1/*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7package java.util.concurrent;
8
9import java.util.AbstractQueue;
10import java.util.Collection;
11import java.util.Iterator;
12import java.util.NoSuchElementException;
13import java.util.concurrent.locks.Condition;
14import java.util.concurrent.locks.ReentrantLock;
15
16// BEGIN android-note
17// removed link to collections framework docs
18// END android-note
19
20/**
21 * An optionally-bounded {@linkplain BlockingDeque blocking deque} based on
22 * linked nodes.
23 *
24 * <p>The optional capacity bound constructor argument serves as a
25 * way to prevent excessive expansion. The capacity, if unspecified,
26 * is equal to {@link Integer#MAX_VALUE}.  Linked nodes are
27 * dynamically created upon each insertion unless this would bring the
28 * deque above capacity.
29 *
30 * <p>Most operations run in constant time (ignoring time spent
31 * blocking).  Exceptions include {@link #remove(Object) remove},
32 * {@link #removeFirstOccurrence removeFirstOccurrence}, {@link
33 * #removeLastOccurrence removeLastOccurrence}, {@link #contains
34 * contains}, {@link #iterator iterator.remove()}, and the bulk
35 * operations, all of which run in linear time.
36 *
37 * <p>This class and its iterator implement all of the
38 * <em>optional</em> methods of the {@link Collection} and {@link
39 * Iterator} interfaces.
40 *
41 * @since 1.6
42 * @author  Doug Lea
43 * @param <E> the type of elements held in this collection
44 */
45public class LinkedBlockingDeque<E>
46    extends AbstractQueue<E>
47    implements BlockingDeque<E>, java.io.Serializable {
48
49    /*
50     * Implemented as a simple doubly-linked list protected by a
51     * single lock and using conditions to manage blocking.
52     *
53     * To implement weakly consistent iterators, it appears we need to
54     * keep all Nodes GC-reachable from a predecessor dequeued Node.
55     * That would cause two problems:
56     * - allow a rogue Iterator to cause unbounded memory retention
57     * - cause cross-generational linking of old Nodes to new Nodes if
58     *   a Node was tenured while live, which generational GCs have a
59     *   hard time dealing with, causing repeated major collections.
60     * However, only non-deleted Nodes need to be reachable from
61     * dequeued Nodes, and reachability does not necessarily have to
62     * be of the kind understood by the GC.  We use the trick of
63     * linking a Node that has just been dequeued to itself.  Such a
64     * self-link implicitly means to jump to "first" (for next links)
65     * or "last" (for prev links).
66     */
67
68    /*
69     * We have "diamond" multiple interface/abstract class inheritance
70     * here, and that introduces ambiguities. Often we want the
71     * BlockingDeque javadoc combined with the AbstractQueue
72     * implementation, so a lot of method specs are duplicated here.
73     */
74
75    private static final long serialVersionUID = -387911632671998426L;
76
77    /** Doubly-linked list node class */
78    static final class Node<E> {
79        /**
80         * The item, or null if this node has been removed.
81         */
82        E item;
83
84        /**
85         * One of:
86         * - the real predecessor Node
87         * - this Node, meaning the predecessor is tail
88         * - null, meaning there is no predecessor
89         */
90        Node<E> prev;
91
92        /**
93         * One of:
94         * - the real successor Node
95         * - this Node, meaning the successor is head
96         * - null, meaning there is no successor
97         */
98        Node<E> next;
99
100        Node(E x) {
101            item = x;
102        }
103    }
104
105    /**
106     * Pointer to first node.
107     * Invariant: (first == null && last == null) ||
108     *            (first.prev == null && first.item != null)
109     */
110    transient Node<E> first;
111
112    /**
113     * Pointer to last node.
114     * Invariant: (first == null && last == null) ||
115     *            (last.next == null && last.item != null)
116     */
117    transient Node<E> last;
118
119    /** Number of items in the deque */
120    private transient int count;
121
122    /** Maximum number of items in the deque */
123    private final int capacity;
124
125    /** Main lock guarding all access */
126    final ReentrantLock lock = new ReentrantLock();
127
128    /** Condition for waiting takes */
129    private final Condition notEmpty = lock.newCondition();
130
131    /** Condition for waiting puts */
132    private final Condition notFull = lock.newCondition();
133
134    /**
135     * Creates a {@code LinkedBlockingDeque} with a capacity of
136     * {@link Integer#MAX_VALUE}.
137     */
138    public LinkedBlockingDeque() {
139        this(Integer.MAX_VALUE);
140    }
141
142    /**
143     * Creates a {@code LinkedBlockingDeque} with the given (fixed) capacity.
144     *
145     * @param capacity the capacity of this deque
146     * @throws IllegalArgumentException if {@code capacity} is less than 1
147     */
148    public LinkedBlockingDeque(int capacity) {
149        if (capacity <= 0) throw new IllegalArgumentException();
150        this.capacity = capacity;
151    }
152
153    /**
154     * Creates a {@code LinkedBlockingDeque} with a capacity of
155     * {@link Integer#MAX_VALUE}, initially containing the elements of
156     * the given collection, added in traversal order of the
157     * collection's iterator.
158     *
159     * @param c the collection of elements to initially contain
160     * @throws NullPointerException if the specified collection or any
161     *         of its elements are null
162     */
163    public LinkedBlockingDeque(Collection<? extends E> c) {
164        this(Integer.MAX_VALUE);
165        final ReentrantLock lock = this.lock;
166        lock.lock(); // Never contended, but necessary for visibility
167        try {
168            for (E e : c) {
169                if (e == null)
170                    throw new NullPointerException();
171                if (!linkLast(new Node<E>(e)))
172                    throw new IllegalStateException("Deque full");
173            }
174        } finally {
175            lock.unlock();
176        }
177    }
178
179
180    // Basic linking and unlinking operations, called only while holding lock
181
182    /**
183     * Links node as first element, or returns false if full.
184     */
185    private boolean linkFirst(Node<E> node) {
186        // assert lock.isHeldByCurrentThread();
187        if (count >= capacity)
188            return false;
189        Node<E> f = first;
190        node.next = f;
191        first = node;
192        if (last == null)
193            last = node;
194        else
195            f.prev = node;
196        ++count;
197        notEmpty.signal();
198        return true;
199    }
200
201    /**
202     * Links node as last element, or returns false if full.
203     */
204    private boolean linkLast(Node<E> node) {
205        // assert lock.isHeldByCurrentThread();
206        if (count >= capacity)
207            return false;
208        Node<E> l = last;
209        node.prev = l;
210        last = node;
211        if (first == null)
212            first = node;
213        else
214            l.next = node;
215        ++count;
216        notEmpty.signal();
217        return true;
218    }
219
220    /**
221     * Removes and returns first element, or null if empty.
222     */
223    private E unlinkFirst() {
224        // assert lock.isHeldByCurrentThread();
225        Node<E> f = first;
226        if (f == null)
227            return null;
228        Node<E> n = f.next;
229        E item = f.item;
230        f.item = null;
231        f.next = f; // help GC
232        first = n;
233        if (n == null)
234            last = null;
235        else
236            n.prev = null;
237        --count;
238        notFull.signal();
239        return item;
240    }
241
242    /**
243     * Removes and returns last element, or null if empty.
244     */
245    private E unlinkLast() {
246        // assert lock.isHeldByCurrentThread();
247        Node<E> l = last;
248        if (l == null)
249            return null;
250        Node<E> p = l.prev;
251        E item = l.item;
252        l.item = null;
253        l.prev = l; // help GC
254        last = p;
255        if (p == null)
256            first = null;
257        else
258            p.next = null;
259        --count;
260        notFull.signal();
261        return item;
262    }
263
264    /**
265     * Unlinks x.
266     */
267    void unlink(Node<E> x) {
268        // assert lock.isHeldByCurrentThread();
269        Node<E> p = x.prev;
270        Node<E> n = x.next;
271        if (p == null) {
272            unlinkFirst();
273        } else if (n == null) {
274            unlinkLast();
275        } else {
276            p.next = n;
277            n.prev = p;
278            x.item = null;
279            // Don't mess with x's links.  They may still be in use by
280            // an iterator.
281            --count;
282            notFull.signal();
283        }
284    }
285
286    // BlockingDeque methods
287
288    /**
289     * @throws IllegalStateException {@inheritDoc}
290     * @throws NullPointerException  {@inheritDoc}
291     */
292    public void addFirst(E e) {
293        if (!offerFirst(e))
294            throw new IllegalStateException("Deque full");
295    }
296
297    /**
298     * @throws IllegalStateException {@inheritDoc}
299     * @throws NullPointerException  {@inheritDoc}
300     */
301    public void addLast(E e) {
302        if (!offerLast(e))
303            throw new IllegalStateException("Deque full");
304    }
305
306    /**
307     * @throws NullPointerException {@inheritDoc}
308     */
309    public boolean offerFirst(E e) {
310        if (e == null) throw new NullPointerException();
311        Node<E> node = new Node<E>(e);
312        final ReentrantLock lock = this.lock;
313        lock.lock();
314        try {
315            return linkFirst(node);
316        } finally {
317            lock.unlock();
318        }
319    }
320
321    /**
322     * @throws NullPointerException {@inheritDoc}
323     */
324    public boolean offerLast(E e) {
325        if (e == null) throw new NullPointerException();
326        Node<E> node = new Node<E>(e);
327        final ReentrantLock lock = this.lock;
328        lock.lock();
329        try {
330            return linkLast(node);
331        } finally {
332            lock.unlock();
333        }
334    }
335
336    /**
337     * @throws NullPointerException {@inheritDoc}
338     * @throws InterruptedException {@inheritDoc}
339     */
340    public void putFirst(E e) throws InterruptedException {
341        if (e == null) throw new NullPointerException();
342        Node<E> node = new Node<E>(e);
343        final ReentrantLock lock = this.lock;
344        lock.lock();
345        try {
346            while (!linkFirst(node))
347                notFull.await();
348        } finally {
349            lock.unlock();
350        }
351    }
352
353    /**
354     * @throws NullPointerException {@inheritDoc}
355     * @throws InterruptedException {@inheritDoc}
356     */
357    public void putLast(E e) throws InterruptedException {
358        if (e == null) throw new NullPointerException();
359        Node<E> node = new Node<E>(e);
360        final ReentrantLock lock = this.lock;
361        lock.lock();
362        try {
363            while (!linkLast(node))
364                notFull.await();
365        } finally {
366            lock.unlock();
367        }
368    }
369
370    /**
371     * @throws NullPointerException {@inheritDoc}
372     * @throws InterruptedException {@inheritDoc}
373     */
374    public boolean offerFirst(E e, long timeout, TimeUnit unit)
375        throws InterruptedException {
376        if (e == null) throw new NullPointerException();
377        Node<E> node = new Node<E>(e);
378        long nanos = unit.toNanos(timeout);
379        final ReentrantLock lock = this.lock;
380        lock.lockInterruptibly();
381        try {
382            while (!linkFirst(node)) {
383                if (nanos <= 0)
384                    return false;
385                nanos = notFull.awaitNanos(nanos);
386            }
387            return true;
388        } finally {
389            lock.unlock();
390        }
391    }
392
393    /**
394     * @throws NullPointerException {@inheritDoc}
395     * @throws InterruptedException {@inheritDoc}
396     */
397    public boolean offerLast(E e, long timeout, TimeUnit unit)
398        throws InterruptedException {
399        if (e == null) throw new NullPointerException();
400        Node<E> node = new Node<E>(e);
401        long nanos = unit.toNanos(timeout);
402        final ReentrantLock lock = this.lock;
403        lock.lockInterruptibly();
404        try {
405            while (!linkLast(node)) {
406                if (nanos <= 0)
407                    return false;
408                nanos = notFull.awaitNanos(nanos);
409            }
410            return true;
411        } finally {
412            lock.unlock();
413        }
414    }
415
416    /**
417     * @throws NoSuchElementException {@inheritDoc}
418     */
419    public E removeFirst() {
420        E x = pollFirst();
421        if (x == null) throw new NoSuchElementException();
422        return x;
423    }
424
425    /**
426     * @throws NoSuchElementException {@inheritDoc}
427     */
428    public E removeLast() {
429        E x = pollLast();
430        if (x == null) throw new NoSuchElementException();
431        return x;
432    }
433
434    public E pollFirst() {
435        final ReentrantLock lock = this.lock;
436        lock.lock();
437        try {
438            return unlinkFirst();
439        } finally {
440            lock.unlock();
441        }
442    }
443
444    public E pollLast() {
445        final ReentrantLock lock = this.lock;
446        lock.lock();
447        try {
448            return unlinkLast();
449        } finally {
450            lock.unlock();
451        }
452    }
453
454    public E takeFirst() throws InterruptedException {
455        final ReentrantLock lock = this.lock;
456        lock.lock();
457        try {
458            E x;
459            while ( (x = unlinkFirst()) == null)
460                notEmpty.await();
461            return x;
462        } finally {
463            lock.unlock();
464        }
465    }
466
467    public E takeLast() throws InterruptedException {
468        final ReentrantLock lock = this.lock;
469        lock.lock();
470        try {
471            E x;
472            while ( (x = unlinkLast()) == null)
473                notEmpty.await();
474            return x;
475        } finally {
476            lock.unlock();
477        }
478    }
479
480    public E pollFirst(long timeout, TimeUnit unit)
481        throws InterruptedException {
482        long nanos = unit.toNanos(timeout);
483        final ReentrantLock lock = this.lock;
484        lock.lockInterruptibly();
485        try {
486            E x;
487            while ( (x = unlinkFirst()) == null) {
488                if (nanos <= 0)
489                    return null;
490                nanos = notEmpty.awaitNanos(nanos);
491            }
492            return x;
493        } finally {
494            lock.unlock();
495        }
496    }
497
498    public E pollLast(long timeout, TimeUnit unit)
499        throws InterruptedException {
500        long nanos = unit.toNanos(timeout);
501        final ReentrantLock lock = this.lock;
502        lock.lockInterruptibly();
503        try {
504            E x;
505            while ( (x = unlinkLast()) == null) {
506                if (nanos <= 0)
507                    return null;
508                nanos = notEmpty.awaitNanos(nanos);
509            }
510            return x;
511        } finally {
512            lock.unlock();
513        }
514    }
515
516    /**
517     * @throws NoSuchElementException {@inheritDoc}
518     */
519    public E getFirst() {
520        E x = peekFirst();
521        if (x == null) throw new NoSuchElementException();
522        return x;
523    }
524
525    /**
526     * @throws NoSuchElementException {@inheritDoc}
527     */
528    public E getLast() {
529        E x = peekLast();
530        if (x == null) throw new NoSuchElementException();
531        return x;
532    }
533
534    public E peekFirst() {
535        final ReentrantLock lock = this.lock;
536        lock.lock();
537        try {
538            return (first == null) ? null : first.item;
539        } finally {
540            lock.unlock();
541        }
542    }
543
544    public E peekLast() {
545        final ReentrantLock lock = this.lock;
546        lock.lock();
547        try {
548            return (last == null) ? null : last.item;
549        } finally {
550            lock.unlock();
551        }
552    }
553
554    public boolean removeFirstOccurrence(Object o) {
555        if (o == null) return false;
556        final ReentrantLock lock = this.lock;
557        lock.lock();
558        try {
559            for (Node<E> p = first; p != null; p = p.next) {
560                if (o.equals(p.item)) {
561                    unlink(p);
562                    return true;
563                }
564            }
565            return false;
566        } finally {
567            lock.unlock();
568        }
569    }
570
571    public boolean removeLastOccurrence(Object o) {
572        if (o == null) return false;
573        final ReentrantLock lock = this.lock;
574        lock.lock();
575        try {
576            for (Node<E> p = last; p != null; p = p.prev) {
577                if (o.equals(p.item)) {
578                    unlink(p);
579                    return true;
580                }
581            }
582            return false;
583        } finally {
584            lock.unlock();
585        }
586    }
587
588    // BlockingQueue methods
589
590    /**
591     * Inserts the specified element at the end of this deque unless it would
592     * violate capacity restrictions.  When using a capacity-restricted deque,
593     * it is generally preferable to use method {@link #offer(Object) offer}.
594     *
595     * <p>This method is equivalent to {@link #addLast}.
596     *
597     * @throws IllegalStateException if the element cannot be added at this
598     *         time due to capacity restrictions
599     * @throws NullPointerException if the specified element is null
600     */
601    public boolean add(E e) {
602        addLast(e);
603        return true;
604    }
605
606    /**
607     * @throws NullPointerException if the specified element is null
608     */
609    public boolean offer(E e) {
610        return offerLast(e);
611    }
612
613    /**
614     * @throws NullPointerException {@inheritDoc}
615     * @throws InterruptedException {@inheritDoc}
616     */
617    public void put(E e) throws InterruptedException {
618        putLast(e);
619    }
620
621    /**
622     * @throws NullPointerException {@inheritDoc}
623     * @throws InterruptedException {@inheritDoc}
624     */
625    public boolean offer(E e, long timeout, TimeUnit unit)
626        throws InterruptedException {
627        return offerLast(e, timeout, unit);
628    }
629
630    /**
631     * Retrieves and removes the head of the queue represented by this deque.
632     * This method differs from {@link #poll poll} only in that it throws an
633     * exception if this deque is empty.
634     *
635     * <p>This method is equivalent to {@link #removeFirst() removeFirst}.
636     *
637     * @return the head of the queue represented by this deque
638     * @throws NoSuchElementException if this deque is empty
639     */
640    public E remove() {
641        return removeFirst();
642    }
643
644    public E poll() {
645        return pollFirst();
646    }
647
648    public E take() throws InterruptedException {
649        return takeFirst();
650    }
651
652    public E poll(long timeout, TimeUnit unit) throws InterruptedException {
653        return pollFirst(timeout, unit);
654    }
655
656    /**
657     * Retrieves, but does not remove, the head of the queue represented by
658     * this deque.  This method differs from {@link #peek peek} only in that
659     * it throws an exception if this deque is empty.
660     *
661     * <p>This method is equivalent to {@link #getFirst() getFirst}.
662     *
663     * @return the head of the queue represented by this deque
664     * @throws NoSuchElementException if this deque is empty
665     */
666    public E element() {
667        return getFirst();
668    }
669
670    public E peek() {
671        return peekFirst();
672    }
673
674    /**
675     * Returns the number of additional elements that this deque can ideally
676     * (in the absence of memory or resource constraints) accept without
677     * blocking. This is always equal to the initial capacity of this deque
678     * less the current {@code size} of this deque.
679     *
680     * <p>Note that you <em>cannot</em> always tell if an attempt to insert
681     * an element will succeed by inspecting {@code remainingCapacity}
682     * because it may be the case that another thread is about to
683     * insert or remove an element.
684     */
685    public int remainingCapacity() {
686        final ReentrantLock lock = this.lock;
687        lock.lock();
688        try {
689            return capacity - count;
690        } finally {
691            lock.unlock();
692        }
693    }
694
695    /**
696     * @throws UnsupportedOperationException {@inheritDoc}
697     * @throws ClassCastException            {@inheritDoc}
698     * @throws NullPointerException          {@inheritDoc}
699     * @throws IllegalArgumentException      {@inheritDoc}
700     */
701    public int drainTo(Collection<? super E> c) {
702        return drainTo(c, Integer.MAX_VALUE);
703    }
704
705    /**
706     * @throws UnsupportedOperationException {@inheritDoc}
707     * @throws ClassCastException            {@inheritDoc}
708     * @throws NullPointerException          {@inheritDoc}
709     * @throws IllegalArgumentException      {@inheritDoc}
710     */
711    public int drainTo(Collection<? super E> c, int maxElements) {
712        if (c == null)
713            throw new NullPointerException();
714        if (c == this)
715            throw new IllegalArgumentException();
716        if (maxElements <= 0)
717            return 0;
718        final ReentrantLock lock = this.lock;
719        lock.lock();
720        try {
721            int n = Math.min(maxElements, count);
722            for (int i = 0; i < n; i++) {
723                c.add(first.item);   // In this order, in case add() throws.
724                unlinkFirst();
725            }
726            return n;
727        } finally {
728            lock.unlock();
729        }
730    }
731
732    // Stack methods
733
734    /**
735     * @throws IllegalStateException {@inheritDoc}
736     * @throws NullPointerException  {@inheritDoc}
737     */
738    public void push(E e) {
739        addFirst(e);
740    }
741
742    /**
743     * @throws NoSuchElementException {@inheritDoc}
744     */
745    public E pop() {
746        return removeFirst();
747    }
748
749    // Collection methods
750
751    /**
752     * Removes the first occurrence of the specified element from this deque.
753     * If the deque does not contain the element, it is unchanged.
754     * More formally, removes the first element {@code e} such that
755     * {@code o.equals(e)} (if such an element exists).
756     * Returns {@code true} if this deque contained the specified element
757     * (or equivalently, if this deque changed as a result of the call).
758     *
759     * <p>This method is equivalent to
760     * {@link #removeFirstOccurrence(Object) removeFirstOccurrence}.
761     *
762     * @param o element to be removed from this deque, if present
763     * @return {@code true} if this deque changed as a result of the call
764     */
765    public boolean remove(Object o) {
766        return removeFirstOccurrence(o);
767    }
768
769    /**
770     * Returns the number of elements in this deque.
771     *
772     * @return the number of elements in this deque
773     */
774    public int size() {
775        final ReentrantLock lock = this.lock;
776        lock.lock();
777        try {
778            return count;
779        } finally {
780            lock.unlock();
781        }
782    }
783
784    /**
785     * Returns {@code true} if this deque contains the specified element.
786     * More formally, returns {@code true} if and only if this deque contains
787     * at least one element {@code e} such that {@code o.equals(e)}.
788     *
789     * @param o object to be checked for containment in this deque
790     * @return {@code true} if this deque contains the specified element
791     */
792    public boolean contains(Object o) {
793        if (o == null) return false;
794        final ReentrantLock lock = this.lock;
795        lock.lock();
796        try {
797            for (Node<E> p = first; p != null; p = p.next)
798                if (o.equals(p.item))
799                    return true;
800            return false;
801        } finally {
802            lock.unlock();
803        }
804    }
805
806    /*
807     * TODO: Add support for more efficient bulk operations.
808     *
809     * We don't want to acquire the lock for every iteration, but we
810     * also want other threads a chance to interact with the
811     * collection, especially when count is close to capacity.
812     */
813
814//     /**
815//      * Adds all of the elements in the specified collection to this
816//      * queue.  Attempts to addAll of a queue to itself result in
817//      * {@code IllegalArgumentException}. Further, the behavior of
818//      * this operation is undefined if the specified collection is
819//      * modified while the operation is in progress.
820//      *
821//      * @param c collection containing elements to be added to this queue
822//      * @return {@code true} if this queue changed as a result of the call
823//      * @throws ClassCastException            {@inheritDoc}
824//      * @throws NullPointerException          {@inheritDoc}
825//      * @throws IllegalArgumentException      {@inheritDoc}
826//      * @throws IllegalStateException         {@inheritDoc}
827//      * @see #add(Object)
828//      */
829//     public boolean addAll(Collection<? extends E> c) {
830//         if (c == null)
831//             throw new NullPointerException();
832//         if (c == this)
833//             throw new IllegalArgumentException();
834//         final ReentrantLock lock = this.lock;
835//         lock.lock();
836//         try {
837//             boolean modified = false;
838//             for (E e : c)
839//                 if (linkLast(e))
840//                     modified = true;
841//             return modified;
842//         } finally {
843//             lock.unlock();
844//         }
845//     }
846
847    /**
848     * Returns an array containing all of the elements in this deque, in
849     * proper sequence (from first to last element).
850     *
851     * <p>The returned array will be "safe" in that no references to it are
852     * maintained by this deque.  (In other words, this method must allocate
853     * a new array).  The caller is thus free to modify the returned array.
854     *
855     * <p>This method acts as bridge between array-based and collection-based
856     * APIs.
857     *
858     * @return an array containing all of the elements in this deque
859     */
860    @SuppressWarnings("unchecked")
861    public Object[] toArray() {
862        final ReentrantLock lock = this.lock;
863        lock.lock();
864        try {
865            Object[] a = new Object[count];
866            int k = 0;
867            for (Node<E> p = first; p != null; p = p.next)
868                a[k++] = p.item;
869            return a;
870        } finally {
871            lock.unlock();
872        }
873    }
874
875    /**
876     * Returns an array containing all of the elements in this deque, in
877     * proper sequence; the runtime type of the returned array is that of
878     * the specified array.  If the deque fits in the specified array, it
879     * is returned therein.  Otherwise, a new array is allocated with the
880     * runtime type of the specified array and the size of this deque.
881     *
882     * <p>If this deque fits in the specified array with room to spare
883     * (i.e., the array has more elements than this deque), the element in
884     * the array immediately following the end of the deque is set to
885     * {@code null}.
886     *
887     * <p>Like the {@link #toArray()} method, this method acts as bridge between
888     * array-based and collection-based APIs.  Further, this method allows
889     * precise control over the runtime type of the output array, and may,
890     * under certain circumstances, be used to save allocation costs.
891     *
892     * <p>Suppose {@code x} is a deque known to contain only strings.
893     * The following code can be used to dump the deque into a newly
894     * allocated array of {@code String}:
895     *
896     *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
897     *
898     * Note that {@code toArray(new Object[0])} is identical in function to
899     * {@code toArray()}.
900     *
901     * @param a the array into which the elements of the deque are to
902     *          be stored, if it is big enough; otherwise, a new array of the
903     *          same runtime type is allocated for this purpose
904     * @return an array containing all of the elements in this deque
905     * @throws ArrayStoreException if the runtime type of the specified array
906     *         is not a supertype of the runtime type of every element in
907     *         this deque
908     * @throws NullPointerException if the specified array is null
909     */
910    @SuppressWarnings("unchecked")
911    public <T> T[] toArray(T[] a) {
912        final ReentrantLock lock = this.lock;
913        lock.lock();
914        try {
915            if (a.length < count)
916                a = (T[])java.lang.reflect.Array.newInstance
917                    (a.getClass().getComponentType(), count);
918
919            int k = 0;
920            for (Node<E> p = first; p != null; p = p.next)
921                a[k++] = (T)p.item;
922            if (a.length > k)
923                a[k] = null;
924            return a;
925        } finally {
926            lock.unlock();
927        }
928    }
929
930    public String toString() {
931        final ReentrantLock lock = this.lock;
932        lock.lock();
933        try {
934            Node<E> p = first;
935            if (p == null)
936                return "[]";
937
938            StringBuilder sb = new StringBuilder();
939            sb.append('[');
940            for (;;) {
941                E e = p.item;
942                sb.append(e == this ? "(this Collection)" : e);
943                p = p.next;
944                if (p == null)
945                    return sb.append(']').toString();
946                sb.append(',').append(' ');
947            }
948        } finally {
949            lock.unlock();
950        }
951    }
952
953    /**
954     * Atomically removes all of the elements from this deque.
955     * The deque will be empty after this call returns.
956     */
957    public void clear() {
958        final ReentrantLock lock = this.lock;
959        lock.lock();
960        try {
961            for (Node<E> f = first; f != null; ) {
962                f.item = null;
963                Node<E> n = f.next;
964                f.prev = null;
965                f.next = null;
966                f = n;
967            }
968            first = last = null;
969            count = 0;
970            notFull.signalAll();
971        } finally {
972            lock.unlock();
973        }
974    }
975
976    /**
977     * Returns an iterator over the elements in this deque in proper sequence.
978     * The elements will be returned in order from first (head) to last (tail).
979     *
980     * <p>The returned iterator is a "weakly consistent" iterator that
981     * will never throw {@link java.util.ConcurrentModificationException
982     * ConcurrentModificationException}, and guarantees to traverse
983     * elements as they existed upon construction of the iterator, and
984     * may (but is not guaranteed to) reflect any modifications
985     * subsequent to construction.
986     *
987     * @return an iterator over the elements in this deque in proper sequence
988     */
989    public Iterator<E> iterator() {
990        return new Itr();
991    }
992
993    /**
994     * Returns an iterator over the elements in this deque in reverse
995     * sequential order.  The elements will be returned in order from
996     * last (tail) to first (head).
997     *
998     * <p>The returned iterator is a "weakly consistent" iterator that
999     * will never throw {@link java.util.ConcurrentModificationException
1000     * ConcurrentModificationException}, and guarantees to traverse
1001     * elements as they existed upon construction of the iterator, and
1002     * may (but is not guaranteed to) reflect any modifications
1003     * subsequent to construction.
1004     *
1005     * @return an iterator over the elements in this deque in reverse order
1006     */
1007    public Iterator<E> descendingIterator() {
1008        return new DescendingItr();
1009    }
1010
1011    /**
1012     * Base class for Iterators for LinkedBlockingDeque
1013     */
1014    private abstract class AbstractItr implements Iterator<E> {
1015        /**
1016         * The next node to return in next()
1017         */
1018        Node<E> next;
1019
1020        /**
1021         * nextItem holds on to item fields because once we claim that
1022         * an element exists in hasNext(), we must return item read
1023         * under lock (in advance()) even if it was in the process of
1024         * being removed when hasNext() was called.
1025         */
1026        E nextItem;
1027
1028        /**
1029         * Node returned by most recent call to next. Needed by remove.
1030         * Reset to null if this element is deleted by a call to remove.
1031         */
1032        private Node<E> lastRet;
1033
1034        abstract Node<E> firstNode();
1035        abstract Node<E> nextNode(Node<E> n);
1036
1037        AbstractItr() {
1038            // set to initial position
1039            final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1040            lock.lock();
1041            try {
1042                next = firstNode();
1043                nextItem = (next == null) ? null : next.item;
1044            } finally {
1045                lock.unlock();
1046            }
1047        }
1048
1049        /**
1050         * Returns the successor node of the given non-null, but
1051         * possibly previously deleted, node.
1052         */
1053        private Node<E> succ(Node<E> n) {
1054            // Chains of deleted nodes ending in null or self-links
1055            // are possible if multiple interior nodes are removed.
1056            for (;;) {
1057                Node<E> s = nextNode(n);
1058                if (s == null)
1059                    return null;
1060                else if (s.item != null)
1061                    return s;
1062                else if (s == n)
1063                    return firstNode();
1064                else
1065                    n = s;
1066            }
1067        }
1068
1069        /**
1070         * Advances next.
1071         */
1072        void advance() {
1073            final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1074            lock.lock();
1075            try {
1076                // assert next != null;
1077                next = succ(next);
1078                nextItem = (next == null) ? null : next.item;
1079            } finally {
1080                lock.unlock();
1081            }
1082        }
1083
1084        public boolean hasNext() {
1085            return next != null;
1086        }
1087
1088        public E next() {
1089            if (next == null)
1090                throw new NoSuchElementException();
1091            lastRet = next;
1092            E x = nextItem;
1093            advance();
1094            return x;
1095        }
1096
1097        public void remove() {
1098            Node<E> n = lastRet;
1099            if (n == null)
1100                throw new IllegalStateException();
1101            lastRet = null;
1102            final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1103            lock.lock();
1104            try {
1105                if (n.item != null)
1106                    unlink(n);
1107            } finally {
1108                lock.unlock();
1109            }
1110        }
1111    }
1112
1113    /** Forward iterator */
1114    private class Itr extends AbstractItr {
1115        Node<E> firstNode() { return first; }
1116        Node<E> nextNode(Node<E> n) { return n.next; }
1117    }
1118
1119    /** Descending iterator */
1120    private class DescendingItr extends AbstractItr {
1121        Node<E> firstNode() { return last; }
1122        Node<E> nextNode(Node<E> n) { return n.prev; }
1123    }
1124
1125    /**
1126     * Saves this deque to a stream (that is, serializes it).
1127     *
1128     * @serialData The capacity (int), followed by elements (each an
1129     * {@code Object}) in the proper order, followed by a null
1130     */
1131    private void writeObject(java.io.ObjectOutputStream s)
1132        throws java.io.IOException {
1133        final ReentrantLock lock = this.lock;
1134        lock.lock();
1135        try {
1136            // Write out capacity and any hidden stuff
1137            s.defaultWriteObject();
1138            // Write out all elements in the proper order.
1139            for (Node<E> p = first; p != null; p = p.next)
1140                s.writeObject(p.item);
1141            // Use trailing null as sentinel
1142            s.writeObject(null);
1143        } finally {
1144            lock.unlock();
1145        }
1146    }
1147
1148    /**
1149     * Reconstitutes this deque from a stream (that is, deserializes it).
1150     */
1151    private void readObject(java.io.ObjectInputStream s)
1152        throws java.io.IOException, ClassNotFoundException {
1153        s.defaultReadObject();
1154        count = 0;
1155        first = null;
1156        last = null;
1157        // Read in all elements and place in queue
1158        for (;;) {
1159            @SuppressWarnings("unchecked")
1160            E item = (E)s.readObject();
1161            if (item == null)
1162                break;
1163            add(item);
1164        }
1165    }
1166
1167}
1168