixel = (static_cast<float>(destSubsetI) + 0.5f) * invScale;
153
154    // Compute the (inclusive) range of source pixels the filter covers.
155    int srcBegin = SkTMax(0, SkScalarFloorToInt(srcPixel - srcSupport));
156    int srcEnd = SkTMin(srcSize - 1, SkScalarCeilToInt(srcPixel + srcSupport));
157
158    // Compute the unnormalized filter value at each location of the source
159    // it covers.
160    float filterSum = 0.0f;  // Sub of the filter values for normalizing.
161    for (int curFilterPixel = srcBegin; curFilterPixel <= srcEnd;
162         curFilterPixel++) {
163      // Distance from the center of the filter, this is the filter coordinate
164      // in source space. We also need to consider the center of the pixel
165      // when comparing distance against 'srcPixel'. In the 5x downscale
166      // example used above the distance from the center of the filter to
167      // the pixel with coordinates (2, 2) should be 0, because its center
168      // is at (2.5, 2.5).
169      float srcFilterDist =
170          ((static_cast<float>(curFilterPixel) + 0.5f) - srcPixel);
171
172      // Since the filter really exists in dest space, map it there.
173      float destFilterDist = srcFilterDist * clampedScale;
174
175      // Compute the filter value at that location.
176      float filterValue = fBitmapFilter->evaluate(destFilterDist);
177      filterValues.push_back(filterValue);
178
179      filterSum += filterValue;
180    }
181    SkASSERT(!filterValues.empty());
182
183    // The filter must be normalized so that we don't affect the brightness of
184    // the image. Convert to normalized fixed point.
185    short fixedSum = 0;
186    for (int i = 0; i < filterValues.count(); i++) {
187      short curFixed = output->FloatToFixed(filterValues[i] / filterSum);
188      fixedSum += curFixed;
189      fixedFilterValues.push_back(curFixed);
190    }
191
192    // The conversion to fixed point will leave some rounding errors, which
193    // we add back in to avoid affecting the brightness of the image. We
194    // arbitrarily add this to the center of the filter array (this won't always
195    // be the center of the filter function since it could get clipped on the
196    // edges, but it doesn't matter enough to worry about that case).
197    short leftovers = output->FloatToFixed(1.0f) - fixedSum;
198    fixedFilterValues[fixedFilterValues.count() / 2] += leftovers;
199
200    // Now it's ready to go.
201    output->AddFilter(srcBegin, &fixedFilterValues[0],
202                      static_cast<int>(fixedFilterValues.count()));
203  }
204
205  if (convolveProcs.fApplySIMDPadding) {
206      convolveProcs.fApplySIMDPadding( output );
207  }
208}
209
210static SkBitmapScaler::ResizeMethod ResizeMethodToAlgorithmMethod(
211                                    SkBitmapScaler::ResizeMethod method) {
212    // Convert any "Quality Method" into an "Algorithm Method"
213    if (method >= SkBitmapScaler::RESIZE_FIRST_ALGORITHM_METHOD &&
214    method <= SkBitmapScaler::RESIZE_LAST_ALGORITHM_METHOD) {
215        return method;
216    }
217    // The call to SkBitmapScalerGtv::Resize() above took care of
218    // GPU-acceleration in the cases where it is possible. So now we just
219    // pick the appropriate software method for each resize quality.
220    switch (method) {
221        // Users of RESIZE_GOOD are willing to trade a lot of quality to
222        // get speed, allowing the use of linear resampling to get hardware
223        // acceleration (SRB). Hence any of our "good" software filters
224        // will be acceptable, so we use a triangle.
225        case SkBitmapScaler::RESIZE_GOOD:
226            return SkBitmapScaler::RESIZE_TRIANGLE;
227        // Users of RESIZE_BETTER are willing to trade some quality in order
228        // to improve performance, but are guaranteed not to devolve to a linear
229        // resampling. In visual tests we see that Hamming-1 is not as good as
230        // Lanczos-2, however it is about 40% faster and Lanczos-2 itself is
231        // about 30% faster than Lanczos-3. The use of Hamming-1 has been deemed
232        // an acceptable trade-off between quality and speed.
233        case SkBitmapScaler::RESIZE_BETTER:
234            return SkBitmapScaler::RESIZE_HAMMING;
235        default:
236#ifdef SK_HIGH_QUALITY_IS_LANCZOS
237            return SkBitmapScaler::RESIZE_LANCZOS3;
238#else
239            return SkBitmapScaler::RESIZE_MITCHELL;
240#endif
241    }
242}
243
244// static
245bool SkBitmapScaler::Resize(SkBitmap* resultPtr,
246                            const SkBitmap& source,
247                            ResizeMethod method,
248                            float destWidth, float destHeight,
249                            const SkConvolutionProcs& convolveProcs,
250                            SkBitmap::Allocator* allocator) {
251
252  SkRect destSubset = { 0, 0, destWidth, destHeight };
253
254  // Ensure that the ResizeMethod enumeration is sound.
255    SkASSERT(((RESIZE_FIRST_QUALITY_METHOD <= method) &&
256        (method <= RESIZE_LAST_QUALITY_METHOD)) ||
257        ((RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
258        (method <= RESIZE_LAST_ALGORITHM_METHOD)));
259
260    SkRect dest = { 0, 0, destWidth, destHeight };
261    if (!dest.contains(destSubset)) {
262        SkErrorInternals::SetError( kInvalidArgument_SkError,
263                                    "Sorry, the destination bitmap scale subset "
264                                    "falls outside the full destination bitmap." );
265    }
266
267    // If the size of source or destination is 0, i.e. 0x0, 0xN or Nx0, just
268    // return empty.
269    if (source.width() < 1 || source.height() < 1 ||
270        destWidth < 1 || destHeight < 1) {
271        // todo: seems like we could handle negative dstWidth/Height, since that
272        // is just a negative scale (flip)
273        return false;
274    }
275
276    method = ResizeMethodToAlgorithmMethod(method);
277
278    // Check that we deal with an "algorithm methods" from this point onward.
279    SkASSERT((SkBitmapScaler::RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
280        (method <= SkBitmapScaler::RESIZE_LAST_ALGORITHM_METHOD));
281
282    SkAutoLockPixels locker(source);
283    if (!source.readyToDraw() ||
284        source.colorType() != kN32_SkColorType) {
285        return false;
286    }
287
288    SkResizeFilter filter(method, source.width(), source.height(),
289                          destWidth, destHeight, destSubset, convolveProcs);
290
291    // Get a source bitmap encompassing this touched area. We construct the
292    // offsets and row strides such that it looks like a new bitmap, while
293    // referring to the old data.
294    const unsigned char* sourceSubset =
295        reinterpret_cast<const unsigned char*>(source.getPixels());
296
297    // Convolve into the result.
298    SkBitmap result;
299    result.setInfo(SkImageInfo::MakeN32(SkScalarCeilToInt(destSubset.width()),
300                                        SkScalarCeilToInt(destSubset.height()),
301                                        source.alphaType()));
302    result.allocPixels(allocator, NULL);
303    if (!result.readyToDraw()) {
304        return false;
305    }
306
307    BGRAConvolve2D(sourceSubset, static_cast<int>(source.rowBytes()),
308        !source.isOpaque(), filter.xFilter(), filter.yFilter(),
309        static_cast<int>(result.rowBytes()),
310        static_cast<unsigned char*>(result.getPixels()),
311        convolveProcs, true);
312
313    *resultPtr = result;
314    resultPtr->lockPixels();
315    SkASSERT(NULL != resultPtr->getPixels());
316    return true;
317}
318