1/*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7package java.util.concurrent;
8
9import java.util.AbstractQueue;
10import java.util.Collection;
11import java.util.Iterator;
12import java.util.NoSuchElementException;
13import java.util.Queue;
14import java.util.concurrent.TimeUnit;
15import java.util.concurrent.locks.LockSupport;
16
17// BEGIN android-note
18// removed link to collections framework docs
19// END android-note
20
21/**
22 * An unbounded {@link TransferQueue} based on linked nodes.
23 * This queue orders elements FIFO (first-in-first-out) with respect
24 * to any given producer.  The <em>head</em> of the queue is that
25 * element that has been on the queue the longest time for some
26 * producer.  The <em>tail</em> of the queue is that element that has
27 * been on the queue the shortest time for some producer.
28 *
29 * <p>Beware that, unlike in most collections, the {@code size} method
30 * is <em>NOT</em> a constant-time operation. Because of the
31 * asynchronous nature of these queues, determining the current number
32 * of elements requires a traversal of the elements, and so may report
33 * inaccurate results if this collection is modified during traversal.
34 * Additionally, the bulk operations {@code addAll},
35 * {@code removeAll}, {@code retainAll}, {@code containsAll},
36 * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
37 * to be performed atomically. For example, an iterator operating
38 * concurrently with an {@code addAll} operation might view only some
39 * of the added elements.
40 *
41 * <p>This class and its iterator implement all of the
42 * <em>optional</em> methods of the {@link Collection} and {@link
43 * Iterator} interfaces.
44 *
45 * <p>Memory consistency effects: As with other concurrent
46 * collections, actions in a thread prior to placing an object into a
47 * {@code LinkedTransferQueue}
48 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
49 * actions subsequent to the access or removal of that element from
50 * the {@code LinkedTransferQueue} in another thread.
51 *
52 * @since 1.7
53 * @author Doug Lea
54 * @param <E> the type of elements held in this collection
55 */
56public class LinkedTransferQueue<E> extends AbstractQueue<E>
57    implements TransferQueue<E>, java.io.Serializable {
58    private static final long serialVersionUID = -3223113410248163686L;
59
60    /*
61     * *** Overview of Dual Queues with Slack ***
62     *
63     * Dual Queues, introduced by Scherer and Scott
64     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
65     * (linked) queues in which nodes may represent either data or
66     * requests.  When a thread tries to enqueue a data node, but
67     * encounters a request node, it instead "matches" and removes it;
68     * and vice versa for enqueuing requests. Blocking Dual Queues
69     * arrange that threads enqueuing unmatched requests block until
70     * other threads provide the match. Dual Synchronous Queues (see
71     * Scherer, Lea, & Scott
72     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
73     * additionally arrange that threads enqueuing unmatched data also
74     * block.  Dual Transfer Queues support all of these modes, as
75     * dictated by callers.
76     *
77     * A FIFO dual queue may be implemented using a variation of the
78     * Michael & Scott (M&S) lock-free queue algorithm
79     * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
80     * It maintains two pointer fields, "head", pointing to a
81     * (matched) node that in turn points to the first actual
82     * (unmatched) queue node (or null if empty); and "tail" that
83     * points to the last node on the queue (or again null if
84     * empty). For example, here is a possible queue with four data
85     * elements:
86     *
87     *  head                tail
88     *    |                   |
89     *    v                   v
90     *    M -> U -> U -> U -> U
91     *
92     * The M&S queue algorithm is known to be prone to scalability and
93     * overhead limitations when maintaining (via CAS) these head and
94     * tail pointers. This has led to the development of
95     * contention-reducing variants such as elimination arrays (see
96     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
97     * optimistic back pointers (see Ladan-Mozes & Shavit
98     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
99     * However, the nature of dual queues enables a simpler tactic for
100     * improving M&S-style implementations when dual-ness is needed.
101     *
102     * In a dual queue, each node must atomically maintain its match
103     * status. While there are other possible variants, we implement
104     * this here as: for a data-mode node, matching entails CASing an
105     * "item" field from a non-null data value to null upon match, and
106     * vice-versa for request nodes, CASing from null to a data
107     * value. (Note that the linearization properties of this style of
108     * queue are easy to verify -- elements are made available by
109     * linking, and unavailable by matching.) Compared to plain M&S
110     * queues, this property of dual queues requires one additional
111     * successful atomic operation per enq/deq pair. But it also
112     * enables lower cost variants of queue maintenance mechanics. (A
113     * variation of this idea applies even for non-dual queues that
114     * support deletion of interior elements, such as
115     * j.u.c.ConcurrentLinkedQueue.)
116     *
117     * Once a node is matched, its match status can never again
118     * change.  We may thus arrange that the linked list of them
119     * contain a prefix of zero or more matched nodes, followed by a
120     * suffix of zero or more unmatched nodes. (Note that we allow
121     * both the prefix and suffix to be zero length, which in turn
122     * means that we do not use a dummy header.)  If we were not
123     * concerned with either time or space efficiency, we could
124     * correctly perform enqueue and dequeue operations by traversing
125     * from a pointer to the initial node; CASing the item of the
126     * first unmatched node on match and CASing the next field of the
127     * trailing node on appends. (Plus some special-casing when
128     * initially empty).  While this would be a terrible idea in
129     * itself, it does have the benefit of not requiring ANY atomic
130     * updates on head/tail fields.
131     *
132     * We introduce here an approach that lies between the extremes of
133     * never versus always updating queue (head and tail) pointers.
134     * This offers a tradeoff between sometimes requiring extra
135     * traversal steps to locate the first and/or last unmatched
136     * nodes, versus the reduced overhead and contention of fewer
137     * updates to queue pointers. For example, a possible snapshot of
138     * a queue is:
139     *
140     *  head           tail
141     *    |              |
142     *    v              v
143     *    M -> M -> U -> U -> U -> U
144     *
145     * The best value for this "slack" (the targeted maximum distance
146     * between the value of "head" and the first unmatched node, and
147     * similarly for "tail") is an empirical matter. We have found
148     * that using very small constants in the range of 1-3 work best
149     * over a range of platforms. Larger values introduce increasing
150     * costs of cache misses and risks of long traversal chains, while
151     * smaller values increase CAS contention and overhead.
152     *
153     * Dual queues with slack differ from plain M&S dual queues by
154     * virtue of only sometimes updating head or tail pointers when
155     * matching, appending, or even traversing nodes; in order to
156     * maintain a targeted slack.  The idea of "sometimes" may be
157     * operationalized in several ways. The simplest is to use a
158     * per-operation counter incremented on each traversal step, and
159     * to try (via CAS) to update the associated queue pointer
160     * whenever the count exceeds a threshold. Another, that requires
161     * more overhead, is to use random number generators to update
162     * with a given probability per traversal step.
163     *
164     * In any strategy along these lines, because CASes updating
165     * fields may fail, the actual slack may exceed targeted
166     * slack. However, they may be retried at any time to maintain
167     * targets.  Even when using very small slack values, this
168     * approach works well for dual queues because it allows all
169     * operations up to the point of matching or appending an item
170     * (hence potentially allowing progress by another thread) to be
171     * read-only, thus not introducing any further contention. As
172     * described below, we implement this by performing slack
173     * maintenance retries only after these points.
174     *
175     * As an accompaniment to such techniques, traversal overhead can
176     * be further reduced without increasing contention of head
177     * pointer updates: Threads may sometimes shortcut the "next" link
178     * path from the current "head" node to be closer to the currently
179     * known first unmatched node, and similarly for tail. Again, this
180     * may be triggered with using thresholds or randomization.
181     *
182     * These ideas must be further extended to avoid unbounded amounts
183     * of costly-to-reclaim garbage caused by the sequential "next"
184     * links of nodes starting at old forgotten head nodes: As first
185     * described in detail by Boehm
186     * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
187     * delays noticing that any arbitrarily old node has become
188     * garbage, all newer dead nodes will also be unreclaimed.
189     * (Similar issues arise in non-GC environments.)  To cope with
190     * this in our implementation, upon CASing to advance the head
191     * pointer, we set the "next" link of the previous head to point
192     * only to itself; thus limiting the length of connected dead lists.
193     * (We also take similar care to wipe out possibly garbage
194     * retaining values held in other Node fields.)  However, doing so
195     * adds some further complexity to traversal: If any "next"
196     * pointer links to itself, it indicates that the current thread
197     * has lagged behind a head-update, and so the traversal must
198     * continue from the "head".  Traversals trying to find the
199     * current tail starting from "tail" may also encounter
200     * self-links, in which case they also continue at "head".
201     *
202     * It is tempting in slack-based scheme to not even use CAS for
203     * updates (similarly to Ladan-Mozes & Shavit). However, this
204     * cannot be done for head updates under the above link-forgetting
205     * mechanics because an update may leave head at a detached node.
206     * And while direct writes are possible for tail updates, they
207     * increase the risk of long retraversals, and hence long garbage
208     * chains, which can be much more costly than is worthwhile
209     * considering that the cost difference of performing a CAS vs
210     * write is smaller when they are not triggered on each operation
211     * (especially considering that writes and CASes equally require
212     * additional GC bookkeeping ("write barriers") that are sometimes
213     * more costly than the writes themselves because of contention).
214     *
215     * *** Overview of implementation ***
216     *
217     * We use a threshold-based approach to updates, with a slack
218     * threshold of two -- that is, we update head/tail when the
219     * current pointer appears to be two or more steps away from the
220     * first/last node. The slack value is hard-wired: a path greater
221     * than one is naturally implemented by checking equality of
222     * traversal pointers except when the list has only one element,
223     * in which case we keep slack threshold at one. Avoiding tracking
224     * explicit counts across method calls slightly simplifies an
225     * already-messy implementation. Using randomization would
226     * probably work better if there were a low-quality dirt-cheap
227     * per-thread one available, but even ThreadLocalRandom is too
228     * heavy for these purposes.
229     *
230     * With such a small slack threshold value, it is not worthwhile
231     * to augment this with path short-circuiting (i.e., unsplicing
232     * interior nodes) except in the case of cancellation/removal (see
233     * below).
234     *
235     * We allow both the head and tail fields to be null before any
236     * nodes are enqueued; initializing upon first append.  This
237     * simplifies some other logic, as well as providing more
238     * efficient explicit control paths instead of letting JVMs insert
239     * implicit NullPointerExceptions when they are null.  While not
240     * currently fully implemented, we also leave open the possibility
241     * of re-nulling these fields when empty (which is complicated to
242     * arrange, for little benefit.)
243     *
244     * All enqueue/dequeue operations are handled by the single method
245     * "xfer" with parameters indicating whether to act as some form
246     * of offer, put, poll, take, or transfer (each possibly with
247     * timeout). The relative complexity of using one monolithic
248     * method outweighs the code bulk and maintenance problems of
249     * using separate methods for each case.
250     *
251     * Operation consists of up to three phases. The first is
252     * implemented within method xfer, the second in tryAppend, and
253     * the third in method awaitMatch.
254     *
255     * 1. Try to match an existing node
256     *
257     *    Starting at head, skip already-matched nodes until finding
258     *    an unmatched node of opposite mode, if one exists, in which
259     *    case matching it and returning, also if necessary updating
260     *    head to one past the matched node (or the node itself if the
261     *    list has no other unmatched nodes). If the CAS misses, then
262     *    a loop retries advancing head by two steps until either
263     *    success or the slack is at most two. By requiring that each
264     *    attempt advances head by two (if applicable), we ensure that
265     *    the slack does not grow without bound. Traversals also check
266     *    if the initial head is now off-list, in which case they
267     *    start at the new head.
268     *
269     *    If no candidates are found and the call was untimed
270     *    poll/offer, (argument "how" is NOW) return.
271     *
272     * 2. Try to append a new node (method tryAppend)
273     *
274     *    Starting at current tail pointer, find the actual last node
275     *    and try to append a new node (or if head was null, establish
276     *    the first node). Nodes can be appended only if their
277     *    predecessors are either already matched or are of the same
278     *    mode. If we detect otherwise, then a new node with opposite
279     *    mode must have been appended during traversal, so we must
280     *    restart at phase 1. The traversal and update steps are
281     *    otherwise similar to phase 1: Retrying upon CAS misses and
282     *    checking for staleness.  In particular, if a self-link is
283     *    encountered, then we can safely jump to a node on the list
284     *    by continuing the traversal at current head.
285     *
286     *    On successful append, if the call was ASYNC, return.
287     *
288     * 3. Await match or cancellation (method awaitMatch)
289     *
290     *    Wait for another thread to match node; instead cancelling if
291     *    the current thread was interrupted or the wait timed out. On
292     *    multiprocessors, we use front-of-queue spinning: If a node
293     *    appears to be the first unmatched node in the queue, it
294     *    spins a bit before blocking. In either case, before blocking
295     *    it tries to unsplice any nodes between the current "head"
296     *    and the first unmatched node.
297     *
298     *    Front-of-queue spinning vastly improves performance of
299     *    heavily contended queues. And so long as it is relatively
300     *    brief and "quiet", spinning does not much impact performance
301     *    of less-contended queues.  During spins threads check their
302     *    interrupt status and generate a thread-local random number
303     *    to decide to occasionally perform a Thread.yield. While
304     *    yield has underdefined specs, we assume that it might help,
305     *    and will not hurt, in limiting impact of spinning on busy
306     *    systems.  We also use smaller (1/2) spins for nodes that are
307     *    not known to be front but whose predecessors have not
308     *    blocked -- these "chained" spins avoid artifacts of
309     *    front-of-queue rules which otherwise lead to alternating
310     *    nodes spinning vs blocking. Further, front threads that
311     *    represent phase changes (from data to request node or vice
312     *    versa) compared to their predecessors receive additional
313     *    chained spins, reflecting longer paths typically required to
314     *    unblock threads during phase changes.
315     *
316     *
317     * ** Unlinking removed interior nodes **
318     *
319     * In addition to minimizing garbage retention via self-linking
320     * described above, we also unlink removed interior nodes. These
321     * may arise due to timed out or interrupted waits, or calls to
322     * remove(x) or Iterator.remove.  Normally, given a node that was
323     * at one time known to be the predecessor of some node s that is
324     * to be removed, we can unsplice s by CASing the next field of
325     * its predecessor if it still points to s (otherwise s must
326     * already have been removed or is now offlist). But there are two
327     * situations in which we cannot guarantee to make node s
328     * unreachable in this way: (1) If s is the trailing node of list
329     * (i.e., with null next), then it is pinned as the target node
330     * for appends, so can only be removed later after other nodes are
331     * appended. (2) We cannot necessarily unlink s given a
332     * predecessor node that is matched (including the case of being
333     * cancelled): the predecessor may already be unspliced, in which
334     * case some previous reachable node may still point to s.
335     * (For further explanation see Herlihy & Shavit "The Art of
336     * Multiprocessor Programming" chapter 9).  Although, in both
337     * cases, we can rule out the need for further action if either s
338     * or its predecessor are (or can be made to be) at, or fall off
339     * from, the head of list.
340     *
341     * Without taking these into account, it would be possible for an
342     * unbounded number of supposedly removed nodes to remain
343     * reachable.  Situations leading to such buildup are uncommon but
344     * can occur in practice; for example when a series of short timed
345     * calls to poll repeatedly time out but never otherwise fall off
346     * the list because of an untimed call to take at the front of the
347     * queue.
348     *
349     * When these cases arise, rather than always retraversing the
350     * entire list to find an actual predecessor to unlink (which
351     * won't help for case (1) anyway), we record a conservative
352     * estimate of possible unsplice failures (in "sweepVotes").
353     * We trigger a full sweep when the estimate exceeds a threshold
354     * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
355     * removal failures to tolerate before sweeping through, unlinking
356     * cancelled nodes that were not unlinked upon initial removal.
357     * We perform sweeps by the thread hitting threshold (rather than
358     * background threads or by spreading work to other threads)
359     * because in the main contexts in which removal occurs, the
360     * caller is already timed-out, cancelled, or performing a
361     * potentially O(n) operation (e.g. remove(x)), none of which are
362     * time-critical enough to warrant the overhead that alternatives
363     * would impose on other threads.
364     *
365     * Because the sweepVotes estimate is conservative, and because
366     * nodes become unlinked "naturally" as they fall off the head of
367     * the queue, and because we allow votes to accumulate even while
368     * sweeps are in progress, there are typically significantly fewer
369     * such nodes than estimated.  Choice of a threshold value
370     * balances the likelihood of wasted effort and contention, versus
371     * providing a worst-case bound on retention of interior nodes in
372     * quiescent queues. The value defined below was chosen
373     * empirically to balance these under various timeout scenarios.
374     *
375     * Note that we cannot self-link unlinked interior nodes during
376     * sweeps. However, the associated garbage chains terminate when
377     * some successor ultimately falls off the head of the list and is
378     * self-linked.
379     */
380
381    /** True if on multiprocessor */
382    private static final boolean MP =
383        Runtime.getRuntime().availableProcessors() > 1;
384
385    /**
386     * The number of times to spin (with randomly interspersed calls
387     * to Thread.yield) on multiprocessor before blocking when a node
388     * is apparently the first waiter in the queue.  See above for
389     * explanation. Must be a power of two. The value is empirically
390     * derived -- it works pretty well across a variety of processors,
391     * numbers of CPUs, and OSes.
392     */
393    private static final int FRONT_SPINS   = 1 << 7;
394
395    /**
396     * The number of times to spin before blocking when a node is
397     * preceded by another node that is apparently spinning.  Also
398     * serves as an increment to FRONT_SPINS on phase changes, and as
399     * base average frequency for yielding during spins. Must be a
400     * power of two.
401     */
402    private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
403
404    /**
405     * The maximum number of estimated removal failures (sweepVotes)
406     * to tolerate before sweeping through the queue unlinking
407     * cancelled nodes that were not unlinked upon initial
408     * removal. See above for explanation. The value must be at least
409     * two to avoid useless sweeps when removing trailing nodes.
410     */
411    static final int SWEEP_THRESHOLD = 32;
412
413    /**
414     * Queue nodes. Uses Object, not E, for items to allow forgetting
415     * them after use.  Relies heavily on Unsafe mechanics to minimize
416     * unnecessary ordering constraints: Writes that are intrinsically
417     * ordered wrt other accesses or CASes use simple relaxed forms.
418     */
419    static final class Node {
420        final boolean isData;   // false if this is a request node
421        volatile Object item;   // initially non-null if isData; CASed to match
422        volatile Node next;
423        volatile Thread waiter; // null until waiting
424
425        // CAS methods for fields
426        final boolean casNext(Node cmp, Node val) {
427            return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
428        }
429
430        final boolean casItem(Object cmp, Object val) {
431            // assert cmp == null || cmp.getClass() != Node.class;
432            return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
433        }
434
435        /**
436         * Constructs a new node.  Uses relaxed write because item can
437         * only be seen after publication via casNext.
438         */
439        Node(Object item, boolean isData) {
440            UNSAFE.putObject(this, itemOffset, item); // relaxed write
441            this.isData = isData;
442        }
443
444        /**
445         * Links node to itself to avoid garbage retention.  Called
446         * only after CASing head field, so uses relaxed write.
447         */
448        final void forgetNext() {
449            UNSAFE.putObject(this, nextOffset, this);
450        }
451
452        /**
453         * Sets item to self and waiter to null, to avoid garbage
454         * retention after matching or cancelling. Uses relaxed writes
455         * because order is already constrained in the only calling
456         * contexts: item is forgotten only after volatile/atomic
457         * mechanics that extract items.  Similarly, clearing waiter
458         * follows either CAS or return from park (if ever parked;
459         * else we don't care).
460         */
461        final void forgetContents() {
462            UNSAFE.putObject(this, itemOffset, this);
463            UNSAFE.putObject(this, waiterOffset, null);
464        }
465
466        /**
467         * Returns true if this node has been matched, including the
468         * case of artificial matches due to cancellation.
469         */
470        final boolean isMatched() {
471            Object x = item;
472            return (x == this) || ((x == null) == isData);
473        }
474
475        /**
476         * Returns true if this is an unmatched request node.
477         */
478        final boolean isUnmatchedRequest() {
479            return !isData && item == null;
480        }
481
482        /**
483         * Returns true if a node with the given mode cannot be
484         * appended to this node because this node is unmatched and
485         * has opposite data mode.
486         */
487        final boolean cannotPrecede(boolean haveData) {
488            boolean d = isData;
489            Object x;
490            return d != haveData && (x = item) != this && (x != null) == d;
491        }
492
493        /**
494         * Tries to artificially match a data node -- used by remove.
495         */
496        final boolean tryMatchData() {
497            // assert isData;
498            Object x = item;
499            if (x != null && x != this && casItem(x, null)) {
500                LockSupport.unpark(waiter);
501                return true;
502            }
503            return false;
504        }
505
506        private static final long serialVersionUID = -3375979862319811754L;
507
508        // Unsafe mechanics
509        private static final sun.misc.Unsafe UNSAFE;
510        private static final long itemOffset;
511        private static final long nextOffset;
512        private static final long waiterOffset;
513        static {
514            try {
515                UNSAFE = sun.misc.Unsafe.getUnsafe();
516                Class<?> k = Node.class;
517                itemOffset = UNSAFE.objectFieldOffset
518                    (k.getDeclaredField("item"));
519                nextOffset = UNSAFE.objectFieldOffset
520                    (k.getDeclaredField("next"));
521                waiterOffset = UNSAFE.objectFieldOffset
522                    (k.getDeclaredField("waiter"));
523            } catch (Exception e) {
524                throw new Error(e);
525            }
526        }
527    }
528
529    /** head of the queue; null until first enqueue */
530    transient volatile Node head;
531
532    /** tail of the queue; null until first append */
533    private transient volatile Node tail;
534
535    /** The number of apparent failures to unsplice removed nodes */
536    private transient volatile int sweepVotes;
537
538    // CAS methods for fields
539    private boolean casTail(Node cmp, Node val) {
540        return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
541    }
542
543    private boolean casHead(Node cmp, Node val) {
544        return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
545    }
546
547    private boolean casSweepVotes(int cmp, int val) {
548        return UNSAFE.compareAndSwapInt(this, sweepVotesOffset, cmp, val);
549    }
550
551    /*
552     * Possible values for "how" argument in xfer method.
553     */
554    private static final int NOW   = 0; // for untimed poll, tryTransfer
555    private static final int ASYNC = 1; // for offer, put, add
556    private static final int SYNC  = 2; // for transfer, take
557    private static final int TIMED = 3; // for timed poll, tryTransfer
558
559    @SuppressWarnings("unchecked")
560    static <E> E cast(Object item) {
561        // assert item == null || item.getClass() != Node.class;
562        return (E) item;
563    }
564
565    /**
566     * Implements all queuing methods. See above for explanation.
567     *
568     * @param e the item or null for take
569     * @param haveData true if this is a put, else a take
570     * @param how NOW, ASYNC, SYNC, or TIMED
571     * @param nanos timeout in nanosecs, used only if mode is TIMED
572     * @return an item if matched, else e
573     * @throws NullPointerException if haveData mode but e is null
574     */
575    private E xfer(E e, boolean haveData, int how, long nanos) {
576        if (haveData && (e == null))
577            throw new NullPointerException();
578        Node s = null;                        // the node to append, if needed
579
580        retry:
581        for (;;) {                            // restart on append race
582
583            for (Node h = head, p = h; p != null;) { // find & match first node
584                boolean isData = p.isData;
585                Object item = p.item;
586                if (item != p && (item != null) == isData) { // unmatched
587                    if (isData == haveData)   // can't match
588                        break;
589                    if (p.casItem(item, e)) { // match
590                        for (Node q = p; q != h;) {
591                            Node n = q.next;  // update by 2 unless singleton
592                            if (head == h && casHead(h, n == null ? q : n)) {
593                                h.forgetNext();
594                                break;
595                            }                 // advance and retry
596                            if ((h = head)   == null ||
597                                (q = h.next) == null || !q.isMatched())
598                                break;        // unless slack < 2
599                        }
600                        LockSupport.unpark(p.waiter);
601                        return LinkedTransferQueue.<E>cast(item);
602                    }
603                }
604                Node n = p.next;
605                p = (p != n) ? n : (h = head); // Use head if p offlist
606            }
607
608            if (how != NOW) {                 // No matches available
609                if (s == null)
610                    s = new Node(e, haveData);
611                Node pred = tryAppend(s, haveData);
612                if (pred == null)
613                    continue retry;           // lost race vs opposite mode
614                if (how != ASYNC)
615                    return awaitMatch(s, pred, e, (how == TIMED), nanos);
616            }
617            return e; // not waiting
618        }
619    }
620
621    /**
622     * Tries to append node s as tail.
623     *
624     * @param s the node to append
625     * @param haveData true if appending in data mode
626     * @return null on failure due to losing race with append in
627     * different mode, else s's predecessor, or s itself if no
628     * predecessor
629     */
630    private Node tryAppend(Node s, boolean haveData) {
631        for (Node t = tail, p = t;;) {        // move p to last node and append
632            Node n, u;                        // temps for reads of next & tail
633            if (p == null && (p = head) == null) {
634                if (casHead(null, s))
635                    return s;                 // initialize
636            }
637            else if (p.cannotPrecede(haveData))
638                return null;                  // lost race vs opposite mode
639            else if ((n = p.next) != null)    // not last; keep traversing
640                p = p != t && t != (u = tail) ? (t = u) : // stale tail
641                    (p != n) ? n : null;      // restart if off list
642            else if (!p.casNext(null, s))
643                p = p.next;                   // re-read on CAS failure
644            else {
645                if (p != t) {                 // update if slack now >= 2
646                    while ((tail != t || !casTail(t, s)) &&
647                           (t = tail)   != null &&
648                           (s = t.next) != null && // advance and retry
649                           (s = s.next) != null && s != t);
650                }
651                return p;
652            }
653        }
654    }
655
656    /**
657     * Spins/yields/blocks until node s is matched or caller gives up.
658     *
659     * @param s the waiting node
660     * @param pred the predecessor of s, or s itself if it has no
661     * predecessor, or null if unknown (the null case does not occur
662     * in any current calls but may in possible future extensions)
663     * @param e the comparison value for checking match
664     * @param timed if true, wait only until timeout elapses
665     * @param nanos timeout in nanosecs, used only if timed is true
666     * @return matched item, or e if unmatched on interrupt or timeout
667     */
668    private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
669        final long deadline = timed ? System.nanoTime() + nanos : 0L;
670        Thread w = Thread.currentThread();
671        int spins = -1; // initialized after first item and cancel checks
672        ThreadLocalRandom randomYields = null; // bound if needed
673
674        for (;;) {
675            Object item = s.item;
676            if (item != e) {                  // matched
677                // assert item != s;
678                s.forgetContents();           // avoid garbage
679                return LinkedTransferQueue.<E>cast(item);
680            }
681            if ((w.isInterrupted() || (timed && nanos <= 0)) &&
682                    s.casItem(e, s)) {        // cancel
683                unsplice(pred, s);
684                return e;
685            }
686
687            if (spins < 0) {                  // establish spins at/near front
688                if ((spins = spinsFor(pred, s.isData)) > 0)
689                    randomYields = ThreadLocalRandom.current();
690            }
691            else if (spins > 0) {             // spin
692                --spins;
693                if (randomYields.nextInt(CHAINED_SPINS) == 0)
694                    Thread.yield();           // occasionally yield
695            }
696            else if (s.waiter == null) {
697                s.waiter = w;                 // request unpark then recheck
698            }
699            else if (timed) {
700                nanos = deadline - System.nanoTime();
701                if (nanos > 0L)
702                    LockSupport.parkNanos(this, nanos);
703            }
704            else {
705                LockSupport.park(this);
706            }
707        }
708    }
709
710    /**
711     * Returns spin/yield value for a node with given predecessor and
712     * data mode. See above for explanation.
713     */
714    private static int spinsFor(Node pred, boolean haveData) {
715        if (MP && pred != null) {
716            if (pred.isData != haveData)      // phase change
717                return FRONT_SPINS + CHAINED_SPINS;
718            if (pred.isMatched())             // probably at front
719                return FRONT_SPINS;
720            if (pred.waiter == null)          // pred apparently spinning
721                return CHAINED_SPINS;
722        }
723        return 0;
724    }
725
726    /* -------------- Traversal methods -------------- */
727
728    /**
729     * Returns the successor of p, or the head node if p.next has been
730     * linked to self, which will only be true if traversing with a
731     * stale pointer that is now off the list.
732     */
733    final Node succ(Node p) {
734        Node next = p.next;
735        return (p == next) ? head : next;
736    }
737
738    /**
739     * Returns the first unmatched node of the given mode, or null if
740     * none.  Used by methods isEmpty, hasWaitingConsumer.
741     */
742    private Node firstOfMode(boolean isData) {
743        for (Node p = head; p != null; p = succ(p)) {
744            if (!p.isMatched())
745                return (p.isData == isData) ? p : null;
746        }
747        return null;
748    }
749
750    /**
751     * Returns the item in the first unmatched node with isData; or
752     * null if none.  Used by peek.
753     */
754    private E firstDataItem() {
755        for (Node p = head; p != null; p = succ(p)) {
756            Object item = p.item;
757            if (p.isData) {
758                if (item != null && item != p)
759                    return LinkedTransferQueue.<E>cast(item);
760            }
761            else if (item == null)
762                return null;
763        }
764        return null;
765    }
766
767    /**
768     * Traverses and counts unmatched nodes of the given mode.
769     * Used by methods size and getWaitingConsumerCount.
770     */
771    private int countOfMode(boolean data) {
772        int count = 0;
773        for (Node p = head; p != null; ) {
774            if (!p.isMatched()) {
775                if (p.isData != data)
776                    return 0;
777                if (++count == Integer.MAX_VALUE) // saturated
778                    break;
779            }
780            Node n = p.next;
781            if (n != p)
782                p = n;
783            else {
784                count = 0;
785                p = head;
786            }
787        }
788        return count;
789    }
790
791    final class Itr implements Iterator<E> {
792        private Node nextNode;   // next node to return item for
793        private E nextItem;      // the corresponding item
794        private Node lastRet;    // last returned node, to support remove
795        private Node lastPred;   // predecessor to unlink lastRet
796
797        /**
798         * Moves to next node after prev, or first node if prev null.
799         */
800        private void advance(Node prev) {
801            /*
802             * To track and avoid buildup of deleted nodes in the face
803             * of calls to both Queue.remove and Itr.remove, we must
804             * include variants of unsplice and sweep upon each
805             * advance: Upon Itr.remove, we may need to catch up links
806             * from lastPred, and upon other removes, we might need to
807             * skip ahead from stale nodes and unsplice deleted ones
808             * found while advancing.
809             */
810
811            Node r, b; // reset lastPred upon possible deletion of lastRet
812            if ((r = lastRet) != null && !r.isMatched())
813                lastPred = r;    // next lastPred is old lastRet
814            else if ((b = lastPred) == null || b.isMatched())
815                lastPred = null; // at start of list
816            else {
817                Node s, n;       // help with removal of lastPred.next
818                while ((s = b.next) != null &&
819                       s != b && s.isMatched() &&
820                       (n = s.next) != null && n != s)
821                    b.casNext(s, n);
822            }
823
824            this.lastRet = prev;
825
826            for (Node p = prev, s, n;;) {
827                s = (p == null) ? head : p.next;
828                if (s == null)
829                    break;
830                else if (s == p) {
831                    p = null;
832                    continue;
833                }
834                Object item = s.item;
835                if (s.isData) {
836                    if (item != null && item != s) {
837                        nextItem = LinkedTransferQueue.<E>cast(item);
838                        nextNode = s;
839                        return;
840                    }
841                }
842                else if (item == null)
843                    break;
844                // assert s.isMatched();
845                if (p == null)
846                    p = s;
847                else if ((n = s.next) == null)
848                    break;
849                else if (s == n)
850                    p = null;
851                else
852                    p.casNext(s, n);
853            }
854            nextNode = null;
855            nextItem = null;
856        }
857
858        Itr() {
859            advance(null);
860        }
861
862        public final boolean hasNext() {
863            return nextNode != null;
864        }
865
866        public final E next() {
867            Node p = nextNode;
868            if (p == null) throw new NoSuchElementException();
869            E e = nextItem;
870            advance(p);
871            return e;
872        }
873
874        public final void remove() {
875            final Node lastRet = this.lastRet;
876            if (lastRet == null)
877                throw new IllegalStateException();
878            this.lastRet = null;
879            if (lastRet.tryMatchData())
880                unsplice(lastPred, lastRet);
881        }
882    }
883
884    /* -------------- Removal methods -------------- */
885
886    /**
887     * Unsplices (now or later) the given deleted/cancelled node with
888     * the given predecessor.
889     *
890     * @param pred a node that was at one time known to be the
891     * predecessor of s, or null or s itself if s is/was at head
892     * @param s the node to be unspliced
893     */
894    final void unsplice(Node pred, Node s) {
895        s.forgetContents(); // forget unneeded fields
896        /*
897         * See above for rationale. Briefly: if pred still points to
898         * s, try to unlink s.  If s cannot be unlinked, because it is
899         * trailing node or pred might be unlinked, and neither pred
900         * nor s are head or offlist, add to sweepVotes, and if enough
901         * votes have accumulated, sweep.
902         */
903        if (pred != null && pred != s && pred.next == s) {
904            Node n = s.next;
905            if (n == null ||
906                (n != s && pred.casNext(s, n) && pred.isMatched())) {
907                for (;;) {               // check if at, or could be, head
908                    Node h = head;
909                    if (h == pred || h == s || h == null)
910                        return;          // at head or list empty
911                    if (!h.isMatched())
912                        break;
913                    Node hn = h.next;
914                    if (hn == null)
915                        return;          // now empty
916                    if (hn != h && casHead(h, hn))
917                        h.forgetNext();  // advance head
918                }
919                if (pred.next != pred && s.next != s) { // recheck if offlist
920                    for (;;) {           // sweep now if enough votes
921                        int v = sweepVotes;
922                        if (v < SWEEP_THRESHOLD) {
923                            if (casSweepVotes(v, v + 1))
924                                break;
925                        }
926                        else if (casSweepVotes(v, 0)) {
927                            sweep();
928                            break;
929                        }
930                    }
931                }
932            }
933        }
934    }
935
936    /**
937     * Unlinks matched (typically cancelled) nodes encountered in a
938     * traversal from head.
939     */
940    private void sweep() {
941        for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
942            if (!s.isMatched())
943                // Unmatched nodes are never self-linked
944                p = s;
945            else if ((n = s.next) == null) // trailing node is pinned
946                break;
947            else if (s == n)    // stale
948                // No need to also check for p == s, since that implies s == n
949                p = head;
950            else
951                p.casNext(s, n);
952        }
953    }
954
955    /**
956     * Main implementation of remove(Object)
957     */
958    private boolean findAndRemove(Object e) {
959        if (e != null) {
960            for (Node pred = null, p = head; p != null; ) {
961                Object item = p.item;
962                if (p.isData) {
963                    if (item != null && item != p && e.equals(item) &&
964                        p.tryMatchData()) {
965                        unsplice(pred, p);
966                        return true;
967                    }
968                }
969                else if (item == null)
970                    break;
971                pred = p;
972                if ((p = p.next) == pred) { // stale
973                    pred = null;
974                    p = head;
975                }
976            }
977        }
978        return false;
979    }
980
981    /**
982     * Creates an initially empty {@code LinkedTransferQueue}.
983     */
984    public LinkedTransferQueue() {
985    }
986
987    /**
988     * Creates a {@code LinkedTransferQueue}
989     * initially containing the elements of the given collection,
990     * added in traversal order of the collection's iterator.
991     *
992     * @param c the collection of elements to initially contain
993     * @throws NullPointerException if the specified collection or any
994     *         of its elements are null
995     */
996    public LinkedTransferQueue(Collection<? extends E> c) {
997        this();
998        addAll(c);
999    }
1000
1001    /**
1002     * Inserts the specified element at the tail of this queue.
1003     * As the queue is unbounded, this method will never block.
1004     *
1005     * @throws NullPointerException if the specified element is null
1006     */
1007    public void put(E e) {
1008        xfer(e, true, ASYNC, 0);
1009    }
1010
1011    /**
1012     * Inserts the specified element at the tail of this queue.
1013     * As the queue is unbounded, this method will never block or
1014     * return {@code false}.
1015     *
1016     * @return {@code true} (as specified by
1017     *  {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1018     *  BlockingQueue.offer})
1019     * @throws NullPointerException if the specified element is null
1020     */
1021    public boolean offer(E e, long timeout, TimeUnit unit) {
1022        xfer(e, true, ASYNC, 0);
1023        return true;
1024    }
1025
1026    /**
1027     * Inserts the specified element at the tail of this queue.
1028     * As the queue is unbounded, this method will never return {@code false}.
1029     *
1030     * @return {@code true} (as specified by {@link Queue#offer})
1031     * @throws NullPointerException if the specified element is null
1032     */
1033    public boolean offer(E e) {
1034        xfer(e, true, ASYNC, 0);
1035        return true;
1036    }
1037
1038    /**
1039     * Inserts the specified element at the tail of this queue.
1040     * As the queue is unbounded, this method will never throw
1041     * {@link IllegalStateException} or return {@code false}.
1042     *
1043     * @return {@code true} (as specified by {@link Collection#add})
1044     * @throws NullPointerException if the specified element is null
1045     */
1046    public boolean add(E e) {
1047        xfer(e, true, ASYNC, 0);
1048        return true;
1049    }
1050
1051    /**
1052     * Transfers the element to a waiting consumer immediately, if possible.
1053     *
1054     * <p>More precisely, transfers the specified element immediately
1055     * if there exists a consumer already waiting to receive it (in
1056     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1057     * otherwise returning {@code false} without enqueuing the element.
1058     *
1059     * @throws NullPointerException if the specified element is null
1060     */
1061    public boolean tryTransfer(E e) {
1062        return xfer(e, true, NOW, 0) == null;
1063    }
1064
1065    /**
1066     * Transfers the element to a consumer, waiting if necessary to do so.
1067     *
1068     * <p>More precisely, transfers the specified element immediately
1069     * if there exists a consumer already waiting to receive it (in
1070     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1071     * else inserts the specified element at the tail of this queue
1072     * and waits until the element is received by a consumer.
1073     *
1074     * @throws NullPointerException if the specified element is null
1075     */
1076    public void transfer(E e) throws InterruptedException {
1077        if (xfer(e, true, SYNC, 0) != null) {
1078            Thread.interrupted(); // failure possible only due to interrupt
1079            throw new InterruptedException();
1080        }
1081    }
1082
1083    /**
1084     * Transfers the element to a consumer if it is possible to do so
1085     * before the timeout elapses.
1086     *
1087     * <p>More precisely, transfers the specified element immediately
1088     * if there exists a consumer already waiting to receive it (in
1089     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1090     * else inserts the specified element at the tail of this queue
1091     * and waits until the element is received by a consumer,
1092     * returning {@code false} if the specified wait time elapses
1093     * before the element can be transferred.
1094     *
1095     * @throws NullPointerException if the specified element is null
1096     */
1097    public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1098        throws InterruptedException {
1099        if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1100            return true;
1101        if (!Thread.interrupted())
1102            return false;
1103        throw new InterruptedException();
1104    }
1105
1106    public E take() throws InterruptedException {
1107        E e = xfer(null, false, SYNC, 0);
1108        if (e != null)
1109            return e;
1110        Thread.interrupted();
1111        throw new InterruptedException();
1112    }
1113
1114    public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1115        E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1116        if (e != null || !Thread.interrupted())
1117            return e;
1118        throw new InterruptedException();
1119    }
1120
1121    public E poll() {
1122        return xfer(null, false, NOW, 0);
1123    }
1124
1125    /**
1126     * @throws NullPointerException     {@inheritDoc}
1127     * @throws IllegalArgumentException {@inheritDoc}
1128     */
1129    public int drainTo(Collection<? super E> c) {
1130        if (c == null)
1131            throw new NullPointerException();
1132        if (c == this)
1133            throw new IllegalArgumentException();
1134        int n = 0;
1135        for (E e; (e = poll()) != null;) {
1136            c.add(e);
1137            ++n;
1138        }
1139        return n;
1140    }
1141
1142    /**
1143     * @throws NullPointerException     {@inheritDoc}
1144     * @throws IllegalArgumentException {@inheritDoc}
1145     */
1146    public int drainTo(Collection<? super E> c, int maxElements) {
1147        if (c == null)
1148            throw new NullPointerException();
1149        if (c == this)
1150            throw new IllegalArgumentException();
1151        int n = 0;
1152        for (E e; n < maxElements && (e = poll()) != null;) {
1153            c.add(e);
1154            ++n;
1155        }
1156        return n;
1157    }
1158
1159    /**
1160     * Returns an iterator over the elements in this queue in proper sequence.
1161     * The elements will be returned in order from first (head) to last (tail).
1162     *
1163     * <p>The returned iterator is a "weakly consistent" iterator that
1164     * will never throw {@link java.util.ConcurrentModificationException
1165     * ConcurrentModificationException}, and guarantees to traverse
1166     * elements as they existed upon construction of the iterator, and
1167     * may (but is not guaranteed to) reflect any modifications
1168     * subsequent to construction.
1169     *
1170     * @return an iterator over the elements in this queue in proper sequence
1171     */
1172    public Iterator<E> iterator() {
1173        return new Itr();
1174    }
1175
1176    public E peek() {
1177        return firstDataItem();
1178    }
1179
1180    /**
1181     * Returns {@code true} if this queue contains no elements.
1182     *
1183     * @return {@code true} if this queue contains no elements
1184     */
1185    public boolean isEmpty() {
1186        for (Node p = head; p != null; p = succ(p)) {
1187            if (!p.isMatched())
1188                return !p.isData;
1189        }
1190        return true;
1191    }
1192
1193    public boolean hasWaitingConsumer() {
1194        return firstOfMode(false) != null;
1195    }
1196
1197    /**
1198     * Returns the number of elements in this queue.  If this queue
1199     * contains more than {@code Integer.MAX_VALUE} elements, returns
1200     * {@code Integer.MAX_VALUE}.
1201     *
1202     * <p>Beware that, unlike in most collections, this method is
1203     * <em>NOT</em> a constant-time operation. Because of the
1204     * asynchronous nature of these queues, determining the current
1205     * number of elements requires an O(n) traversal.
1206     *
1207     * @return the number of elements in this queue
1208     */
1209    public int size() {
1210        return countOfMode(true);
1211    }
1212
1213    public int getWaitingConsumerCount() {
1214        return countOfMode(false);
1215    }
1216
1217    /**
1218     * Removes a single instance of the specified element from this queue,
1219     * if it is present.  More formally, removes an element {@code e} such
1220     * that {@code o.equals(e)}, if this queue contains one or more such
1221     * elements.
1222     * Returns {@code true} if this queue contained the specified element
1223     * (or equivalently, if this queue changed as a result of the call).
1224     *
1225     * @param o element to be removed from this queue, if present
1226     * @return {@code true} if this queue changed as a result of the call
1227     */
1228    public boolean remove(Object o) {
1229        return findAndRemove(o);
1230    }
1231
1232    /**
1233     * Returns {@code true} if this queue contains the specified element.
1234     * More formally, returns {@code true} if and only if this queue contains
1235     * at least one element {@code e} such that {@code o.equals(e)}.
1236     *
1237     * @param o object to be checked for containment in this queue
1238     * @return {@code true} if this queue contains the specified element
1239     */
1240    public boolean contains(Object o) {
1241        if (o == null) return false;
1242        for (Node p = head; p != null; p = succ(p)) {
1243            Object item = p.item;
1244            if (p.isData) {
1245                if (item != null && item != p && o.equals(item))
1246                    return true;
1247            }
1248            else if (item == null)
1249                break;
1250        }
1251        return false;
1252    }
1253
1254    /**
1255     * Always returns {@code Integer.MAX_VALUE} because a
1256     * {@code LinkedTransferQueue} is not capacity constrained.
1257     *
1258     * @return {@code Integer.MAX_VALUE} (as specified by
1259     *         {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1260     *         BlockingQueue.remainingCapacity})
1261     */
1262    public int remainingCapacity() {
1263        return Integer.MAX_VALUE;
1264    }
1265
1266    /**
1267     * Saves this queue to a stream (that is, serializes it).
1268     *
1269     * @serialData All of the elements (each an {@code E}) in
1270     * the proper order, followed by a null
1271     */
1272    private void writeObject(java.io.ObjectOutputStream s)
1273        throws java.io.IOException {
1274        s.defaultWriteObject();
1275        for (E e : this)
1276            s.writeObject(e);
1277        // Use trailing null as sentinel
1278        s.writeObject(null);
1279    }
1280
1281    /**
1282     * Reconstitutes this queue from a stream (that is, deserializes it).
1283     */
1284    private void readObject(java.io.ObjectInputStream s)
1285        throws java.io.IOException, ClassNotFoundException {
1286        s.defaultReadObject();
1287        for (;;) {
1288            @SuppressWarnings("unchecked")
1289            E item = (E) s.readObject();
1290            if (item == null)
1291                break;
1292            else
1293                offer(item);
1294        }
1295    }
1296
1297    // Unsafe mechanics
1298
1299    private static final sun.misc.Unsafe UNSAFE;
1300    private static final long headOffset;
1301    private static final long tailOffset;
1302    private static final long sweepVotesOffset;
1303    static {
1304        try {
1305            UNSAFE = sun.misc.Unsafe.getUnsafe();
1306            Class<?> k = LinkedTransferQueue.class;
1307            headOffset = UNSAFE.objectFieldOffset
1308                (k.getDeclaredField("head"));
1309            tailOffset = UNSAFE.objectFieldOffset
1310                (k.getDeclaredField("tail"));
1311            sweepVotesOffset = UNSAFE.objectFieldOffset
1312                (k.getDeclaredField("sweepVotes"));
1313        } catch (Exception e) {
1314            throw new Error(e);
1315        }
1316    }
1317}
1318