1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_RUNTIME_BASE_MUTEX_H_
18#define ART_RUNTIME_BASE_MUTEX_H_
19
20#include <pthread.h>
21#include <stdint.h>
22
23#include <iosfwd>
24#include <string>
25
26#include "atomic.h"
27#include "base/logging.h"
28#include "base/macros.h"
29#include "globals.h"
30
31#if defined(__APPLE__)
32#define ART_USE_FUTEXES 0
33#else
34#define ART_USE_FUTEXES 1
35#endif
36
37// Currently Darwin doesn't support locks with timeouts.
38#if !defined(__APPLE__)
39#define HAVE_TIMED_RWLOCK 1
40#else
41#define HAVE_TIMED_RWLOCK 0
42#endif
43
44namespace art {
45
46class LOCKABLE ReaderWriterMutex;
47class ScopedContentionRecorder;
48class Thread;
49
50// LockLevel is used to impose a lock hierarchy [1] where acquisition of a Mutex at a higher or
51// equal level to a lock a thread holds is invalid. The lock hierarchy achieves a cycle free
52// partial ordering and thereby cause deadlock situations to fail checks.
53//
54// [1] http://www.drdobbs.com/parallel/use-lock-hierarchies-to-avoid-deadlock/204801163
55enum LockLevel {
56  kLoggingLock = 0,
57  kMemMapsLock,
58  kSwapMutexesLock,
59  kUnexpectedSignalLock,
60  kThreadSuspendCountLock,
61  kAbortLock,
62  kJdwpSocketLock,
63  kReferenceQueueSoftReferencesLock,
64  kReferenceQueuePhantomReferencesLock,
65  kReferenceQueueFinalizerReferencesLock,
66  kReferenceQueueWeakReferencesLock,
67  kReferenceQueueClearedReferencesLock,
68  kReferenceProcessorLock,
69  kRosAllocGlobalLock,
70  kRosAllocBracketLock,
71  kRosAllocBulkFreeLock,
72  kAllocSpaceLock,
73  kDexFileMethodInlinerLock,
74  kDexFileToMethodInlinerMapLock,
75  kMarkSweepMarkStackLock,
76  kTransactionLogLock,
77  kInternTableLock,
78  kOatFileSecondaryLookupLock,
79  kDefaultMutexLevel,
80  kMarkSweepLargeObjectLock,
81  kPinTableLock,
82  kLoadLibraryLock,
83  kJdwpObjectRegistryLock,
84  kModifyLdtLock,
85  kAllocatedThreadIdsLock,
86  kMonitorPoolLock,
87  kClassLinkerClassesLock,
88  kBreakpointLock,
89  kMonitorLock,
90  kMonitorListLock,
91  kThreadListLock,
92  kBreakpointInvokeLock,
93  kAllocTrackerLock,
94  kDeoptimizationLock,
95  kProfilerLock,
96  kJdwpEventListLock,
97  kJdwpAttachLock,
98  kJdwpStartLock,
99  kRuntimeShutdownLock,
100  kTraceLock,
101  kHeapBitmapLock,
102  kMutatorLock,
103  kInstrumentEntrypointsLock,
104  kThreadListSuspendThreadLock,
105  kZygoteCreationLock,
106
107  kLockLevelCount  // Must come last.
108};
109std::ostream& operator<<(std::ostream& os, const LockLevel& rhs);
110
111const bool kDebugLocking = kIsDebugBuild;
112
113// Record Log contention information, dumpable via SIGQUIT.
114#ifdef ART_USE_FUTEXES
115// To enable lock contention logging, set this to true.
116const bool kLogLockContentions = false;
117#else
118// Keep this false as lock contention logging is supported only with
119// futex.
120const bool kLogLockContentions = false;
121#endif
122const size_t kContentionLogSize = 4;
123const size_t kContentionLogDataSize = kLogLockContentions ? 1 : 0;
124const size_t kAllMutexDataSize = kLogLockContentions ? 1 : 0;
125
126// Base class for all Mutex implementations
127class BaseMutex {
128 public:
129  const char* GetName() const {
130    return name_;
131  }
132
133  virtual bool IsMutex() const { return false; }
134  virtual bool IsReaderWriterMutex() const { return false; }
135
136  virtual void Dump(std::ostream& os) const = 0;
137
138  static void DumpAll(std::ostream& os);
139
140 protected:
141  friend class ConditionVariable;
142
143  BaseMutex(const char* name, LockLevel level);
144  virtual ~BaseMutex();
145  void RegisterAsLocked(Thread* self);
146  void RegisterAsUnlocked(Thread* self);
147  void CheckSafeToWait(Thread* self);
148
149  friend class ScopedContentionRecorder;
150
151  void RecordContention(uint64_t blocked_tid, uint64_t owner_tid, uint64_t nano_time_blocked);
152  void DumpContention(std::ostream& os) const;
153
154  const LockLevel level_;  // Support for lock hierarchy.
155  const char* const name_;
156
157  // A log entry that records contention but makes no guarantee that either tid will be held live.
158  struct ContentionLogEntry {
159    ContentionLogEntry() : blocked_tid(0), owner_tid(0) {}
160    uint64_t blocked_tid;
161    uint64_t owner_tid;
162    AtomicInteger count;
163  };
164  struct ContentionLogData {
165    ContentionLogEntry contention_log[kContentionLogSize];
166    // The next entry in the contention log to be updated. Value ranges from 0 to
167    // kContentionLogSize - 1.
168    AtomicInteger cur_content_log_entry;
169    // Number of times the Mutex has been contended.
170    AtomicInteger contention_count;
171    // Sum of time waited by all contenders in ns.
172    Atomic<uint64_t> wait_time;
173    void AddToWaitTime(uint64_t value);
174    ContentionLogData() : wait_time(0) {}
175  };
176  ContentionLogData contention_log_data_[kContentionLogDataSize];
177
178 public:
179  bool HasEverContended() const {
180    if (kLogLockContentions) {
181      return contention_log_data_->contention_count.LoadSequentiallyConsistent() > 0;
182    }
183    return false;
184  }
185};
186
187// A Mutex is used to achieve mutual exclusion between threads. A Mutex can be used to gain
188// exclusive access to what it guards. A Mutex can be in one of two states:
189// - Free - not owned by any thread,
190// - Exclusive - owned by a single thread.
191//
192// The effect of locking and unlocking operations on the state is:
193// State     | ExclusiveLock | ExclusiveUnlock
194// -------------------------------------------
195// Free      | Exclusive     | error
196// Exclusive | Block*        | Free
197// * Mutex is not reentrant and so an attempt to ExclusiveLock on the same thread will result in
198//   an error. Being non-reentrant simplifies Waiting on ConditionVariables.
199std::ostream& operator<<(std::ostream& os, const Mutex& mu);
200class LOCKABLE Mutex : public BaseMutex {
201 public:
202  explicit Mutex(const char* name, LockLevel level = kDefaultMutexLevel, bool recursive = false);
203  ~Mutex();
204
205  virtual bool IsMutex() const { return true; }
206
207  // Block until mutex is free then acquire exclusive access.
208  void ExclusiveLock(Thread* self) EXCLUSIVE_LOCK_FUNCTION();
209  void Lock(Thread* self) EXCLUSIVE_LOCK_FUNCTION() {  ExclusiveLock(self); }
210
211  // Returns true if acquires exclusive access, false otherwise.
212  bool ExclusiveTryLock(Thread* self) EXCLUSIVE_TRYLOCK_FUNCTION(true);
213  bool TryLock(Thread* self) EXCLUSIVE_TRYLOCK_FUNCTION(true) { return ExclusiveTryLock(self); }
214
215  // Release exclusive access.
216  void ExclusiveUnlock(Thread* self) UNLOCK_FUNCTION();
217  void Unlock(Thread* self) UNLOCK_FUNCTION() {  ExclusiveUnlock(self); }
218
219  // Is the current thread the exclusive holder of the Mutex.
220  bool IsExclusiveHeld(const Thread* self) const;
221
222  // Assert that the Mutex is exclusively held by the current thread.
223  void AssertExclusiveHeld(const Thread* self) {
224    if (kDebugLocking && (gAborting == 0)) {
225      CHECK(IsExclusiveHeld(self)) << *this;
226    }
227  }
228  void AssertHeld(const Thread* self) { AssertExclusiveHeld(self); }
229
230  // Assert that the Mutex is not held by the current thread.
231  void AssertNotHeldExclusive(const Thread* self) {
232    if (kDebugLocking && (gAborting == 0)) {
233      CHECK(!IsExclusiveHeld(self)) << *this;
234    }
235  }
236  void AssertNotHeld(const Thread* self) { AssertNotHeldExclusive(self); }
237
238  // Id associated with exclusive owner. No memory ordering semantics if called from a thread other
239  // than the owner.
240  uint64_t GetExclusiveOwnerTid() const;
241
242  // Returns how many times this Mutex has been locked, it is better to use AssertHeld/NotHeld.
243  unsigned int GetDepth() const {
244    return recursion_count_;
245  }
246
247  virtual void Dump(std::ostream& os) const;
248
249 private:
250#if ART_USE_FUTEXES
251  // 0 is unheld, 1 is held.
252  AtomicInteger state_;
253  // Exclusive owner.
254  volatile uint64_t exclusive_owner_;
255  // Number of waiting contenders.
256  AtomicInteger num_contenders_;
257#else
258  pthread_mutex_t mutex_;
259  volatile uint64_t exclusive_owner_;  // Guarded by mutex_.
260#endif
261  const bool recursive_;  // Can the lock be recursively held?
262  unsigned int recursion_count_;
263  friend class ConditionVariable;
264  DISALLOW_COPY_AND_ASSIGN(Mutex);
265};
266
267// A ReaderWriterMutex is used to achieve mutual exclusion between threads, similar to a Mutex.
268// Unlike a Mutex a ReaderWriterMutex can be used to gain exclusive (writer) or shared (reader)
269// access to what it guards. A flaw in relation to a Mutex is that it cannot be used with a
270// condition variable. A ReaderWriterMutex can be in one of three states:
271// - Free - not owned by any thread,
272// - Exclusive - owned by a single thread,
273// - Shared(n) - shared amongst n threads.
274//
275// The effect of locking and unlocking operations on the state is:
276//
277// State     | ExclusiveLock | ExclusiveUnlock | SharedLock       | SharedUnlock
278// ----------------------------------------------------------------------------
279// Free      | Exclusive     | error           | SharedLock(1)    | error
280// Exclusive | Block         | Free            | Block            | error
281// Shared(n) | Block         | error           | SharedLock(n+1)* | Shared(n-1) or Free
282// * for large values of n the SharedLock may block.
283std::ostream& operator<<(std::ostream& os, const ReaderWriterMutex& mu);
284class LOCKABLE ReaderWriterMutex : public BaseMutex {
285 public:
286  explicit ReaderWriterMutex(const char* name, LockLevel level = kDefaultMutexLevel);
287  ~ReaderWriterMutex();
288
289  virtual bool IsReaderWriterMutex() const { return true; }
290
291  // Block until ReaderWriterMutex is free then acquire exclusive access.
292  void ExclusiveLock(Thread* self) EXCLUSIVE_LOCK_FUNCTION();
293  void WriterLock(Thread* self) EXCLUSIVE_LOCK_FUNCTION() {  ExclusiveLock(self); }
294
295  // Release exclusive access.
296  void ExclusiveUnlock(Thread* self) UNLOCK_FUNCTION();
297  void WriterUnlock(Thread* self) UNLOCK_FUNCTION() {  ExclusiveUnlock(self); }
298
299  // Block until ReaderWriterMutex is free and acquire exclusive access. Returns true on success
300  // or false if timeout is reached.
301#if HAVE_TIMED_RWLOCK
302  bool ExclusiveLockWithTimeout(Thread* self, int64_t ms, int32_t ns)
303      EXCLUSIVE_TRYLOCK_FUNCTION(true);
304#endif
305
306  // Block until ReaderWriterMutex is shared or free then acquire a share on the access.
307  void SharedLock(Thread* self) SHARED_LOCK_FUNCTION() ALWAYS_INLINE;
308  void ReaderLock(Thread* self) SHARED_LOCK_FUNCTION() { SharedLock(self); }
309
310  // Try to acquire share of ReaderWriterMutex.
311  bool SharedTryLock(Thread* self) EXCLUSIVE_TRYLOCK_FUNCTION(true);
312
313  // Release a share of the access.
314  void SharedUnlock(Thread* self) UNLOCK_FUNCTION() ALWAYS_INLINE;
315  void ReaderUnlock(Thread* self) UNLOCK_FUNCTION() { SharedUnlock(self); }
316
317  // Is the current thread the exclusive holder of the ReaderWriterMutex.
318  bool IsExclusiveHeld(const Thread* self) const;
319
320  // Assert the current thread has exclusive access to the ReaderWriterMutex.
321  void AssertExclusiveHeld(const Thread* self) {
322    if (kDebugLocking && (gAborting == 0)) {
323      CHECK(IsExclusiveHeld(self)) << *this;
324    }
325  }
326  void AssertWriterHeld(const Thread* self) { AssertExclusiveHeld(self); }
327
328  // Assert the current thread doesn't have exclusive access to the ReaderWriterMutex.
329  void AssertNotExclusiveHeld(const Thread* self) {
330    if (kDebugLocking && (gAborting == 0)) {
331      CHECK(!IsExclusiveHeld(self)) << *this;
332    }
333  }
334  void AssertNotWriterHeld(const Thread* self) { AssertNotExclusiveHeld(self); }
335
336  // Is the current thread a shared holder of the ReaderWriterMutex.
337  bool IsSharedHeld(const Thread* self) const;
338
339  // Assert the current thread has shared access to the ReaderWriterMutex.
340  void AssertSharedHeld(const Thread* self) {
341    if (kDebugLocking && (gAborting == 0)) {
342      // TODO: we can only assert this well when self != NULL.
343      CHECK(IsSharedHeld(self) || self == NULL) << *this;
344    }
345  }
346  void AssertReaderHeld(const Thread* self) { AssertSharedHeld(self); }
347
348  // Assert the current thread doesn't hold this ReaderWriterMutex either in shared or exclusive
349  // mode.
350  void AssertNotHeld(const Thread* self) {
351    if (kDebugLocking && (gAborting == 0)) {
352      CHECK(!IsSharedHeld(self)) << *this;
353    }
354  }
355
356  // Id associated with exclusive owner. No memory ordering semantics if called from a thread other
357  // than the owner.
358  uint64_t GetExclusiveOwnerTid() const;
359
360  virtual void Dump(std::ostream& os) const;
361
362 private:
363#if ART_USE_FUTEXES
364  // -1 implies held exclusive, +ve shared held by state_ many owners.
365  AtomicInteger state_;
366  // Exclusive owner. Modification guarded by this mutex.
367  volatile uint64_t exclusive_owner_;
368  // Number of contenders waiting for a reader share.
369  AtomicInteger num_pending_readers_;
370  // Number of contenders waiting to be the writer.
371  AtomicInteger num_pending_writers_;
372#else
373  pthread_rwlock_t rwlock_;
374  volatile uint64_t exclusive_owner_;  // Guarded by rwlock_.
375#endif
376  DISALLOW_COPY_AND_ASSIGN(ReaderWriterMutex);
377};
378
379// ConditionVariables allow threads to queue and sleep. Threads may then be resumed individually
380// (Signal) or all at once (Broadcast).
381class ConditionVariable {
382 public:
383  explicit ConditionVariable(const char* name, Mutex& mutex);
384  ~ConditionVariable();
385
386  void Broadcast(Thread* self);
387  void Signal(Thread* self);
388  // TODO: No thread safety analysis on Wait and TimedWait as they call mutex operations via their
389  //       pointer copy, thereby defeating annotalysis.
390  void Wait(Thread* self) NO_THREAD_SAFETY_ANALYSIS;
391  void TimedWait(Thread* self, int64_t ms, int32_t ns) NO_THREAD_SAFETY_ANALYSIS;
392  // Variant of Wait that should be used with caution. Doesn't validate that no mutexes are held
393  // when waiting.
394  // TODO: remove this.
395  void WaitHoldingLocks(Thread* self) NO_THREAD_SAFETY_ANALYSIS;
396
397 private:
398  const char* const name_;
399  // The Mutex being used by waiters. It is an error to mix condition variables between different
400  // Mutexes.
401  Mutex& guard_;
402#if ART_USE_FUTEXES
403  // A counter that is modified by signals and broadcasts. This ensures that when a waiter gives up
404  // their Mutex and another thread takes it and signals, the waiting thread observes that sequence_
405  // changed and doesn't enter the wait. Modified while holding guard_, but is read by futex wait
406  // without guard_ held.
407  AtomicInteger sequence_;
408  // Number of threads that have come into to wait, not the length of the waiters on the futex as
409  // waiters may have been requeued onto guard_. Guarded by guard_.
410  volatile int32_t num_waiters_;
411#else
412  pthread_cond_t cond_;
413#endif
414  DISALLOW_COPY_AND_ASSIGN(ConditionVariable);
415};
416
417// Scoped locker/unlocker for a regular Mutex that acquires mu upon construction and releases it
418// upon destruction.
419class SCOPED_LOCKABLE MutexLock {
420 public:
421  explicit MutexLock(Thread* self, Mutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) : self_(self), mu_(mu) {
422    mu_.ExclusiveLock(self_);
423  }
424
425  ~MutexLock() UNLOCK_FUNCTION() {
426    mu_.ExclusiveUnlock(self_);
427  }
428
429 private:
430  Thread* const self_;
431  Mutex& mu_;
432  DISALLOW_COPY_AND_ASSIGN(MutexLock);
433};
434// Catch bug where variable name is omitted. "MutexLock (lock);" instead of "MutexLock mu(lock)".
435#define MutexLock(x) COMPILE_ASSERT(0, mutex_lock_declaration_missing_variable_name)
436
437// Scoped locker/unlocker for a ReaderWriterMutex that acquires read access to mu upon
438// construction and releases it upon destruction.
439class SCOPED_LOCKABLE ReaderMutexLock {
440 public:
441  explicit ReaderMutexLock(Thread* self, ReaderWriterMutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) :
442      self_(self), mu_(mu) {
443    mu_.SharedLock(self_);
444  }
445
446  ~ReaderMutexLock() UNLOCK_FUNCTION() {
447    mu_.SharedUnlock(self_);
448  }
449
450 private:
451  Thread* const self_;
452  ReaderWriterMutex& mu_;
453  DISALLOW_COPY_AND_ASSIGN(ReaderMutexLock);
454};
455// Catch bug where variable name is omitted. "ReaderMutexLock (lock);" instead of
456// "ReaderMutexLock mu(lock)".
457#define ReaderMutexLock(x) COMPILE_ASSERT(0, reader_mutex_lock_declaration_missing_variable_name)
458
459// Scoped locker/unlocker for a ReaderWriterMutex that acquires write access to mu upon
460// construction and releases it upon destruction.
461class SCOPED_LOCKABLE WriterMutexLock {
462 public:
463  explicit WriterMutexLock(Thread* self, ReaderWriterMutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) :
464      self_(self), mu_(mu) {
465    mu_.ExclusiveLock(self_);
466  }
467
468  ~WriterMutexLock() UNLOCK_FUNCTION() {
469    mu_.ExclusiveUnlock(self_);
470  }
471
472 private:
473  Thread* const self_;
474  ReaderWriterMutex& mu_;
475  DISALLOW_COPY_AND_ASSIGN(WriterMutexLock);
476};
477// Catch bug where variable name is omitted. "WriterMutexLock (lock);" instead of
478// "WriterMutexLock mu(lock)".
479#define WriterMutexLock(x) COMPILE_ASSERT(0, writer_mutex_lock_declaration_missing_variable_name)
480
481// Global mutexes corresponding to the levels above.
482class Locks {
483 public:
484  static void Init();
485
486  // There's a potential race for two threads to try to suspend each other and for both of them
487  // to succeed and get blocked becoming runnable. This lock ensures that only one thread is
488  // requesting suspension of another at any time. As the the thread list suspend thread logic
489  // transitions to runnable, if the current thread were tried to be suspended then this thread
490  // would block holding this lock until it could safely request thread suspension of the other
491  // thread without that thread having a suspension request against this thread. This avoids a
492  // potential deadlock cycle.
493  static Mutex* thread_list_suspend_thread_lock_;
494
495  // Guards allocation entrypoint instrumenting.
496  static Mutex* instrument_entrypoints_lock_ ACQUIRED_AFTER(thread_list_suspend_thread_lock_);
497
498  // The mutator_lock_ is used to allow mutators to execute in a shared (reader) mode or to block
499  // mutators by having an exclusive (writer) owner. In normal execution each mutator thread holds
500  // a share on the mutator_lock_. The garbage collector may also execute with shared access but
501  // at times requires exclusive access to the heap (not to be confused with the heap meta-data
502  // guarded by the heap_lock_ below). When the garbage collector requires exclusive access it asks
503  // the mutators to suspend themselves which also involves usage of the thread_suspend_count_lock_
504  // to cover weaknesses in using ReaderWriterMutexes with ConditionVariables. We use a condition
505  // variable to wait upon in the suspension logic as releasing and then re-acquiring a share on
506  // the mutator lock doesn't necessarily allow the exclusive user (e.g the garbage collector)
507  // chance to acquire the lock.
508  //
509  // Thread suspension:
510  // Shared users                                  | Exclusive user
511  // (holding mutator lock and in kRunnable state) |   .. running ..
512  //   .. running ..                               | Request thread suspension by:
513  //   .. running ..                               |   - acquiring thread_suspend_count_lock_
514  //   .. running ..                               |   - incrementing Thread::suspend_count_ on
515  //   .. running ..                               |     all mutator threads
516  //   .. running ..                               |   - releasing thread_suspend_count_lock_
517  //   .. running ..                               | Block trying to acquire exclusive mutator lock
518  // Poll Thread::suspend_count_ and enter full    |   .. blocked ..
519  // suspend code.                                 |   .. blocked ..
520  // Change state to kSuspended                    |   .. blocked ..
521  // x: Release share on mutator_lock_             | Carry out exclusive access
522  // Acquire thread_suspend_count_lock_            |   .. exclusive ..
523  // while Thread::suspend_count_ > 0              |   .. exclusive ..
524  //   - wait on Thread::resume_cond_              |   .. exclusive ..
525  //     (releases thread_suspend_count_lock_)     |   .. exclusive ..
526  //   .. waiting ..                               | Release mutator_lock_
527  //   .. waiting ..                               | Request thread resumption by:
528  //   .. waiting ..                               |   - acquiring thread_suspend_count_lock_
529  //   .. waiting ..                               |   - decrementing Thread::suspend_count_ on
530  //   .. waiting ..                               |     all mutator threads
531  //   .. waiting ..                               |   - notifying on Thread::resume_cond_
532  //    - re-acquire thread_suspend_count_lock_    |   - releasing thread_suspend_count_lock_
533  // Release thread_suspend_count_lock_            |  .. running ..
534  // Acquire share on mutator_lock_                |  .. running ..
535  //  - This could block but the thread still      |  .. running ..
536  //    has a state of kSuspended and so this      |  .. running ..
537  //    isn't an issue.                            |  .. running ..
538  // Acquire thread_suspend_count_lock_            |  .. running ..
539  //  - we poll here as we're transitioning into   |  .. running ..
540  //    kRunnable and an individual thread suspend |  .. running ..
541  //    request (e.g for debugging) won't try      |  .. running ..
542  //    to acquire the mutator lock (which would   |  .. running ..
543  //    block as we hold the mutator lock). This   |  .. running ..
544  //    poll ensures that if the suspender thought |  .. running ..
545  //    we were suspended by incrementing our      |  .. running ..
546  //    Thread::suspend_count_ and then reading    |  .. running ..
547  //    our state we go back to waiting on         |  .. running ..
548  //    Thread::resume_cond_.                      |  .. running ..
549  // can_go_runnable = Thread::suspend_count_ == 0 |  .. running ..
550  // Release thread_suspend_count_lock_            |  .. running ..
551  // if can_go_runnable                            |  .. running ..
552  //   Change state to kRunnable                   |  .. running ..
553  // else                                          |  .. running ..
554  //   Goto x                                      |  .. running ..
555  //  .. running ..                                |  .. running ..
556  static ReaderWriterMutex* mutator_lock_ ACQUIRED_AFTER(instrument_entrypoints_lock_);
557
558  // Allow reader-writer mutual exclusion on the mark and live bitmaps of the heap.
559  static ReaderWriterMutex* heap_bitmap_lock_ ACQUIRED_AFTER(mutator_lock_);
560
561  // Guards shutdown of the runtime.
562  static Mutex* runtime_shutdown_lock_ ACQUIRED_AFTER(heap_bitmap_lock_);
563
564  // Guards background profiler global state.
565  static Mutex* profiler_lock_ ACQUIRED_AFTER(runtime_shutdown_lock_);
566
567  // Guards trace (ie traceview) requests.
568  static Mutex* trace_lock_ ACQUIRED_AFTER(profiler_lock_);
569
570  // Guards debugger recent allocation records.
571  static Mutex* alloc_tracker_lock_ ACQUIRED_AFTER(trace_lock_);
572
573  // Guards updates to instrumentation to ensure mutual exclusion of
574  // events like deoptimization requests.
575  // TODO: improve name, perhaps instrumentation_update_lock_.
576  static Mutex* deoptimization_lock_ ACQUIRED_AFTER(alloc_tracker_lock_);
577
578  // The thread_list_lock_ guards ThreadList::list_. It is also commonly held to stop threads
579  // attaching and detaching.
580  static Mutex* thread_list_lock_ ACQUIRED_AFTER(deoptimization_lock_);
581
582  // Guards breakpoints.
583  static ReaderWriterMutex* breakpoint_lock_ ACQUIRED_AFTER(trace_lock_);
584
585  // Guards lists of classes within the class linker.
586  static ReaderWriterMutex* classlinker_classes_lock_ ACQUIRED_AFTER(breakpoint_lock_);
587
588  // When declaring any Mutex add DEFAULT_MUTEX_ACQUIRED_AFTER to use annotalysis to check the code
589  // doesn't try to hold a higher level Mutex.
590  #define DEFAULT_MUTEX_ACQUIRED_AFTER ACQUIRED_AFTER(Locks::classlinker_classes_lock_)
591
592  static Mutex* allocated_monitor_ids_lock_ ACQUIRED_AFTER(classlinker_classes_lock_);
593
594  // Guard the allocation/deallocation of thread ids.
595  static Mutex* allocated_thread_ids_lock_ ACQUIRED_AFTER(allocated_monitor_ids_lock_);
596
597  // Guards modification of the LDT on x86.
598  static Mutex* modify_ldt_lock_ ACQUIRED_AFTER(allocated_thread_ids_lock_);
599
600  // Guards intern table.
601  static Mutex* intern_table_lock_ ACQUIRED_AFTER(modify_ldt_lock_);
602
603  // Guards reference processor.
604  static Mutex* reference_processor_lock_ ACQUIRED_AFTER(intern_table_lock_);
605
606  // Guards cleared references queue.
607  static Mutex* reference_queue_cleared_references_lock_ ACQUIRED_AFTER(reference_processor_lock_);
608
609  // Guards weak references queue.
610  static Mutex* reference_queue_weak_references_lock_ ACQUIRED_AFTER(reference_queue_cleared_references_lock_);
611
612  // Guards finalizer references queue.
613  static Mutex* reference_queue_finalizer_references_lock_ ACQUIRED_AFTER(reference_queue_weak_references_lock_);
614
615  // Guards phantom references queue.
616  static Mutex* reference_queue_phantom_references_lock_ ACQUIRED_AFTER(reference_queue_finalizer_references_lock_);
617
618  // Guards soft references queue.
619  static Mutex* reference_queue_soft_references_lock_ ACQUIRED_AFTER(reference_queue_phantom_references_lock_);
620
621  // Have an exclusive aborting thread.
622  static Mutex* abort_lock_ ACQUIRED_AFTER(reference_queue_soft_references_lock_);
623
624  // Allow mutual exclusion when manipulating Thread::suspend_count_.
625  // TODO: Does the trade-off of a per-thread lock make sense?
626  static Mutex* thread_suspend_count_lock_ ACQUIRED_AFTER(abort_lock_);
627
628  // One unexpected signal at a time lock.
629  static Mutex* unexpected_signal_lock_ ACQUIRED_AFTER(thread_suspend_count_lock_);
630
631  // Guards the maps in mem_map.
632  static Mutex* mem_maps_lock_ ACQUIRED_AFTER(unexpected_signal_lock_);
633
634  // Have an exclusive logging thread.
635  static Mutex* logging_lock_ ACQUIRED_AFTER(unexpected_signal_lock_);
636};
637
638}  // namespace art
639
640#endif  // ART_RUNTIME_BASE_MUTEX_H_
641