1/*
2 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 *  Use of this source code is governed by a BSD-style license
5 *  that can be found in the LICENSE file in the root of the source
6 *  tree. An additional intellectual property rights grant can be found
7 *  in the file PATENTS.  All contributing project authors may
8 *  be found in the AUTHORS file in the root of the source tree.
9 */
10
11#include <assert.h>
12#include <stdio.h>
13#include <limits.h>
14
15#include "vpx/vpx_encoder.h"
16#include "vpx_mem/vpx_mem.h"
17#include "vpx_ports/mem_ops.h"
18
19#include "vp9/common/vp9_entropy.h"
20#include "vp9/common/vp9_entropymode.h"
21#include "vp9/common/vp9_entropymv.h"
22#include "vp9/common/vp9_mvref_common.h"
23#include "vp9/common/vp9_pragmas.h"
24#include "vp9/common/vp9_pred_common.h"
25#include "vp9/common/vp9_seg_common.h"
26#include "vp9/common/vp9_systemdependent.h"
27#include "vp9/common/vp9_tile_common.h"
28
29#include "vp9/encoder/vp9_cost.h"
30#include "vp9/encoder/vp9_bitstream.h"
31#include "vp9/encoder/vp9_encodemv.h"
32#include "vp9/encoder/vp9_mcomp.h"
33#include "vp9/encoder/vp9_segmentation.h"
34#include "vp9/encoder/vp9_subexp.h"
35#include "vp9/encoder/vp9_tokenize.h"
36#include "vp9/encoder/vp9_write_bit_buffer.h"
37
38static struct vp9_token intra_mode_encodings[INTRA_MODES];
39static struct vp9_token switchable_interp_encodings[SWITCHABLE_FILTERS];
40static struct vp9_token partition_encodings[PARTITION_TYPES];
41static struct vp9_token inter_mode_encodings[INTER_MODES];
42
43void vp9_entropy_mode_init() {
44  vp9_tokens_from_tree(intra_mode_encodings, vp9_intra_mode_tree);
45  vp9_tokens_from_tree(switchable_interp_encodings, vp9_switchable_interp_tree);
46  vp9_tokens_from_tree(partition_encodings, vp9_partition_tree);
47  vp9_tokens_from_tree(inter_mode_encodings, vp9_inter_mode_tree);
48}
49
50static void write_intra_mode(vp9_writer *w, MB_PREDICTION_MODE mode,
51                             const vp9_prob *probs) {
52  vp9_write_token(w, vp9_intra_mode_tree, probs, &intra_mode_encodings[mode]);
53}
54
55static void write_inter_mode(vp9_writer *w, MB_PREDICTION_MODE mode,
56                             const vp9_prob *probs) {
57  assert(is_inter_mode(mode));
58  vp9_write_token(w, vp9_inter_mode_tree, probs,
59                  &inter_mode_encodings[INTER_OFFSET(mode)]);
60}
61
62static void encode_unsigned_max(struct vp9_write_bit_buffer *wb,
63                                int data, int max) {
64  vp9_wb_write_literal(wb, data, get_unsigned_bits(max));
65}
66
67static void prob_diff_update(const vp9_tree_index *tree,
68                             vp9_prob probs[/*n - 1*/],
69                             const unsigned int counts[/*n - 1*/],
70                             int n, vp9_writer *w) {
71  int i;
72  unsigned int branch_ct[32][2];
73
74  // Assuming max number of probabilities <= 32
75  assert(n <= 32);
76
77  vp9_tree_probs_from_distribution(tree, branch_ct, counts);
78  for (i = 0; i < n - 1; ++i)
79    vp9_cond_prob_diff_update(w, &probs[i], branch_ct[i]);
80}
81
82static void write_selected_tx_size(const VP9_COMP *cpi,
83                                   TX_SIZE tx_size, BLOCK_SIZE bsize,
84                                   vp9_writer *w) {
85  const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
86  const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
87  const vp9_prob *const tx_probs = get_tx_probs2(max_tx_size, xd,
88                                                 &cpi->common.fc.tx_probs);
89  vp9_write(w, tx_size != TX_4X4, tx_probs[0]);
90  if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) {
91    vp9_write(w, tx_size != TX_8X8, tx_probs[1]);
92    if (tx_size != TX_8X8 && max_tx_size >= TX_32X32)
93      vp9_write(w, tx_size != TX_16X16, tx_probs[2]);
94  }
95}
96
97static int write_skip(const VP9_COMP *cpi, int segment_id, const MODE_INFO *mi,
98                      vp9_writer *w) {
99  const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
100  if (vp9_segfeature_active(&cpi->common.seg, segment_id, SEG_LVL_SKIP)) {
101    return 1;
102  } else {
103    const int skip = mi->mbmi.skip;
104    vp9_write(w, skip, vp9_get_skip_prob(&cpi->common, xd));
105    return skip;
106  }
107}
108
109static void update_skip_probs(VP9_COMMON *cm, vp9_writer *w) {
110  int k;
111
112  for (k = 0; k < SKIP_CONTEXTS; ++k)
113    vp9_cond_prob_diff_update(w, &cm->fc.skip_probs[k], cm->counts.skip[k]);
114}
115
116static void update_switchable_interp_probs(VP9_COMMON *cm, vp9_writer *w) {
117  int j;
118  for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
119    prob_diff_update(vp9_switchable_interp_tree,
120                     cm->fc.switchable_interp_prob[j],
121                     cm->counts.switchable_interp[j], SWITCHABLE_FILTERS, w);
122}
123
124static void pack_mb_tokens(vp9_writer *w,
125                           TOKENEXTRA **tp, const TOKENEXTRA *stop) {
126  TOKENEXTRA *p = *tp;
127
128  while (p < stop && p->token != EOSB_TOKEN) {
129    const int t = p->token;
130    const struct vp9_token *const a = &vp9_coef_encodings[t];
131    const vp9_extra_bit *const b = &vp9_extra_bits[t];
132    int i = 0;
133    int v = a->value;
134    int n = a->len;
135
136    /* skip one or two nodes */
137    if (p->skip_eob_node) {
138      n -= p->skip_eob_node;
139      i = 2 * p->skip_eob_node;
140    }
141
142    // TODO(jbb): expanding this can lead to big gains.  It allows
143    // much better branch prediction and would enable us to avoid numerous
144    // lookups and compares.
145
146    // If we have a token that's in the constrained set, the coefficient tree
147    // is split into two treed writes.  The first treed write takes care of the
148    // unconstrained nodes.  The second treed write takes care of the
149    // constrained nodes.
150    if (t >= TWO_TOKEN && t < EOB_TOKEN) {
151      int len = UNCONSTRAINED_NODES - p->skip_eob_node;
152      int bits = v >> (n - len);
153      vp9_write_tree(w, vp9_coef_tree, p->context_tree, bits, len, i);
154      vp9_write_tree(w, vp9_coef_con_tree,
155                     vp9_pareto8_full[p->context_tree[PIVOT_NODE] - 1],
156                     v, n - len, 0);
157    } else {
158      vp9_write_tree(w, vp9_coef_tree, p->context_tree, v, n, i);
159    }
160
161    if (b->base_val) {
162      const int e = p->extra, l = b->len;
163
164      if (l) {
165        const unsigned char *pb = b->prob;
166        int v = e >> 1;
167        int n = l;              /* number of bits in v, assumed nonzero */
168        int i = 0;
169
170        do {
171          const int bb = (v >> --n) & 1;
172          vp9_write(w, bb, pb[i >> 1]);
173          i = b->tree[i + bb];
174        } while (n);
175      }
176
177      vp9_write_bit(w, e & 1);
178    }
179    ++p;
180  }
181
182  *tp = p + (p->token == EOSB_TOKEN);
183}
184
185static void write_segment_id(vp9_writer *w, const struct segmentation *seg,
186                             int segment_id) {
187  if (seg->enabled && seg->update_map)
188    vp9_write_tree(w, vp9_segment_tree, seg->tree_probs, segment_id, 3, 0);
189}
190
191// This function encodes the reference frame
192static void write_ref_frames(const VP9_COMP *cpi, vp9_writer *w) {
193  const VP9_COMMON *const cm = &cpi->common;
194  const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
195  const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
196  const int is_compound = has_second_ref(mbmi);
197  const int segment_id = mbmi->segment_id;
198
199  // If segment level coding of this signal is disabled...
200  // or the segment allows multiple reference frame options
201  if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
202    assert(!is_compound);
203    assert(mbmi->ref_frame[0] ==
204               vp9_get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
205  } else {
206    // does the feature use compound prediction or not
207    // (if not specified at the frame/segment level)
208    if (cm->reference_mode == REFERENCE_MODE_SELECT) {
209      vp9_write(w, is_compound, vp9_get_reference_mode_prob(cm, xd));
210    } else {
211      assert(!is_compound == (cm->reference_mode == SINGLE_REFERENCE));
212    }
213
214    if (is_compound) {
215      vp9_write(w, mbmi->ref_frame[0] == GOLDEN_FRAME,
216                vp9_get_pred_prob_comp_ref_p(cm, xd));
217    } else {
218      const int bit0 = mbmi->ref_frame[0] != LAST_FRAME;
219      vp9_write(w, bit0, vp9_get_pred_prob_single_ref_p1(cm, xd));
220      if (bit0) {
221        const int bit1 = mbmi->ref_frame[0] != GOLDEN_FRAME;
222        vp9_write(w, bit1, vp9_get_pred_prob_single_ref_p2(cm, xd));
223      }
224    }
225  }
226}
227
228static void pack_inter_mode_mvs(VP9_COMP *cpi, const MODE_INFO *mi,
229                                vp9_writer *w) {
230  VP9_COMMON *const cm = &cpi->common;
231  const nmv_context *nmvc = &cm->fc.nmvc;
232  const MACROBLOCK *const x = &cpi->mb;
233  const MACROBLOCKD *const xd = &x->e_mbd;
234  const struct segmentation *const seg = &cm->seg;
235  const MB_MODE_INFO *const mbmi = &mi->mbmi;
236  const MB_PREDICTION_MODE mode = mbmi->mode;
237  const int segment_id = mbmi->segment_id;
238  const BLOCK_SIZE bsize = mbmi->sb_type;
239  const int allow_hp = cm->allow_high_precision_mv;
240  const int is_inter = is_inter_block(mbmi);
241  const int is_compound = has_second_ref(mbmi);
242  int skip, ref;
243
244  if (seg->update_map) {
245    if (seg->temporal_update) {
246      const int pred_flag = mbmi->seg_id_predicted;
247      vp9_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd);
248      vp9_write(w, pred_flag, pred_prob);
249      if (!pred_flag)
250        write_segment_id(w, seg, segment_id);
251    } else {
252      write_segment_id(w, seg, segment_id);
253    }
254  }
255
256  skip = write_skip(cpi, segment_id, mi, w);
257
258  if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
259    vp9_write(w, is_inter, vp9_get_intra_inter_prob(cm, xd));
260
261  if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
262      !(is_inter &&
263        (skip || vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)))) {
264    write_selected_tx_size(cpi, mbmi->tx_size, bsize, w);
265  }
266
267  if (!is_inter) {
268    if (bsize >= BLOCK_8X8) {
269      write_intra_mode(w, mode, cm->fc.y_mode_prob[size_group_lookup[bsize]]);
270    } else {
271      int idx, idy;
272      const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
273      const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
274      for (idy = 0; idy < 2; idy += num_4x4_h) {
275        for (idx = 0; idx < 2; idx += num_4x4_w) {
276          const MB_PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode;
277          write_intra_mode(w, b_mode, cm->fc.y_mode_prob[0]);
278        }
279      }
280    }
281    write_intra_mode(w, mbmi->uv_mode, cm->fc.uv_mode_prob[mode]);
282  } else {
283    const int mode_ctx = mbmi->mode_context[mbmi->ref_frame[0]];
284    const vp9_prob *const inter_probs = cm->fc.inter_mode_probs[mode_ctx];
285    write_ref_frames(cpi, w);
286
287    // If segment skip is not enabled code the mode.
288    if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
289      if (bsize >= BLOCK_8X8) {
290        write_inter_mode(w, mode, inter_probs);
291        ++cm->counts.inter_mode[mode_ctx][INTER_OFFSET(mode)];
292      }
293    }
294
295    if (cm->interp_filter == SWITCHABLE) {
296      const int ctx = vp9_get_pred_context_switchable_interp(xd);
297      vp9_write_token(w, vp9_switchable_interp_tree,
298                      cm->fc.switchable_interp_prob[ctx],
299                      &switchable_interp_encodings[mbmi->interp_filter]);
300    } else {
301      assert(mbmi->interp_filter == cm->interp_filter);
302    }
303
304    if (bsize < BLOCK_8X8) {
305      const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
306      const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
307      int idx, idy;
308      for (idy = 0; idy < 2; idy += num_4x4_h) {
309        for (idx = 0; idx < 2; idx += num_4x4_w) {
310          const int j = idy * 2 + idx;
311          const MB_PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
312          write_inter_mode(w, b_mode, inter_probs);
313          ++cm->counts.inter_mode[mode_ctx][INTER_OFFSET(b_mode)];
314          if (b_mode == NEWMV) {
315            for (ref = 0; ref < 1 + is_compound; ++ref)
316              vp9_encode_mv(cpi, w, &mi->bmi[j].as_mv[ref].as_mv,
317                            &mbmi->ref_mvs[mbmi->ref_frame[ref]][0].as_mv,
318                            nmvc, allow_hp);
319          }
320        }
321      }
322    } else {
323      if (mode == NEWMV) {
324        for (ref = 0; ref < 1 + is_compound; ++ref)
325          vp9_encode_mv(cpi, w, &mbmi->mv[ref].as_mv,
326                        &mbmi->ref_mvs[mbmi->ref_frame[ref]][0].as_mv, nmvc,
327                        allow_hp);
328      }
329    }
330  }
331}
332
333static void write_mb_modes_kf(const VP9_COMP *cpi, MODE_INFO **mi_8x8,
334                              vp9_writer *w) {
335  const VP9_COMMON *const cm = &cpi->common;
336  const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
337  const struct segmentation *const seg = &cm->seg;
338  const MODE_INFO *const mi = mi_8x8[0];
339  const MODE_INFO *const above_mi = mi_8x8[-xd->mi_stride];
340  const MODE_INFO *const left_mi = xd->left_available ? mi_8x8[-1] : NULL;
341  const MB_MODE_INFO *const mbmi = &mi->mbmi;
342  const BLOCK_SIZE bsize = mbmi->sb_type;
343
344  if (seg->update_map)
345    write_segment_id(w, seg, mbmi->segment_id);
346
347  write_skip(cpi, mbmi->segment_id, mi, w);
348
349  if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT)
350    write_selected_tx_size(cpi, mbmi->tx_size, bsize, w);
351
352  if (bsize >= BLOCK_8X8) {
353    write_intra_mode(w, mbmi->mode, get_y_mode_probs(mi, above_mi, left_mi, 0));
354  } else {
355    const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
356    const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
357    int idx, idy;
358
359    for (idy = 0; idy < 2; idy += num_4x4_h) {
360      for (idx = 0; idx < 2; idx += num_4x4_w) {
361        const int block = idy * 2 + idx;
362        write_intra_mode(w, mi->bmi[block].as_mode,
363                         get_y_mode_probs(mi, above_mi, left_mi, block));
364      }
365    }
366  }
367
368  write_intra_mode(w, mbmi->uv_mode, vp9_kf_uv_mode_prob[mbmi->mode]);
369}
370
371static void write_modes_b(VP9_COMP *cpi, const TileInfo *const tile,
372                          vp9_writer *w, TOKENEXTRA **tok, TOKENEXTRA *tok_end,
373                          int mi_row, int mi_col) {
374  VP9_COMMON *const cm = &cpi->common;
375  MACROBLOCKD *const xd = &cpi->mb.e_mbd;
376  MODE_INFO *m;
377
378  xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col);
379  m = xd->mi[0];
380
381  set_mi_row_col(xd, tile,
382                 mi_row, num_8x8_blocks_high_lookup[m->mbmi.sb_type],
383                 mi_col, num_8x8_blocks_wide_lookup[m->mbmi.sb_type],
384                 cm->mi_rows, cm->mi_cols);
385  if (frame_is_intra_only(cm)) {
386    write_mb_modes_kf(cpi, xd->mi, w);
387  } else {
388    pack_inter_mode_mvs(cpi, m, w);
389  }
390
391  assert(*tok < tok_end);
392  pack_mb_tokens(w, tok, tok_end);
393}
394
395static void write_partition(VP9_COMMON *cm, MACROBLOCKD *xd,
396                            int hbs, int mi_row, int mi_col,
397                            PARTITION_TYPE p, BLOCK_SIZE bsize, vp9_writer *w) {
398  const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
399  const vp9_prob *const probs = get_partition_probs(cm, ctx);
400  const int has_rows = (mi_row + hbs) < cm->mi_rows;
401  const int has_cols = (mi_col + hbs) < cm->mi_cols;
402
403  if (has_rows && has_cols) {
404    vp9_write_token(w, vp9_partition_tree, probs, &partition_encodings[p]);
405  } else if (!has_rows && has_cols) {
406    assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
407    vp9_write(w, p == PARTITION_SPLIT, probs[1]);
408  } else if (has_rows && !has_cols) {
409    assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
410    vp9_write(w, p == PARTITION_SPLIT, probs[2]);
411  } else {
412    assert(p == PARTITION_SPLIT);
413  }
414}
415
416static void write_modes_sb(VP9_COMP *cpi,
417                           const TileInfo *const tile,
418                           vp9_writer *w, TOKENEXTRA **tok, TOKENEXTRA *tok_end,
419                           int mi_row, int mi_col, BLOCK_SIZE bsize) {
420  VP9_COMMON *const cm = &cpi->common;
421  MACROBLOCKD *const xd = &cpi->mb.e_mbd;
422
423  const int bsl = b_width_log2(bsize);
424  const int bs = (1 << bsl) / 4;
425  PARTITION_TYPE partition;
426  BLOCK_SIZE subsize;
427  MODE_INFO *m = cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col];
428
429  if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
430    return;
431
432  partition = partition_lookup[bsl][m->mbmi.sb_type];
433  write_partition(cm, xd, bs, mi_row, mi_col, partition, bsize, w);
434  subsize = get_subsize(bsize, partition);
435  if (subsize < BLOCK_8X8) {
436    write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
437  } else {
438    switch (partition) {
439      case PARTITION_NONE:
440        write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
441        break;
442      case PARTITION_HORZ:
443        write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
444        if (mi_row + bs < cm->mi_rows)
445          write_modes_b(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col);
446        break;
447      case PARTITION_VERT:
448        write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
449        if (mi_col + bs < cm->mi_cols)
450          write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs);
451        break;
452      case PARTITION_SPLIT:
453        write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, subsize);
454        write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs,
455                       subsize);
456        write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col,
457                       subsize);
458        write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col + bs,
459                       subsize);
460        break;
461      default:
462        assert(0);
463    }
464  }
465
466  // update partition context
467  if (bsize >= BLOCK_8X8 &&
468      (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
469    update_partition_context(xd, mi_row, mi_col, subsize, bsize);
470}
471
472static void write_modes(VP9_COMP *cpi,
473                        const TileInfo *const tile,
474                        vp9_writer *w, TOKENEXTRA **tok, TOKENEXTRA *tok_end) {
475  int mi_row, mi_col;
476
477  for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
478       mi_row += MI_BLOCK_SIZE) {
479    vp9_zero(cpi->mb.e_mbd.left_seg_context);
480    for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
481         mi_col += MI_BLOCK_SIZE)
482      write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col,
483                     BLOCK_64X64);
484  }
485}
486
487static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size,
488                                    vp9_coeff_stats *coef_branch_ct) {
489  vp9_coeff_probs_model *coef_probs = cpi->frame_coef_probs[tx_size];
490  vp9_coeff_count *coef_counts = cpi->coef_counts[tx_size];
491  unsigned int (*eob_branch_ct)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] =
492      cpi->common.counts.eob_branch[tx_size];
493  int i, j, k, l, m;
494
495  for (i = 0; i < PLANE_TYPES; ++i) {
496    for (j = 0; j < REF_TYPES; ++j) {
497      for (k = 0; k < COEF_BANDS; ++k) {
498        for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
499          vp9_tree_probs_from_distribution(vp9_coef_tree,
500                                           coef_branch_ct[i][j][k][l],
501                                           coef_counts[i][j][k][l]);
502          coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] -
503                                             coef_branch_ct[i][j][k][l][0][0];
504          for (m = 0; m < UNCONSTRAINED_NODES; ++m)
505            coef_probs[i][j][k][l][m] = get_binary_prob(
506                                            coef_branch_ct[i][j][k][l][m][0],
507                                            coef_branch_ct[i][j][k][l][m][1]);
508        }
509      }
510    }
511  }
512}
513
514static void update_coef_probs_common(vp9_writer* const bc, VP9_COMP *cpi,
515                                     TX_SIZE tx_size,
516                                     vp9_coeff_stats *frame_branch_ct) {
517  vp9_coeff_probs_model *new_frame_coef_probs = cpi->frame_coef_probs[tx_size];
518  vp9_coeff_probs_model *old_frame_coef_probs =
519      cpi->common.fc.coef_probs[tx_size];
520  const vp9_prob upd = DIFF_UPDATE_PROB;
521  const int entropy_nodes_update = UNCONSTRAINED_NODES;
522  int i, j, k, l, t;
523  switch (cpi->sf.use_fast_coef_updates) {
524    case 0: {
525      /* dry run to see if there is any udpate at all needed */
526      int savings = 0;
527      int update[2] = {0, 0};
528      for (i = 0; i < PLANE_TYPES; ++i) {
529        for (j = 0; j < REF_TYPES; ++j) {
530          for (k = 0; k < COEF_BANDS; ++k) {
531            for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
532              for (t = 0; t < entropy_nodes_update; ++t) {
533                vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
534                const vp9_prob oldp = old_frame_coef_probs[i][j][k][l][t];
535                int s;
536                int u = 0;
537                if (t == PIVOT_NODE)
538                  s = vp9_prob_diff_update_savings_search_model(
539                      frame_branch_ct[i][j][k][l][0],
540                      old_frame_coef_probs[i][j][k][l], &newp, upd);
541                else
542                  s = vp9_prob_diff_update_savings_search(
543                      frame_branch_ct[i][j][k][l][t], oldp, &newp, upd);
544                if (s > 0 && newp != oldp)
545                  u = 1;
546                if (u)
547                  savings += s - (int)(vp9_cost_zero(upd));
548                else
549                  savings -= (int)(vp9_cost_zero(upd));
550                update[u]++;
551              }
552            }
553          }
554        }
555      }
556
557      // printf("Update %d %d, savings %d\n", update[0], update[1], savings);
558      /* Is coef updated at all */
559      if (update[1] == 0 || savings < 0) {
560        vp9_write_bit(bc, 0);
561        return;
562      }
563      vp9_write_bit(bc, 1);
564      for (i = 0; i < PLANE_TYPES; ++i) {
565        for (j = 0; j < REF_TYPES; ++j) {
566          for (k = 0; k < COEF_BANDS; ++k) {
567            for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
568              // calc probs and branch cts for this frame only
569              for (t = 0; t < entropy_nodes_update; ++t) {
570                vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
571                vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t;
572                const vp9_prob upd = DIFF_UPDATE_PROB;
573                int s;
574                int u = 0;
575                if (t == PIVOT_NODE)
576                  s = vp9_prob_diff_update_savings_search_model(
577                      frame_branch_ct[i][j][k][l][0],
578                      old_frame_coef_probs[i][j][k][l], &newp, upd);
579                else
580                  s = vp9_prob_diff_update_savings_search(
581                      frame_branch_ct[i][j][k][l][t],
582                      *oldp, &newp, upd);
583                if (s > 0 && newp != *oldp)
584                  u = 1;
585                vp9_write(bc, u, upd);
586                if (u) {
587                  /* send/use new probability */
588                  vp9_write_prob_diff_update(bc, newp, *oldp);
589                  *oldp = newp;
590                }
591              }
592            }
593          }
594        }
595      }
596      return;
597    }
598
599    case 1:
600    case 2: {
601      const int prev_coef_contexts_to_update =
602          cpi->sf.use_fast_coef_updates == 2 ? COEFF_CONTEXTS >> 1
603                                             : COEFF_CONTEXTS;
604      const int coef_band_to_update =
605          cpi->sf.use_fast_coef_updates == 2 ? COEF_BANDS >> 1
606                                             : COEF_BANDS;
607      int updates = 0;
608      int noupdates_before_first = 0;
609      for (i = 0; i < PLANE_TYPES; ++i) {
610        for (j = 0; j < REF_TYPES; ++j) {
611          for (k = 0; k < COEF_BANDS; ++k) {
612            for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
613              // calc probs and branch cts for this frame only
614              for (t = 0; t < entropy_nodes_update; ++t) {
615                vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
616                vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t;
617                int s;
618                int u = 0;
619                if (l >= prev_coef_contexts_to_update ||
620                    k >= coef_band_to_update) {
621                  u = 0;
622                } else {
623                  if (t == PIVOT_NODE)
624                    s = vp9_prob_diff_update_savings_search_model(
625                        frame_branch_ct[i][j][k][l][0],
626                        old_frame_coef_probs[i][j][k][l], &newp, upd);
627                  else
628                    s = vp9_prob_diff_update_savings_search(
629                        frame_branch_ct[i][j][k][l][t],
630                        *oldp, &newp, upd);
631                  if (s > 0 && newp != *oldp)
632                    u = 1;
633                }
634                updates += u;
635                if (u == 0 && updates == 0) {
636                  noupdates_before_first++;
637                  continue;
638                }
639                if (u == 1 && updates == 1) {
640                  int v;
641                  // first update
642                  vp9_write_bit(bc, 1);
643                  for (v = 0; v < noupdates_before_first; ++v)
644                    vp9_write(bc, 0, upd);
645                }
646                vp9_write(bc, u, upd);
647                if (u) {
648                  /* send/use new probability */
649                  vp9_write_prob_diff_update(bc, newp, *oldp);
650                  *oldp = newp;
651                }
652              }
653            }
654          }
655        }
656      }
657      if (updates == 0) {
658        vp9_write_bit(bc, 0);  // no updates
659      }
660      return;
661    }
662
663    default:
664      assert(0);
665  }
666}
667
668static void update_coef_probs(VP9_COMP *cpi, vp9_writer* w) {
669  const TX_MODE tx_mode = cpi->common.tx_mode;
670  const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
671  TX_SIZE tx_size;
672  vp9_coeff_stats frame_branch_ct[TX_SIZES][PLANE_TYPES];
673
674  vp9_clear_system_state();
675
676  for (tx_size = TX_4X4; tx_size <= TX_32X32; ++tx_size)
677    build_tree_distribution(cpi, tx_size, frame_branch_ct[tx_size]);
678
679  for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
680    update_coef_probs_common(w, cpi, tx_size, frame_branch_ct[tx_size]);
681}
682
683static void encode_loopfilter(struct loopfilter *lf,
684                              struct vp9_write_bit_buffer *wb) {
685  int i;
686
687  // Encode the loop filter level and type
688  vp9_wb_write_literal(wb, lf->filter_level, 6);
689  vp9_wb_write_literal(wb, lf->sharpness_level, 3);
690
691  // Write out loop filter deltas applied at the MB level based on mode or
692  // ref frame (if they are enabled).
693  vp9_wb_write_bit(wb, lf->mode_ref_delta_enabled);
694
695  if (lf->mode_ref_delta_enabled) {
696    vp9_wb_write_bit(wb, lf->mode_ref_delta_update);
697    if (lf->mode_ref_delta_update) {
698      for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
699        const int delta = lf->ref_deltas[i];
700        const int changed = delta != lf->last_ref_deltas[i];
701        vp9_wb_write_bit(wb, changed);
702        if (changed) {
703          lf->last_ref_deltas[i] = delta;
704          vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
705          vp9_wb_write_bit(wb, delta < 0);
706        }
707      }
708
709      for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
710        const int delta = lf->mode_deltas[i];
711        const int changed = delta != lf->last_mode_deltas[i];
712        vp9_wb_write_bit(wb, changed);
713        if (changed) {
714          lf->last_mode_deltas[i] = delta;
715          vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
716          vp9_wb_write_bit(wb, delta < 0);
717        }
718      }
719    }
720  }
721}
722
723static void write_delta_q(struct vp9_write_bit_buffer *wb, int delta_q) {
724  if (delta_q != 0) {
725    vp9_wb_write_bit(wb, 1);
726    vp9_wb_write_literal(wb, abs(delta_q), 4);
727    vp9_wb_write_bit(wb, delta_q < 0);
728  } else {
729    vp9_wb_write_bit(wb, 0);
730  }
731}
732
733static void encode_quantization(VP9_COMMON *cm,
734                                struct vp9_write_bit_buffer *wb) {
735  vp9_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
736  write_delta_q(wb, cm->y_dc_delta_q);
737  write_delta_q(wb, cm->uv_dc_delta_q);
738  write_delta_q(wb, cm->uv_ac_delta_q);
739}
740
741
742static void encode_segmentation(VP9_COMP *cpi,
743                                struct vp9_write_bit_buffer *wb) {
744  int i, j;
745
746  struct segmentation *seg = &cpi->common.seg;
747
748  vp9_wb_write_bit(wb, seg->enabled);
749  if (!seg->enabled)
750    return;
751
752  // Segmentation map
753  vp9_wb_write_bit(wb, seg->update_map);
754  if (seg->update_map) {
755    // Select the coding strategy (temporal or spatial)
756    vp9_choose_segmap_coding_method(cpi);
757    // Write out probabilities used to decode unpredicted  macro-block segments
758    for (i = 0; i < SEG_TREE_PROBS; i++) {
759      const int prob = seg->tree_probs[i];
760      const int update = prob != MAX_PROB;
761      vp9_wb_write_bit(wb, update);
762      if (update)
763        vp9_wb_write_literal(wb, prob, 8);
764    }
765
766    // Write out the chosen coding method.
767    vp9_wb_write_bit(wb, seg->temporal_update);
768    if (seg->temporal_update) {
769      for (i = 0; i < PREDICTION_PROBS; i++) {
770        const int prob = seg->pred_probs[i];
771        const int update = prob != MAX_PROB;
772        vp9_wb_write_bit(wb, update);
773        if (update)
774          vp9_wb_write_literal(wb, prob, 8);
775      }
776    }
777  }
778
779  // Segmentation data
780  vp9_wb_write_bit(wb, seg->update_data);
781  if (seg->update_data) {
782    vp9_wb_write_bit(wb, seg->abs_delta);
783
784    for (i = 0; i < MAX_SEGMENTS; i++) {
785      for (j = 0; j < SEG_LVL_MAX; j++) {
786        const int active = vp9_segfeature_active(seg, i, j);
787        vp9_wb_write_bit(wb, active);
788        if (active) {
789          const int data = vp9_get_segdata(seg, i, j);
790          const int data_max = vp9_seg_feature_data_max(j);
791
792          if (vp9_is_segfeature_signed(j)) {
793            encode_unsigned_max(wb, abs(data), data_max);
794            vp9_wb_write_bit(wb, data < 0);
795          } else {
796            encode_unsigned_max(wb, data, data_max);
797          }
798        }
799      }
800    }
801  }
802}
803
804
805static void encode_txfm_probs(VP9_COMMON *cm, vp9_writer *w) {
806  // Mode
807  vp9_write_literal(w, MIN(cm->tx_mode, ALLOW_32X32), 2);
808  if (cm->tx_mode >= ALLOW_32X32)
809    vp9_write_bit(w, cm->tx_mode == TX_MODE_SELECT);
810
811  // Probabilities
812  if (cm->tx_mode == TX_MODE_SELECT) {
813    int i, j;
814    unsigned int ct_8x8p[TX_SIZES - 3][2];
815    unsigned int ct_16x16p[TX_SIZES - 2][2];
816    unsigned int ct_32x32p[TX_SIZES - 1][2];
817
818
819    for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
820      tx_counts_to_branch_counts_8x8(cm->counts.tx.p8x8[i], ct_8x8p);
821      for (j = 0; j < TX_SIZES - 3; j++)
822        vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p8x8[i][j], ct_8x8p[j]);
823    }
824
825    for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
826      tx_counts_to_branch_counts_16x16(cm->counts.tx.p16x16[i], ct_16x16p);
827      for (j = 0; j < TX_SIZES - 2; j++)
828        vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p16x16[i][j],
829                                  ct_16x16p[j]);
830    }
831
832    for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
833      tx_counts_to_branch_counts_32x32(cm->counts.tx.p32x32[i], ct_32x32p);
834      for (j = 0; j < TX_SIZES - 1; j++)
835        vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p32x32[i][j],
836                                  ct_32x32p[j]);
837    }
838  }
839}
840
841static void write_interp_filter(INTERP_FILTER filter,
842                                struct vp9_write_bit_buffer *wb) {
843  const int filter_to_literal[] = { 1, 0, 2, 3 };
844
845  vp9_wb_write_bit(wb, filter == SWITCHABLE);
846  if (filter != SWITCHABLE)
847    vp9_wb_write_literal(wb, filter_to_literal[filter], 2);
848}
849
850static void fix_interp_filter(VP9_COMMON *cm) {
851  if (cm->interp_filter == SWITCHABLE) {
852    // Check to see if only one of the filters is actually used
853    int count[SWITCHABLE_FILTERS];
854    int i, j, c = 0;
855    for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
856      count[i] = 0;
857      for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
858        count[i] += cm->counts.switchable_interp[j][i];
859      c += (count[i] > 0);
860    }
861    if (c == 1) {
862      // Only one filter is used. So set the filter at frame level
863      for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
864        if (count[i]) {
865          cm->interp_filter = i;
866          break;
867        }
868      }
869    }
870  }
871}
872
873static void write_tile_info(VP9_COMMON *cm, struct vp9_write_bit_buffer *wb) {
874  int min_log2_tile_cols, max_log2_tile_cols, ones;
875  vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
876
877  // columns
878  ones = cm->log2_tile_cols - min_log2_tile_cols;
879  while (ones--)
880    vp9_wb_write_bit(wb, 1);
881
882  if (cm->log2_tile_cols < max_log2_tile_cols)
883    vp9_wb_write_bit(wb, 0);
884
885  // rows
886  vp9_wb_write_bit(wb, cm->log2_tile_rows != 0);
887  if (cm->log2_tile_rows != 0)
888    vp9_wb_write_bit(wb, cm->log2_tile_rows != 1);
889}
890
891static int get_refresh_mask(VP9_COMP *cpi) {
892    // Should the GF or ARF be updated using the transmitted frame or buffer
893#if CONFIG_MULTIPLE_ARF
894    if (!cpi->multi_arf_enabled && cpi->refresh_golden_frame &&
895        !cpi->refresh_alt_ref_frame) {
896#else
897    if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame &&
898        !cpi->use_svc) {
899#endif
900      // Preserve the previously existing golden frame and update the frame in
901      // the alt ref slot instead. This is highly specific to the use of
902      // alt-ref as a forward reference, and this needs to be generalized as
903      // other uses are implemented (like RTC/temporal scaling)
904      //
905      // gld_fb_idx and alt_fb_idx need to be swapped for future frames, but
906      // that happens in vp9_onyx_if.c:update_reference_frames() so that it can
907      // be done outside of the recode loop.
908      return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
909             (cpi->refresh_golden_frame << cpi->alt_fb_idx);
910    } else {
911      int arf_idx = cpi->alt_fb_idx;
912#if CONFIG_MULTIPLE_ARF
913      // Determine which ARF buffer to use to encode this ARF frame.
914      if (cpi->multi_arf_enabled) {
915        int sn = cpi->sequence_number;
916        arf_idx = (cpi->frame_coding_order[sn] < 0) ?
917            cpi->arf_buffer_idx[sn + 1] :
918            cpi->arf_buffer_idx[sn];
919      }
920#endif
921      return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
922             (cpi->refresh_golden_frame << cpi->gld_fb_idx) |
923             (cpi->refresh_alt_ref_frame << arf_idx);
924    }
925}
926
927static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) {
928  VP9_COMMON *const cm = &cpi->common;
929  vp9_writer residual_bc;
930
931  int tile_row, tile_col;
932  TOKENEXTRA *tok[4][1 << 6], *tok_end;
933  size_t total_size = 0;
934  const int tile_cols = 1 << cm->log2_tile_cols;
935  const int tile_rows = 1 << cm->log2_tile_rows;
936
937  vpx_memset(cm->above_seg_context, 0, sizeof(*cm->above_seg_context) *
938             mi_cols_aligned_to_sb(cm->mi_cols));
939
940  tok[0][0] = cpi->tok;
941  for (tile_row = 0; tile_row < tile_rows; tile_row++) {
942    if (tile_row)
943      tok[tile_row][0] = tok[tile_row - 1][tile_cols - 1] +
944                         cpi->tok_count[tile_row - 1][tile_cols - 1];
945
946    for (tile_col = 1; tile_col < tile_cols; tile_col++)
947      tok[tile_row][tile_col] = tok[tile_row][tile_col - 1] +
948                                cpi->tok_count[tile_row][tile_col - 1];
949  }
950
951  for (tile_row = 0; tile_row < tile_rows; tile_row++) {
952    for (tile_col = 0; tile_col < tile_cols; tile_col++) {
953      TileInfo tile;
954
955      vp9_tile_init(&tile, cm, tile_row, tile_col);
956      tok_end = tok[tile_row][tile_col] + cpi->tok_count[tile_row][tile_col];
957
958      if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1)
959        vp9_start_encode(&residual_bc, data_ptr + total_size + 4);
960      else
961        vp9_start_encode(&residual_bc, data_ptr + total_size);
962
963      write_modes(cpi, &tile, &residual_bc, &tok[tile_row][tile_col], tok_end);
964      assert(tok[tile_row][tile_col] == tok_end);
965      vp9_stop_encode(&residual_bc);
966      if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) {
967        // size of this tile
968        mem_put_be32(data_ptr + total_size, residual_bc.pos);
969        total_size += 4;
970      }
971
972      total_size += residual_bc.pos;
973    }
974  }
975
976  return total_size;
977}
978
979static void write_display_size(const VP9_COMMON *cm,
980                               struct vp9_write_bit_buffer *wb) {
981  const int scaling_active = cm->width != cm->display_width ||
982                             cm->height != cm->display_height;
983  vp9_wb_write_bit(wb, scaling_active);
984  if (scaling_active) {
985    vp9_wb_write_literal(wb, cm->display_width - 1, 16);
986    vp9_wb_write_literal(wb, cm->display_height - 1, 16);
987  }
988}
989
990static void write_frame_size(const VP9_COMMON *cm,
991                             struct vp9_write_bit_buffer *wb) {
992  vp9_wb_write_literal(wb, cm->width - 1, 16);
993  vp9_wb_write_literal(wb, cm->height - 1, 16);
994
995  write_display_size(cm, wb);
996}
997
998static void write_frame_size_with_refs(VP9_COMP *cpi,
999                                       struct vp9_write_bit_buffer *wb) {
1000  VP9_COMMON *const cm = &cpi->common;
1001  int found = 0;
1002
1003  MV_REFERENCE_FRAME ref_frame;
1004  for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
1005    YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame);
1006    found = cm->width == cfg->y_crop_width &&
1007            cm->height == cfg->y_crop_height;
1008
1009    // TODO(ivan): This prevents a bug while more than 3 buffers are used. Do it
1010    // in a better way.
1011    if (cpi->use_svc) {
1012      found = 0;
1013    }
1014    vp9_wb_write_bit(wb, found);
1015    if (found) {
1016      break;
1017    }
1018  }
1019
1020  if (!found) {
1021    vp9_wb_write_literal(wb, cm->width - 1, 16);
1022    vp9_wb_write_literal(wb, cm->height - 1, 16);
1023  }
1024
1025  write_display_size(cm, wb);
1026}
1027
1028static void write_sync_code(struct vp9_write_bit_buffer *wb) {
1029  vp9_wb_write_literal(wb, VP9_SYNC_CODE_0, 8);
1030  vp9_wb_write_literal(wb, VP9_SYNC_CODE_1, 8);
1031  vp9_wb_write_literal(wb, VP9_SYNC_CODE_2, 8);
1032}
1033
1034static void write_uncompressed_header(VP9_COMP *cpi,
1035                                      struct vp9_write_bit_buffer *wb) {
1036  VP9_COMMON *const cm = &cpi->common;
1037
1038  vp9_wb_write_literal(wb, VP9_FRAME_MARKER, 2);
1039
1040  // bitstream version.
1041  // 00 - profile 0. 4:2:0 only
1042  // 10 - profile 1. adds 4:4:4, 4:2:2, alpha
1043  vp9_wb_write_bit(wb, cm->version);
1044  vp9_wb_write_bit(wb, 0);
1045
1046  vp9_wb_write_bit(wb, 0);
1047  vp9_wb_write_bit(wb, cm->frame_type);
1048  vp9_wb_write_bit(wb, cm->show_frame);
1049  vp9_wb_write_bit(wb, cm->error_resilient_mode);
1050
1051  if (cm->frame_type == KEY_FRAME) {
1052    const COLOR_SPACE cs = UNKNOWN;
1053    write_sync_code(wb);
1054    vp9_wb_write_literal(wb, cs, 3);
1055    if (cs != SRGB) {
1056      vp9_wb_write_bit(wb, 0);  // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
1057      if (cm->version == 1) {
1058        vp9_wb_write_bit(wb, cm->subsampling_x);
1059        vp9_wb_write_bit(wb, cm->subsampling_y);
1060        vp9_wb_write_bit(wb, 0);  // has extra plane
1061      }
1062    } else {
1063      assert(cm->version == 1);
1064      vp9_wb_write_bit(wb, 0);  // has extra plane
1065    }
1066
1067    write_frame_size(cm, wb);
1068  } else {
1069    if (!cm->show_frame)
1070      vp9_wb_write_bit(wb, cm->intra_only);
1071
1072    if (!cm->error_resilient_mode)
1073      vp9_wb_write_literal(wb, cm->reset_frame_context, 2);
1074
1075    if (cm->intra_only) {
1076      write_sync_code(wb);
1077
1078      vp9_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
1079      write_frame_size(cm, wb);
1080    } else {
1081      MV_REFERENCE_FRAME ref_frame;
1082      vp9_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
1083      for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
1084        vp9_wb_write_literal(wb, get_ref_frame_idx(cpi, ref_frame),
1085                             REF_FRAMES_LOG2);
1086        vp9_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]);
1087      }
1088
1089      write_frame_size_with_refs(cpi, wb);
1090
1091      vp9_wb_write_bit(wb, cm->allow_high_precision_mv);
1092
1093      fix_interp_filter(cm);
1094      write_interp_filter(cm->interp_filter, wb);
1095    }
1096  }
1097
1098  if (!cm->error_resilient_mode) {
1099    vp9_wb_write_bit(wb, cm->refresh_frame_context);
1100    vp9_wb_write_bit(wb, cm->frame_parallel_decoding_mode);
1101  }
1102
1103  vp9_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2);
1104
1105  encode_loopfilter(&cm->lf, wb);
1106  encode_quantization(cm, wb);
1107  encode_segmentation(cpi, wb);
1108
1109  write_tile_info(cm, wb);
1110}
1111
1112static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) {
1113  VP9_COMMON *const cm = &cpi->common;
1114  MACROBLOCKD *const xd = &cpi->mb.e_mbd;
1115  FRAME_CONTEXT *const fc = &cm->fc;
1116  vp9_writer header_bc;
1117
1118  vp9_start_encode(&header_bc, data);
1119
1120  if (xd->lossless)
1121    cm->tx_mode = ONLY_4X4;
1122  else
1123    encode_txfm_probs(cm, &header_bc);
1124
1125  update_coef_probs(cpi, &header_bc);
1126  update_skip_probs(cm, &header_bc);
1127
1128  if (!frame_is_intra_only(cm)) {
1129    int i;
1130
1131    for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
1132      prob_diff_update(vp9_inter_mode_tree, cm->fc.inter_mode_probs[i],
1133                       cm->counts.inter_mode[i], INTER_MODES, &header_bc);
1134
1135    vp9_zero(cm->counts.inter_mode);
1136
1137    if (cm->interp_filter == SWITCHABLE)
1138      update_switchable_interp_probs(cm, &header_bc);
1139
1140    for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
1141      vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i],
1142                                cm->counts.intra_inter[i]);
1143
1144    if (cm->allow_comp_inter_inter) {
1145      const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE;
1146      const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT;
1147
1148      vp9_write_bit(&header_bc, use_compound_pred);
1149      if (use_compound_pred) {
1150        vp9_write_bit(&header_bc, use_hybrid_pred);
1151        if (use_hybrid_pred)
1152          for (i = 0; i < COMP_INTER_CONTEXTS; i++)
1153            vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i],
1154                                      cm->counts.comp_inter[i]);
1155      }
1156    }
1157
1158    if (cm->reference_mode != COMPOUND_REFERENCE) {
1159      for (i = 0; i < REF_CONTEXTS; i++) {
1160        vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0],
1161                                  cm->counts.single_ref[i][0]);
1162        vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1],
1163                                  cm->counts.single_ref[i][1]);
1164      }
1165    }
1166
1167    if (cm->reference_mode != SINGLE_REFERENCE)
1168      for (i = 0; i < REF_CONTEXTS; i++)
1169        vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i],
1170                                  cm->counts.comp_ref[i]);
1171
1172    for (i = 0; i < BLOCK_SIZE_GROUPS; ++i)
1173      prob_diff_update(vp9_intra_mode_tree, cm->fc.y_mode_prob[i],
1174                       cm->counts.y_mode[i], INTRA_MODES, &header_bc);
1175
1176    for (i = 0; i < PARTITION_CONTEXTS; ++i)
1177      prob_diff_update(vp9_partition_tree, fc->partition_prob[i],
1178                       cm->counts.partition[i], PARTITION_TYPES, &header_bc);
1179
1180    vp9_write_nmv_probs(cm, cm->allow_high_precision_mv, &header_bc);
1181  }
1182
1183  vp9_stop_encode(&header_bc);
1184  assert(header_bc.pos <= 0xffff);
1185
1186  return header_bc.pos;
1187}
1188
1189void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, size_t *size) {
1190  uint8_t *data = dest;
1191  size_t first_part_size, uncompressed_hdr_size;
1192  struct vp9_write_bit_buffer wb = {data, 0};
1193  struct vp9_write_bit_buffer saved_wb;
1194
1195  write_uncompressed_header(cpi, &wb);
1196  saved_wb = wb;
1197  vp9_wb_write_literal(&wb, 0, 16);  // don't know in advance first part. size
1198
1199  uncompressed_hdr_size = vp9_rb_bytes_written(&wb);
1200  data += uncompressed_hdr_size;
1201
1202  vp9_compute_update_table();
1203
1204  vp9_clear_system_state();
1205
1206  first_part_size = write_compressed_header(cpi, data);
1207  data += first_part_size;
1208  // TODO(jbb): Figure out what to do if first_part_size > 16 bits.
1209  vp9_wb_write_literal(&saved_wb, (int)first_part_size, 16);
1210
1211  data += encode_tiles(cpi, data);
1212
1213  *size = data - dest;
1214}
1215
1216