1/*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "GrAAHairLinePathRenderer.h"
9
10#include "GrContext.h"
11#include "GrDrawState.h"
12#include "GrDrawTargetCaps.h"
13#include "GrEffect.h"
14#include "GrGpu.h"
15#include "GrIndexBuffer.h"
16#include "GrPathUtils.h"
17#include "GrTBackendEffectFactory.h"
18#include "SkGeometry.h"
19#include "SkStroke.h"
20#include "SkTemplates.h"
21
22#include "effects/GrBezierEffect.h"
23
24namespace {
25// quadratics are rendered as 5-sided polys in order to bound the
26// AA stroke around the center-curve. See comments in push_quad_index_buffer and
27// bloat_quad. Quadratics and conics share an index buffer
28static const int kVertsPerQuad = 5;
29static const int kIdxsPerQuad = 9;
30
31// lines are rendered as:
32//      *______________*
33//      |\ -_______   /|
34//      | \        \ / |
35//      |  *--------*  |
36//      | /  ______/ \ |
37//      */_-__________\*
38// For: 6 vertices and 18 indices (for 6 triangles)
39static const int kVertsPerLineSeg = 6;
40static const int kIdxsPerLineSeg = 18;
41
42static const int kNumQuadsInIdxBuffer = 256;
43static const size_t kQuadIdxSBufize = kIdxsPerQuad *
44                                      sizeof(uint16_t) *
45                                      kNumQuadsInIdxBuffer;
46
47static const int kNumLineSegsInIdxBuffer = 256;
48static const size_t kLineSegIdxSBufize = kIdxsPerLineSeg *
49                                         sizeof(uint16_t) *
50                                         kNumLineSegsInIdxBuffer;
51
52static bool push_quad_index_data(GrIndexBuffer* qIdxBuffer) {
53    uint16_t* data = (uint16_t*) qIdxBuffer->map();
54    bool tempData = NULL == data;
55    if (tempData) {
56        data = SkNEW_ARRAY(uint16_t, kNumQuadsInIdxBuffer * kIdxsPerQuad);
57    }
58    for (int i = 0; i < kNumQuadsInIdxBuffer; ++i) {
59
60        // Each quadratic is rendered as a five sided polygon. This poly bounds
61        // the quadratic's bounding triangle but has been expanded so that the
62        // 1-pixel wide area around the curve is inside the poly.
63        // If a,b,c are the original control points then the poly a0,b0,c0,c1,a1
64        // that is rendered would look like this:
65        //              b0
66        //              b
67        //
68        //     a0              c0
69        //      a            c
70        //       a1       c1
71        // Each is drawn as three triangles specified by these 9 indices:
72        int baseIdx = i * kIdxsPerQuad;
73        uint16_t baseVert = (uint16_t)(i * kVertsPerQuad);
74        data[0 + baseIdx] = baseVert + 0; // a0
75        data[1 + baseIdx] = baseVert + 1; // a1
76        data[2 + baseIdx] = baseVert + 2; // b0
77        data[3 + baseIdx] = baseVert + 2; // b0
78        data[4 + baseIdx] = baseVert + 4; // c1
79        data[5 + baseIdx] = baseVert + 3; // c0
80        data[6 + baseIdx] = baseVert + 1; // a1
81        data[7 + baseIdx] = baseVert + 4; // c1
82        data[8 + baseIdx] = baseVert + 2; // b0
83    }
84    if (tempData) {
85        bool ret = qIdxBuffer->updateData(data, kQuadIdxSBufize);
86        delete[] data;
87        return ret;
88    } else {
89        qIdxBuffer->unmap();
90        return true;
91    }
92}
93
94static bool push_line_index_data(GrIndexBuffer* lIdxBuffer) {
95    uint16_t* data = (uint16_t*) lIdxBuffer->map();
96    bool tempData = NULL == data;
97    if (tempData) {
98        data = SkNEW_ARRAY(uint16_t, kNumLineSegsInIdxBuffer * kIdxsPerLineSeg);
99    }
100    for (int i = 0; i < kNumLineSegsInIdxBuffer; ++i) {
101        // Each line segment is rendered as two quads and two triangles.
102        // p0 and p1 have alpha = 1 while all other points have alpha = 0.
103        // The four external points are offset 1 pixel perpendicular to the
104        // line and half a pixel parallel to the line.
105        //
106        // p4                  p5
107        //      p0         p1
108        // p2                  p3
109        //
110        // Each is drawn as six triangles specified by these 18 indices:
111        int baseIdx = i * kIdxsPerLineSeg;
112        uint16_t baseVert = (uint16_t)(i * kVertsPerLineSeg);
113        data[0 + baseIdx] = baseVert + 0;
114        data[1 + baseIdx] = baseVert + 1;
115        data[2 + baseIdx] = baseVert + 3;
116
117        data[3 + baseIdx] = baseVert + 0;
118        data[4 + baseIdx] = baseVert + 3;
119        data[5 + baseIdx] = baseVert + 2;
120
121        data[6 + baseIdx] = baseVert + 0;
122        data[7 + baseIdx] = baseVert + 4;
123        data[8 + baseIdx] = baseVert + 5;
124
125        data[9 + baseIdx] = baseVert + 0;
126        data[10+ baseIdx] = baseVert + 5;
127        data[11+ baseIdx] = baseVert + 1;
128
129        data[12 + baseIdx] = baseVert + 0;
130        data[13 + baseIdx] = baseVert + 2;
131        data[14 + baseIdx] = baseVert + 4;
132
133        data[15 + baseIdx] = baseVert + 1;
134        data[16 + baseIdx] = baseVert + 5;
135        data[17 + baseIdx] = baseVert + 3;
136    }
137    if (tempData) {
138        bool ret = lIdxBuffer->updateData(data, kLineSegIdxSBufize);
139        delete[] data;
140        return ret;
141    } else {
142        lIdxBuffer->unmap();
143        return true;
144    }
145}
146}
147
148GrPathRenderer* GrAAHairLinePathRenderer::Create(GrContext* context) {
149    GrGpu* gpu = context->getGpu();
150    GrIndexBuffer* qIdxBuf = gpu->createIndexBuffer(kQuadIdxSBufize, false);
151    SkAutoTUnref<GrIndexBuffer> qIdxBuffer(qIdxBuf);
152    if (NULL == qIdxBuf || !push_quad_index_data(qIdxBuf)) {
153        return NULL;
154    }
155    GrIndexBuffer* lIdxBuf = gpu->createIndexBuffer(kLineSegIdxSBufize, false);
156    SkAutoTUnref<GrIndexBuffer> lIdxBuffer(lIdxBuf);
157    if (NULL == lIdxBuf || !push_line_index_data(lIdxBuf)) {
158        return NULL;
159    }
160    return SkNEW_ARGS(GrAAHairLinePathRenderer,
161                      (context, lIdxBuf, qIdxBuf));
162}
163
164GrAAHairLinePathRenderer::GrAAHairLinePathRenderer(
165                                        const GrContext* context,
166                                        const GrIndexBuffer* linesIndexBuffer,
167                                        const GrIndexBuffer* quadsIndexBuffer) {
168    fLinesIndexBuffer = linesIndexBuffer;
169    linesIndexBuffer->ref();
170    fQuadsIndexBuffer = quadsIndexBuffer;
171    quadsIndexBuffer->ref();
172}
173
174GrAAHairLinePathRenderer::~GrAAHairLinePathRenderer() {
175    fLinesIndexBuffer->unref();
176    fQuadsIndexBuffer->unref();
177}
178
179namespace {
180
181#define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true>
182
183// Takes 178th time of logf on Z600 / VC2010
184int get_float_exp(float x) {
185    GR_STATIC_ASSERT(sizeof(int) == sizeof(float));
186#ifdef SK_DEBUG
187    static bool tested;
188    if (!tested) {
189        tested = true;
190        SkASSERT(get_float_exp(0.25f) == -2);
191        SkASSERT(get_float_exp(0.3f) == -2);
192        SkASSERT(get_float_exp(0.5f) == -1);
193        SkASSERT(get_float_exp(1.f) == 0);
194        SkASSERT(get_float_exp(2.f) == 1);
195        SkASSERT(get_float_exp(2.5f) == 1);
196        SkASSERT(get_float_exp(8.f) == 3);
197        SkASSERT(get_float_exp(100.f) == 6);
198        SkASSERT(get_float_exp(1000.f) == 9);
199        SkASSERT(get_float_exp(1024.f) == 10);
200        SkASSERT(get_float_exp(3000000.f) == 21);
201    }
202#endif
203    const int* iptr = (const int*)&x;
204    return (((*iptr) & 0x7f800000) >> 23) - 127;
205}
206
207// Uses the max curvature function for quads to estimate
208// where to chop the conic. If the max curvature is not
209// found along the curve segment it will return 1 and
210// dst[0] is the original conic. If it returns 2 the dst[0]
211// and dst[1] are the two new conics.
212int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
213    SkScalar t = SkFindQuadMaxCurvature(src);
214    if (t == 0) {
215        if (dst) {
216            dst[0].set(src, weight);
217        }
218        return 1;
219    } else {
220        if (dst) {
221            SkConic conic;
222            conic.set(src, weight);
223            conic.chopAt(t, dst);
224        }
225        return 2;
226    }
227}
228
229// Calls split_conic on the entire conic and then once more on each subsection.
230// Most cases will result in either 1 conic (chop point is not within t range)
231// or 3 points (split once and then one subsection is split again).
232int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
233    SkConic dstTemp[2];
234    int conicCnt = split_conic(src, dstTemp, weight);
235    if (2 == conicCnt) {
236        int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
237        conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
238    } else {
239        dst[0] = dstTemp[0];
240    }
241    return conicCnt;
242}
243
244// returns 0 if quad/conic is degen or close to it
245// in this case approx the path with lines
246// otherwise returns 1
247int is_degen_quad_or_conic(const SkPoint p[3]) {
248    static const SkScalar gDegenerateToLineTol = SK_Scalar1;
249    static const SkScalar gDegenerateToLineTolSqd =
250        SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol);
251
252    if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd ||
253        p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) {
254        return 1;
255    }
256
257    SkScalar dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]);
258    if (dsqd < gDegenerateToLineTolSqd) {
259        return 1;
260    }
261
262    if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) {
263        return 1;
264    }
265    return 0;
266}
267
268// we subdivide the quads to avoid huge overfill
269// if it returns -1 then should be drawn as lines
270int num_quad_subdivs(const SkPoint p[3]) {
271    static const SkScalar gDegenerateToLineTol = SK_Scalar1;
272    static const SkScalar gDegenerateToLineTolSqd =
273        SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol);
274
275    if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd ||
276        p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) {
277        return -1;
278    }
279
280    SkScalar dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]);
281    if (dsqd < gDegenerateToLineTolSqd) {
282        return -1;
283    }
284
285    if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) {
286        return -1;
287    }
288
289    // tolerance of triangle height in pixels
290    // tuned on windows  Quadro FX 380 / Z600
291    // trade off of fill vs cpu time on verts
292    // maybe different when do this using gpu (geo or tess shaders)
293    static const SkScalar gSubdivTol = 175 * SK_Scalar1;
294
295    if (dsqd <= SkScalarMul(gSubdivTol, gSubdivTol)) {
296        return 0;
297    } else {
298        static const int kMaxSub = 4;
299        // subdividing the quad reduces d by 4. so we want x = log4(d/tol)
300        // = log4(d*d/tol*tol)/2
301        // = log2(d*d/tol*tol)
302
303        // +1 since we're ignoring the mantissa contribution.
304        int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1;
305        log = SkTMin(SkTMax(0, log), kMaxSub);
306        return log;
307    }
308}
309
310/**
311 * Generates the lines and quads to be rendered. Lines are always recorded in
312 * device space. We will do a device space bloat to account for the 1pixel
313 * thickness.
314 * Quads are recorded in device space unless m contains
315 * perspective, then in they are in src space. We do this because we will
316 * subdivide large quads to reduce over-fill. This subdivision has to be
317 * performed before applying the perspective matrix.
318 */
319int generate_lines_and_quads(const SkPath& path,
320                             const SkMatrix& m,
321                             const SkIRect& devClipBounds,
322                             GrAAHairLinePathRenderer::PtArray* lines,
323                             GrAAHairLinePathRenderer::PtArray* quads,
324                             GrAAHairLinePathRenderer::PtArray* conics,
325                             GrAAHairLinePathRenderer::IntArray* quadSubdivCnts,
326                             GrAAHairLinePathRenderer::FloatArray* conicWeights) {
327    SkPath::Iter iter(path, false);
328
329    int totalQuadCount = 0;
330    SkRect bounds;
331    SkIRect ibounds;
332
333    bool persp = m.hasPerspective();
334
335    for (;;) {
336        SkPoint pathPts[4];
337        SkPoint devPts[4];
338        SkPath::Verb verb = iter.next(pathPts);
339        switch (verb) {
340            case SkPath::kConic_Verb: {
341                SkConic dst[4];
342                // We chop the conics to create tighter clipping to hide error
343                // that appears near max curvature of very thin conics. Thin
344                // hyperbolas with high weight still show error.
345                int conicCnt = chop_conic(pathPts, dst, iter.conicWeight());
346                for (int i = 0; i < conicCnt; ++i) {
347                    SkPoint* chopPnts = dst[i].fPts;
348                    m.mapPoints(devPts, chopPnts, 3);
349                    bounds.setBounds(devPts, 3);
350                    bounds.outset(SK_Scalar1, SK_Scalar1);
351                    bounds.roundOut(&ibounds);
352                    if (SkIRect::Intersects(devClipBounds, ibounds)) {
353                        if (is_degen_quad_or_conic(devPts)) {
354                            SkPoint* pts = lines->push_back_n(4);
355                            pts[0] = devPts[0];
356                            pts[1] = devPts[1];
357                            pts[2] = devPts[1];
358                            pts[3] = devPts[2];
359                        } else {
360                            // when in perspective keep conics in src space
361                            SkPoint* cPts = persp ? chopPnts : devPts;
362                            SkPoint* pts = conics->push_back_n(3);
363                            pts[0] = cPts[0];
364                            pts[1] = cPts[1];
365                            pts[2] = cPts[2];
366                            conicWeights->push_back() = dst[i].fW;
367                        }
368                    }
369                }
370                break;
371            }
372            case SkPath::kMove_Verb:
373                break;
374            case SkPath::kLine_Verb:
375                m.mapPoints(devPts, pathPts, 2);
376                bounds.setBounds(devPts, 2);
377                bounds.outset(SK_Scalar1, SK_Scalar1);
378                bounds.roundOut(&ibounds);
379                if (SkIRect::Intersects(devClipBounds, ibounds)) {
380                    SkPoint* pts = lines->push_back_n(2);
381                    pts[0] = devPts[0];
382                    pts[1] = devPts[1];
383                }
384                break;
385            case SkPath::kQuad_Verb: {
386                SkPoint choppedPts[5];
387                // Chopping the quad helps when the quad is either degenerate or nearly degenerate.
388                // When it is degenerate it allows the approximation with lines to work since the
389                // chop point (if there is one) will be at the parabola's vertex. In the nearly
390                // degenerate the QuadUVMatrix computed for the points is almost singular which
391                // can cause rendering artifacts.
392                int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts);
393                for (int i = 0; i < n; ++i) {
394                    SkPoint* quadPts = choppedPts + i * 2;
395                    m.mapPoints(devPts, quadPts, 3);
396                    bounds.setBounds(devPts, 3);
397                    bounds.outset(SK_Scalar1, SK_Scalar1);
398                    bounds.roundOut(&ibounds);
399
400                    if (SkIRect::Intersects(devClipBounds, ibounds)) {
401                        int subdiv = num_quad_subdivs(devPts);
402                        SkASSERT(subdiv >= -1);
403                        if (-1 == subdiv) {
404                            SkPoint* pts = lines->push_back_n(4);
405                            pts[0] = devPts[0];
406                            pts[1] = devPts[1];
407                            pts[2] = devPts[1];
408                            pts[3] = devPts[2];
409                        } else {
410                            // when in perspective keep quads in src space
411                            SkPoint* qPts = persp ? quadPts : devPts;
412                            SkPoint* pts = quads->push_back_n(3);
413                            pts[0] = qPts[0];
414                            pts[1] = qPts[1];
415                            pts[2] = qPts[2];
416                            quadSubdivCnts->push_back() = subdiv;
417                            totalQuadCount += 1 << subdiv;
418                        }
419                    }
420                }
421                break;
422            }
423            case SkPath::kCubic_Verb:
424                m.mapPoints(devPts, pathPts, 4);
425                bounds.setBounds(devPts, 4);
426                bounds.outset(SK_Scalar1, SK_Scalar1);
427                bounds.roundOut(&ibounds);
428                if (SkIRect::Intersects(devClipBounds, ibounds)) {
429                    PREALLOC_PTARRAY(32) q;
430                    // we don't need a direction if we aren't constraining the subdivision
431                    static const SkPath::Direction kDummyDir = SkPath::kCCW_Direction;
432                    // We convert cubics to quadratics (for now).
433                    // In perspective have to do conversion in src space.
434                    if (persp) {
435                        SkScalar tolScale =
436                            GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m,
437                                                             path.getBounds());
438                        GrPathUtils::convertCubicToQuads(pathPts, tolScale, false, kDummyDir, &q);
439                    } else {
440                        GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, false, kDummyDir, &q);
441                    }
442                    for (int i = 0; i < q.count(); i += 3) {
443                        SkPoint* qInDevSpace;
444                        // bounds has to be calculated in device space, but q is
445                        // in src space when there is perspective.
446                        if (persp) {
447                            m.mapPoints(devPts, &q[i], 3);
448                            bounds.setBounds(devPts, 3);
449                            qInDevSpace = devPts;
450                        } else {
451                            bounds.setBounds(&q[i], 3);
452                            qInDevSpace = &q[i];
453                        }
454                        bounds.outset(SK_Scalar1, SK_Scalar1);
455                        bounds.roundOut(&ibounds);
456                        if (SkIRect::Intersects(devClipBounds, ibounds)) {
457                            int subdiv = num_quad_subdivs(qInDevSpace);
458                            SkASSERT(subdiv >= -1);
459                            if (-1 == subdiv) {
460                                SkPoint* pts = lines->push_back_n(4);
461                                // lines should always be in device coords
462                                pts[0] = qInDevSpace[0];
463                                pts[1] = qInDevSpace[1];
464                                pts[2] = qInDevSpace[1];
465                                pts[3] = qInDevSpace[2];
466                            } else {
467                                SkPoint* pts = quads->push_back_n(3);
468                                // q is already in src space when there is no
469                                // perspective and dev coords otherwise.
470                                pts[0] = q[0 + i];
471                                pts[1] = q[1 + i];
472                                pts[2] = q[2 + i];
473                                quadSubdivCnts->push_back() = subdiv;
474                                totalQuadCount += 1 << subdiv;
475                            }
476                        }
477                    }
478                }
479                break;
480            case SkPath::kClose_Verb:
481                break;
482            case SkPath::kDone_Verb:
483                return totalQuadCount;
484        }
485    }
486}
487
488struct LineVertex {
489    SkPoint fPos;
490    GrColor fCoverage;
491};
492
493struct BezierVertex {
494    SkPoint fPos;
495    union {
496        struct {
497            SkScalar fK;
498            SkScalar fL;
499            SkScalar fM;
500        } fConic;
501        SkVector   fQuadCoord;
502        struct {
503            SkScalar fBogus[4];
504        };
505    };
506};
507
508GR_STATIC_ASSERT(sizeof(BezierVertex) == 3 * sizeof(SkPoint));
509
510void intersect_lines(const SkPoint& ptA, const SkVector& normA,
511                     const SkPoint& ptB, const SkVector& normB,
512                     SkPoint* result) {
513
514    SkScalar lineAW = -normA.dot(ptA);
515    SkScalar lineBW = -normB.dot(ptB);
516
517    SkScalar wInv = SkScalarMul(normA.fX, normB.fY) -
518        SkScalarMul(normA.fY, normB.fX);
519    wInv = SkScalarInvert(wInv);
520
521    result->fX = SkScalarMul(normA.fY, lineBW) - SkScalarMul(lineAW, normB.fY);
522    result->fX = SkScalarMul(result->fX, wInv);
523
524    result->fY = SkScalarMul(lineAW, normB.fX) - SkScalarMul(normA.fX, lineBW);
525    result->fY = SkScalarMul(result->fY, wInv);
526}
527
528void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kVertsPerQuad]) {
529    // this should be in the src space, not dev coords, when we have perspective
530    GrPathUtils::QuadUVMatrix DevToUV(qpts);
531    DevToUV.apply<kVertsPerQuad, sizeof(BezierVertex), sizeof(SkPoint)>(verts);
532}
533
534void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice,
535                const SkMatrix* toSrc, BezierVertex verts[kVertsPerQuad],
536                SkRect* devBounds) {
537    SkASSERT(!toDevice == !toSrc);
538    // original quad is specified by tri a,b,c
539    SkPoint a = qpts[0];
540    SkPoint b = qpts[1];
541    SkPoint c = qpts[2];
542
543    if (toDevice) {
544        toDevice->mapPoints(&a, 1);
545        toDevice->mapPoints(&b, 1);
546        toDevice->mapPoints(&c, 1);
547    }
548    // make a new poly where we replace a and c by a 1-pixel wide edges orthog
549    // to edges ab and bc:
550    //
551    //   before       |        after
552    //                |              b0
553    //         b      |
554    //                |
555    //                |     a0            c0
556    // a         c    |        a1       c1
557    //
558    // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c,
559    // respectively.
560    BezierVertex& a0 = verts[0];
561    BezierVertex& a1 = verts[1];
562    BezierVertex& b0 = verts[2];
563    BezierVertex& c0 = verts[3];
564    BezierVertex& c1 = verts[4];
565
566    SkVector ab = b;
567    ab -= a;
568    SkVector ac = c;
569    ac -= a;
570    SkVector cb = b;
571    cb -= c;
572
573    // We should have already handled degenerates
574    SkASSERT(ab.length() > 0 && cb.length() > 0);
575
576    ab.normalize();
577    SkVector abN;
578    abN.setOrthog(ab, SkVector::kLeft_Side);
579    if (abN.dot(ac) > 0) {
580        abN.negate();
581    }
582
583    cb.normalize();
584    SkVector cbN;
585    cbN.setOrthog(cb, SkVector::kLeft_Side);
586    if (cbN.dot(ac) < 0) {
587        cbN.negate();
588    }
589
590    a0.fPos = a;
591    a0.fPos += abN;
592    a1.fPos = a;
593    a1.fPos -= abN;
594
595    c0.fPos = c;
596    c0.fPos += cbN;
597    c1.fPos = c;
598    c1.fPos -= cbN;
599
600    intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos);
601    devBounds->growToInclude(&verts[0].fPos, sizeof(BezierVertex), kVertsPerQuad);
602
603    if (toSrc) {
604        toSrc->mapPointsWithStride(&verts[0].fPos, sizeof(BezierVertex), kVertsPerQuad);
605    }
606}
607
608// Equations based off of Loop-Blinn Quadratic GPU Rendering
609// Input Parametric:
610// P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2)
611// Output Implicit:
612// f(x, y, w) = f(P) = K^2 - LM
613// K = dot(k, P), L = dot(l, P), M = dot(m, P)
614// k, l, m are calculated in function GrPathUtils::getConicKLM
615void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kVertsPerQuad],
616                      const SkScalar weight) {
617    SkScalar klm[9];
618
619    GrPathUtils::getConicKLM(p, weight, klm);
620
621    for (int i = 0; i < kVertsPerQuad; ++i) {
622        const SkPoint pnt = verts[i].fPos;
623        verts[i].fConic.fK = pnt.fX * klm[0] + pnt.fY * klm[1] + klm[2];
624        verts[i].fConic.fL = pnt.fX * klm[3] + pnt.fY * klm[4] + klm[5];
625        verts[i].fConic.fM = pnt.fX * klm[6] + pnt.fY * klm[7] + klm[8];
626    }
627}
628
629void add_conics(const SkPoint p[3],
630                const SkScalar weight,
631                const SkMatrix* toDevice,
632                const SkMatrix* toSrc,
633                BezierVertex** vert,
634                SkRect* devBounds) {
635    bloat_quad(p, toDevice, toSrc, *vert, devBounds);
636    set_conic_coeffs(p, *vert, weight);
637    *vert += kVertsPerQuad;
638}
639
640void add_quads(const SkPoint p[3],
641               int subdiv,
642               const SkMatrix* toDevice,
643               const SkMatrix* toSrc,
644               BezierVertex** vert,
645               SkRect* devBounds) {
646    SkASSERT(subdiv >= 0);
647    if (subdiv) {
648        SkPoint newP[5];
649        SkChopQuadAtHalf(p, newP);
650        add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert, devBounds);
651        add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert, devBounds);
652    } else {
653        bloat_quad(p, toDevice, toSrc, *vert, devBounds);
654        set_uv_quad(p, *vert);
655        *vert += kVertsPerQuad;
656    }
657}
658
659void add_line(const SkPoint p[2],
660              const SkMatrix* toSrc,
661              GrColor coverage,
662              LineVertex** vert) {
663    const SkPoint& a = p[0];
664    const SkPoint& b = p[1];
665
666    SkVector ortho, vec = b;
667    vec -= a;
668
669    if (vec.setLength(SK_ScalarHalf)) {
670        // Create a vector orthogonal to 'vec' and of unit length
671        ortho.fX = 2.0f * vec.fY;
672        ortho.fY = -2.0f * vec.fX;
673
674        (*vert)[0].fPos = a;
675        (*vert)[0].fCoverage = coverage;
676        (*vert)[1].fPos = b;
677        (*vert)[1].fCoverage = coverage;
678        (*vert)[2].fPos = a - vec + ortho;
679        (*vert)[2].fCoverage = 0;
680        (*vert)[3].fPos = b + vec + ortho;
681        (*vert)[3].fCoverage = 0;
682        (*vert)[4].fPos = a - vec - ortho;
683        (*vert)[4].fCoverage = 0;
684        (*vert)[5].fPos = b + vec - ortho;
685        (*vert)[5].fCoverage = 0;
686
687        if (NULL != toSrc) {
688            toSrc->mapPointsWithStride(&(*vert)->fPos,
689                                       sizeof(LineVertex),
690                                       kVertsPerLineSeg);
691        }
692    } else {
693        // just make it degenerate and likely offscreen
694        for (int i = 0; i < kVertsPerLineSeg; ++i) {
695            (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax);
696        }
697    }
698
699    *vert += kVertsPerLineSeg;
700}
701
702}
703
704///////////////////////////////////////////////////////////////////////////////
705
706namespace {
707
708// position + edge
709extern const GrVertexAttrib gHairlineBezierAttribs[] = {
710    {kVec2f_GrVertexAttribType, 0,                  kPosition_GrVertexAttribBinding},
711    {kVec4f_GrVertexAttribType, sizeof(SkPoint),    kEffect_GrVertexAttribBinding}
712};
713
714// position + coverage
715extern const GrVertexAttrib gHairlineLineAttribs[] = {
716    {kVec2f_GrVertexAttribType,  0,               kPosition_GrVertexAttribBinding},
717    {kVec4ub_GrVertexAttribType, sizeof(SkPoint), kCoverage_GrVertexAttribBinding},
718};
719
720};
721
722bool GrAAHairLinePathRenderer::createLineGeom(const SkPath& path,
723                                              GrDrawTarget* target,
724                                              const PtArray& lines,
725                                              int lineCnt,
726                                              GrDrawTarget::AutoReleaseGeometry* arg,
727                                              SkRect* devBounds) {
728    GrDrawState* drawState = target->drawState();
729
730    const SkMatrix& viewM = drawState->getViewMatrix();
731
732    int vertCnt = kVertsPerLineSeg * lineCnt;
733
734    drawState->setVertexAttribs<gHairlineLineAttribs>(SK_ARRAY_COUNT(gHairlineLineAttribs));
735    SkASSERT(sizeof(LineVertex) == drawState->getVertexSize());
736
737    if (!arg->set(target, vertCnt, 0)) {
738        return false;
739    }
740
741    LineVertex* verts = reinterpret_cast<LineVertex*>(arg->vertices());
742
743    const SkMatrix* toSrc = NULL;
744    SkMatrix ivm;
745
746    if (viewM.hasPerspective()) {
747        if (viewM.invert(&ivm)) {
748            toSrc = &ivm;
749        }
750    }
751    devBounds->set(lines.begin(), lines.count());
752    for (int i = 0; i < lineCnt; ++i) {
753        add_line(&lines[2*i], toSrc, drawState->getCoverageColor(), &verts);
754    }
755    // All the verts computed by add_line are within sqrt(1^2 + 0.5^2) of the end points.
756    static const SkScalar kSqrtOfOneAndAQuarter = 1.118f;
757    // Add a little extra to account for vector normalization precision.
758    static const SkScalar kOutset = kSqrtOfOneAndAQuarter + SK_Scalar1 / 20;
759    devBounds->outset(kOutset, kOutset);
760
761    return true;
762}
763
764bool GrAAHairLinePathRenderer::createBezierGeom(
765                                          const SkPath& path,
766                                          GrDrawTarget* target,
767                                          const PtArray& quads,
768                                          int quadCnt,
769                                          const PtArray& conics,
770                                          int conicCnt,
771                                          const IntArray& qSubdivs,
772                                          const FloatArray& cWeights,
773                                          GrDrawTarget::AutoReleaseGeometry* arg,
774                                          SkRect* devBounds) {
775    GrDrawState* drawState = target->drawState();
776
777    const SkMatrix& viewM = drawState->getViewMatrix();
778
779    int vertCnt = kVertsPerQuad * quadCnt + kVertsPerQuad * conicCnt;
780
781    target->drawState()->setVertexAttribs<gHairlineBezierAttribs>(SK_ARRAY_COUNT(gHairlineBezierAttribs));
782    SkASSERT(sizeof(BezierVertex) == target->getDrawState().getVertexSize());
783
784    if (!arg->set(target, vertCnt, 0)) {
785        return false;
786    }
787
788    BezierVertex* verts = reinterpret_cast<BezierVertex*>(arg->vertices());
789
790    const SkMatrix* toDevice = NULL;
791    const SkMatrix* toSrc = NULL;
792    SkMatrix ivm;
793
794    if (viewM.hasPerspective()) {
795        if (viewM.invert(&ivm)) {
796            toDevice = &viewM;
797            toSrc = &ivm;
798        }
799    }
800
801    // Seed the dev bounds with some pts known to be inside. Each quad and conic grows the bounding
802    // box to include its vertices.
803    SkPoint seedPts[2];
804    if (quadCnt) {
805        seedPts[0] = quads[0];
806        seedPts[1] = quads[2];
807    } else if (conicCnt) {
808        seedPts[0] = conics[0];
809        seedPts[1] = conics[2];
810    }
811    if (NULL != toDevice) {
812        toDevice->mapPoints(seedPts, 2);
813    }
814    devBounds->set(seedPts[0], seedPts[1]);
815
816    int unsubdivQuadCnt = quads.count() / 3;
817    for (int i = 0; i < unsubdivQuadCnt; ++i) {
818        SkASSERT(qSubdivs[i] >= 0);
819        add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &verts, devBounds);
820    }
821
822    // Start Conics
823    for (int i = 0; i < conicCnt; ++i) {
824        add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &verts, devBounds);
825    }
826    return true;
827}
828
829bool GrAAHairLinePathRenderer::canDrawPath(const SkPath& path,
830                                           const SkStrokeRec& stroke,
831                                           const GrDrawTarget* target,
832                                           bool antiAlias) const {
833    if (!antiAlias) {
834        return false;
835    }
836
837    if (!IsStrokeHairlineOrEquivalent(stroke,
838                                      target->getDrawState().getViewMatrix(),
839                                      NULL)) {
840        return false;
841    }
842
843    if (SkPath::kLine_SegmentMask == path.getSegmentMasks() ||
844        target->caps()->shaderDerivativeSupport()) {
845        return true;
846    }
847    return false;
848}
849
850template <class VertexType>
851bool check_bounds(GrDrawState* drawState, const SkRect& devBounds, void* vertices, int vCount)
852{
853    SkRect tolDevBounds = devBounds;
854    // The bounds ought to be tight, but in perspective the below code runs the verts
855    // through the view matrix to get back to dev coords, which can introduce imprecision.
856    if (drawState->getViewMatrix().hasPerspective()) {
857        tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000);
858    } else {
859        // Non-persp matrices cause this path renderer to draw in device space.
860        SkASSERT(drawState->getViewMatrix().isIdentity());
861    }
862    SkRect actualBounds;
863
864    VertexType* verts = reinterpret_cast<VertexType*>(vertices);
865    bool first = true;
866    for (int i = 0; i < vCount; ++i) {
867        SkPoint pos = verts[i].fPos;
868        // This is a hack to workaround the fact that we move some degenerate segments offscreen.
869        if (SK_ScalarMax == pos.fX) {
870            continue;
871        }
872        drawState->getViewMatrix().mapPoints(&pos, 1);
873        if (first) {
874            actualBounds.set(pos.fX, pos.fY, pos.fX, pos.fY);
875            first = false;
876        } else {
877            actualBounds.growToInclude(pos.fX, pos.fY);
878        }
879    }
880    if (!first) {
881        return tolDevBounds.contains(actualBounds);
882    }
883
884    return true;
885}
886
887bool GrAAHairLinePathRenderer::onDrawPath(const SkPath& path,
888                                          const SkStrokeRec& stroke,
889                                          GrDrawTarget* target,
890                                          bool antiAlias) {
891    GrDrawState* drawState = target->drawState();
892
893    SkScalar hairlineCoverage;
894    if (IsStrokeHairlineOrEquivalent(stroke,
895                                     target->getDrawState().getViewMatrix(),
896                                     &hairlineCoverage)) {
897        uint8_t newCoverage = SkScalarRoundToInt(hairlineCoverage *
898                                                 target->getDrawState().getCoverage());
899        target->drawState()->setCoverage(newCoverage);
900    }
901
902    SkIRect devClipBounds;
903    target->getClip()->getConservativeBounds(drawState->getRenderTarget(), &devClipBounds);
904
905    int lineCnt;
906    int quadCnt;
907    int conicCnt;
908    PREALLOC_PTARRAY(128) lines;
909    PREALLOC_PTARRAY(128) quads;
910    PREALLOC_PTARRAY(128) conics;
911    IntArray qSubdivs;
912    FloatArray cWeights;
913    quadCnt = generate_lines_and_quads(path, drawState->getViewMatrix(), devClipBounds,
914                                       &lines, &quads, &conics, &qSubdivs, &cWeights);
915    lineCnt = lines.count() / 2;
916    conicCnt = conics.count() / 3;
917
918    // do lines first
919    if (lineCnt) {
920        GrDrawTarget::AutoReleaseGeometry arg;
921        SkRect devBounds;
922
923        if (!this->createLineGeom(path,
924                                  target,
925                                  lines,
926                                  lineCnt,
927                                  &arg,
928                                  &devBounds)) {
929            return false;
930        }
931
932        GrDrawTarget::AutoStateRestore asr;
933
934        // createLineGeom transforms the geometry to device space when the matrix does not have
935        // perspective.
936        if (target->getDrawState().getViewMatrix().hasPerspective()) {
937            asr.set(target, GrDrawTarget::kPreserve_ASRInit);
938        } else if (!asr.setIdentity(target, GrDrawTarget::kPreserve_ASRInit)) {
939            return false;
940        }
941        GrDrawState* drawState = target->drawState();
942
943        // Check devBounds
944        SkASSERT(check_bounds<LineVertex>(drawState, devBounds, arg.vertices(),
945                                          kVertsPerLineSeg * lineCnt));
946
947        {
948            GrDrawState::AutoRestoreEffects are(drawState);
949            target->setIndexSourceToBuffer(fLinesIndexBuffer);
950            int lines = 0;
951            while (lines < lineCnt) {
952                int n = SkTMin(lineCnt - lines, kNumLineSegsInIdxBuffer);
953                target->drawIndexed(kTriangles_GrPrimitiveType,
954                                    kVertsPerLineSeg*lines,     // startV
955                                    0,                          // startI
956                                    kVertsPerLineSeg*n,         // vCount
957                                    kIdxsPerLineSeg*n,          // iCount
958                                    &devBounds);
959                lines += n;
960            }
961        }
962    }
963
964    // then quadratics/conics
965    if (quadCnt || conicCnt) {
966        GrDrawTarget::AutoReleaseGeometry arg;
967        SkRect devBounds;
968
969        if (!this->createBezierGeom(path,
970                                    target,
971                                    quads,
972                                    quadCnt,
973                                    conics,
974                                    conicCnt,
975                                    qSubdivs,
976                                    cWeights,
977                                    &arg,
978                                    &devBounds)) {
979            return false;
980        }
981
982        GrDrawTarget::AutoStateRestore asr;
983
984        // createGeom transforms the geometry to device space when the matrix does not have
985        // perspective.
986        if (target->getDrawState().getViewMatrix().hasPerspective()) {
987            asr.set(target, GrDrawTarget::kPreserve_ASRInit);
988        } else if (!asr.setIdentity(target, GrDrawTarget::kPreserve_ASRInit)) {
989            return false;
990        }
991        GrDrawState* drawState = target->drawState();
992
993        static const int kEdgeAttrIndex = 1;
994
995        // Check devBounds
996        SkASSERT(check_bounds<BezierVertex>(drawState, devBounds, arg.vertices(),
997                                            kVertsPerQuad * quadCnt + kVertsPerQuad * conicCnt));
998
999        if (quadCnt > 0) {
1000            GrEffectRef* hairQuadEffect = GrQuadEffect::Create(kHairlineAA_GrEffectEdgeType,
1001                                                               *target->caps());
1002            SkASSERT(NULL != hairQuadEffect);
1003            GrDrawState::AutoRestoreEffects are(drawState);
1004            target->setIndexSourceToBuffer(fQuadsIndexBuffer);
1005            drawState->addCoverageEffect(hairQuadEffect, kEdgeAttrIndex)->unref();
1006            int quads = 0;
1007            while (quads < quadCnt) {
1008                int n = SkTMin(quadCnt - quads, kNumQuadsInIdxBuffer);
1009                target->drawIndexed(kTriangles_GrPrimitiveType,
1010                                    kVertsPerQuad*quads,               // startV
1011                                    0,                                 // startI
1012                                    kVertsPerQuad*n,                   // vCount
1013                                    kIdxsPerQuad*n,                    // iCount
1014                                    &devBounds);
1015                quads += n;
1016            }
1017        }
1018
1019        if (conicCnt > 0) {
1020            GrDrawState::AutoRestoreEffects are(drawState);
1021            GrEffectRef* hairConicEffect = GrConicEffect::Create(kHairlineAA_GrEffectEdgeType,
1022                                                                 *target->caps());
1023            SkASSERT(NULL != hairConicEffect);
1024            drawState->addCoverageEffect(hairConicEffect, 1, 2)->unref();
1025            int conics = 0;
1026            while (conics < conicCnt) {
1027                int n = SkTMin(conicCnt - conics, kNumQuadsInIdxBuffer);
1028                target->drawIndexed(kTriangles_GrPrimitiveType,
1029                                    kVertsPerQuad*(quadCnt + conics),  // startV
1030                                    0,                                 // startI
1031                                    kVertsPerQuad*n,                   // vCount
1032                                    kIdxsPerQuad*n,                    // iCount
1033                                    &devBounds);
1034                conics += n;
1035            }
1036        }
1037    }
1038
1039    target->resetIndexSource();
1040
1041    return true;
1042}
1043