1// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2014 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9//   this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11//   this list of conditions and the following disclaimer in the documentation
12//   and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14//   used to endorse or promote products derived from this software without
15//   specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30//
31// Bounds constrained test problems from the paper
32//
33// Testing Unconstrained Optimization Software
34// Jorge J. More, Burton S. Garbow and Kenneth E. Hillstrom
35// ACM Transactions on Mathematical Software, 7(1), pp. 17-41, 1981
36//
37// A subset of these problems were augmented with bounds and used for
38// testing bounds constrained optimization algorithms by
39//
40// A Trust Region Approach to Linearly Constrained Optimization
41// David M. Gay
42// Numerical Analysis (Griffiths, D.F., ed.), pp. 72-105
43// Lecture Notes in Mathematics 1066, Springer Verlag, 1984.
44//
45// The latter paper is behind a paywall. We obtained the bounds on the
46// variables and the function values at the global minimums from
47//
48// http://www.mat.univie.ac.at/~neum/glopt/bounds.html
49//
50// A problem is considered solved if of the log relative error of its
51// objective function is at least 5.
52
53
54#include <cmath>
55#include <iostream>  // NOLINT
56#include "ceres/ceres.h"
57#include "gflags/gflags.h"
58#include "glog/logging.h"
59
60namespace ceres {
61namespace examples {
62
63const double kDoubleMax = std::numeric_limits<double>::max();
64
65#define BEGIN_MGH_PROBLEM(name, num_parameters, num_residuals)          \
66  struct name {                                                         \
67    static const int kNumParameters = num_parameters;                   \
68    static const double initial_x[kNumParameters];                      \
69    static const double lower_bounds[kNumParameters];                   \
70    static const double upper_bounds[kNumParameters];                   \
71    static const double constrained_optimal_cost;                       \
72    static const double unconstrained_optimal_cost;                     \
73    static CostFunction* Create() {                                     \
74      return new AutoDiffCostFunction<name,                             \
75                                      num_residuals,                    \
76                                      num_parameters>(new name);        \
77    }                                                                   \
78    template <typename T>                                               \
79    bool operator()(const T* const x, T* residual) const {
80
81#define END_MGH_PROBLEM return true; } };  // NOLINT
82
83// Rosenbrock function.
84BEGIN_MGH_PROBLEM(TestProblem1, 2, 2)
85  const T x1 = x[0];
86  const T x2 = x[1];
87  residual[0] = T(10.0) * (x2 - x1 * x1);
88  residual[1] = T(1.0) - x1;
89END_MGH_PROBLEM;
90
91const double TestProblem1::initial_x[] = {-1.2, 1.0};
92const double TestProblem1::lower_bounds[] = {-kDoubleMax, -kDoubleMax};
93const double TestProblem1::upper_bounds[] = {kDoubleMax, kDoubleMax};
94const double TestProblem1::constrained_optimal_cost =
95    std::numeric_limits<double>::quiet_NaN();
96const double TestProblem1::unconstrained_optimal_cost = 0.0;
97
98// Freudenstein and Roth function.
99BEGIN_MGH_PROBLEM(TestProblem2, 2, 2)
100  const T x1 = x[0];
101  const T x2 = x[1];
102  residual[0] = T(-13.0) + x1 + ((T(5.0) - x2) * x2 - T(2.0)) * x2;
103  residual[1] = T(-29.0) + x1 + ((x2 + T(1.0)) * x2 - T(14.0)) * x2;
104END_MGH_PROBLEM;
105
106const double TestProblem2::initial_x[] = {0.5, -2.0};
107const double TestProblem2::lower_bounds[] = {-kDoubleMax, -kDoubleMax};
108const double TestProblem2::upper_bounds[] = {kDoubleMax, kDoubleMax};
109const double TestProblem2::constrained_optimal_cost =
110    std::numeric_limits<double>::quiet_NaN();
111const double TestProblem2::unconstrained_optimal_cost = 0.0;
112
113// Powell badly scaled function.
114BEGIN_MGH_PROBLEM(TestProblem3, 2, 2)
115  const T x1 = x[0];
116  const T x2 = x[1];
117  residual[0] = T(10000.0) * x1 * x2 - T(1.0);
118  residual[1] = exp(-x1) + exp(-x2) - T(1.0001);
119END_MGH_PROBLEM;
120
121const double TestProblem3::initial_x[] = {0.0, 1.0};
122const double TestProblem3::lower_bounds[] = {0.0, 1.0};
123const double TestProblem3::upper_bounds[] = {1.0, 9.0};
124const double TestProblem3::constrained_optimal_cost = 0.15125900e-9;
125const double TestProblem3::unconstrained_optimal_cost = 0.0;
126
127// Brown badly scaled function.
128BEGIN_MGH_PROBLEM(TestProblem4, 2, 3)
129  const T x1 = x[0];
130  const T x2 = x[1];
131  residual[0] = x1  - T(1000000.0);
132  residual[1] = x2 - T(0.000002);
133  residual[2] = x1 * x2 - T(2.0);
134END_MGH_PROBLEM;
135
136const double TestProblem4::initial_x[] = {1.0, 1.0};
137const double TestProblem4::lower_bounds[] = {0.0, 0.00003};
138const double TestProblem4::upper_bounds[] = {1000000.0, 100.0};
139const double TestProblem4::constrained_optimal_cost = 0.78400000e3;
140const double TestProblem4::unconstrained_optimal_cost = 0.0;
141
142// Beale function.
143BEGIN_MGH_PROBLEM(TestProblem5, 2, 3)
144  const T x1 = x[0];
145  const T x2 = x[1];
146  residual[0] = T(1.5) - x1 * (T(1.0) - x2);
147  residual[1] = T(2.25) - x1 * (T(1.0) - x2 * x2);
148  residual[2] = T(2.625) - x1 * (T(1.0) - x2 * x2 * x2);
149END_MGH_PROBLEM;
150
151const double TestProblem5::initial_x[] = {1.0, 1.0};
152const double TestProblem5::lower_bounds[] = {0.6, 0.5};
153const double TestProblem5::upper_bounds[] = {10.0, 100.0};
154const double TestProblem5::constrained_optimal_cost = 0.0;
155const double TestProblem5::unconstrained_optimal_cost = 0.0;
156
157// Jennrich and Sampson function.
158BEGIN_MGH_PROBLEM(TestProblem6, 2, 10)
159  const T x1 = x[0];
160  const T x2 = x[1];
161  for (int i = 1; i <= 10; ++i) {
162    residual[i - 1] = T(2.0) + T(2.0 * i) -
163        exp(T(static_cast<double>(i)) * x1) -
164        exp(T(static_cast<double>(i) * x2));
165  }
166END_MGH_PROBLEM;
167
168const double TestProblem6::initial_x[] = {1.0, 1.0};
169const double TestProblem6::lower_bounds[] = {-kDoubleMax, -kDoubleMax};
170const double TestProblem6::upper_bounds[] = {kDoubleMax, kDoubleMax};
171const double TestProblem6::constrained_optimal_cost =
172    std::numeric_limits<double>::quiet_NaN();
173const double TestProblem6::unconstrained_optimal_cost = 124.362;
174
175// Helical valley function.
176BEGIN_MGH_PROBLEM(TestProblem7, 3, 3)
177  const T x1 = x[0];
178  const T x2 = x[1];
179  const T x3 = x[2];
180  const T theta = T(0.5 / M_PI)  * atan(x2 / x1) + (x1 > 0.0 ? T(0.0) : T(0.5));
181
182  residual[0] = T(10.0) * (x3 - T(10.0) * theta);
183  residual[1] = T(10.0) * (sqrt(x1 * x1 + x2 * x2) - T(1.0));
184  residual[2] = x3;
185END_MGH_PROBLEM;
186
187const double TestProblem7::initial_x[] = {-1.0, 0.0, 0.0};
188const double TestProblem7::lower_bounds[] = {-100.0, -1.0, -1.0};
189const double TestProblem7::upper_bounds[] = {0.8, 1.0, 1.0};
190const double TestProblem7::constrained_optimal_cost = 0.99042212;
191const double TestProblem7::unconstrained_optimal_cost = 0.0;
192
193// Bard function
194BEGIN_MGH_PROBLEM(TestProblem8, 3, 15)
195  const T x1 = x[0];
196  const T x2 = x[1];
197  const T x3 = x[2];
198
199  double y[] = {0.14, 0.18, 0.22, 0.25,
200                0.29, 0.32, 0.35, 0.39, 0.37, 0.58,
201                0.73, 0.96, 1.34, 2.10, 4.39};
202
203  for (int i = 1; i <=15; ++i) {
204    const T u = T(static_cast<double>(i));
205    const T v = T(static_cast<double>(16 - i));
206    const T w = T(static_cast<double>(std::min(i, 16 - i)));
207    residual[i - 1] = T(y[i - 1]) - x1 + u / (v * x2 + w * x3);
208  }
209END_MGH_PROBLEM;
210
211const double TestProblem8::initial_x[] = {1.0, 1.0, 1.0};
212const double TestProblem8::lower_bounds[] = {
213  -kDoubleMax, -kDoubleMax, -kDoubleMax};
214const double TestProblem8::upper_bounds[] = {
215  kDoubleMax, kDoubleMax, kDoubleMax};
216const double TestProblem8::constrained_optimal_cost =
217    std::numeric_limits<double>::quiet_NaN();
218const double TestProblem8::unconstrained_optimal_cost = 8.21487e-3;
219
220// Gaussian function.
221BEGIN_MGH_PROBLEM(TestProblem9, 3, 15)
222  const T x1 = x[0];
223  const T x2 = x[1];
224  const T x3 = x[2];
225
226  const double y[] = {0.0009, 0.0044, 0.0175, 0.0540, 0.1295, 0.2420, 0.3521,
227                      0.3989,
228                      0.3521, 0.2420, 0.1295, 0.0540, 0.0175, 0.0044, 0.0009};
229  for (int i = 0; i < 15; ++i) {
230    const T t_i = T((8.0 - i - 1.0) / 2.0);
231    const T y_i = T(y[i]);
232    residual[i] = x1 * exp(-x2 * (t_i - x3) * (t_i - x3) / T(2.0)) - y_i;
233  }
234END_MGH_PROBLEM;
235
236const double TestProblem9::initial_x[] = {0.4, 1.0, 0.0};
237const double TestProblem9::lower_bounds[] = {0.398, 1.0, -0.5};
238const double TestProblem9::upper_bounds[] = {4.2, 2.0, 0.1};
239const double TestProblem9::constrained_optimal_cost = 0.11279300e-7;
240const double TestProblem9::unconstrained_optimal_cost = 0.112793e-7;
241
242// Meyer function.
243BEGIN_MGH_PROBLEM(TestProblem10, 3, 16)
244  const T x1 = x[0];
245  const T x2 = x[1];
246  const T x3 = x[2];
247
248  const double y[] = {34780, 28610, 23650, 19630, 16370, 13720, 11540, 9744,
249                      8261, 7030, 6005, 5147, 4427, 3820, 3307, 2872};
250
251  for (int i = 0; i < 16; ++i) {
252    T t = T(45 + 5.0 * (i + 1));
253    residual[i] = x1 * exp(x2 / (t + x3)) - y[i];
254  }
255END_MGH_PROBLEM
256
257
258const double TestProblem10::initial_x[] = {0.02, 4000, 250};
259const double TestProblem10::lower_bounds[] ={
260  -kDoubleMax, -kDoubleMax, -kDoubleMax};
261const double TestProblem10::upper_bounds[] ={
262  kDoubleMax, kDoubleMax, kDoubleMax};
263const double TestProblem10::constrained_optimal_cost =
264    std::numeric_limits<double>::quiet_NaN();
265const double TestProblem10::unconstrained_optimal_cost = 87.9458;
266
267#undef BEGIN_MGH_PROBLEM
268#undef END_MGH_PROBLEM
269
270template<typename TestProblem> string ConstrainedSolve() {
271  double x[TestProblem::kNumParameters];
272  std::copy(TestProblem::initial_x,
273            TestProblem::initial_x + TestProblem::kNumParameters,
274            x);
275
276  Problem problem;
277  problem.AddResidualBlock(TestProblem::Create(), NULL, x);
278  for (int i = 0; i < TestProblem::kNumParameters; ++i) {
279    problem.SetParameterLowerBound(x, i, TestProblem::lower_bounds[i]);
280    problem.SetParameterUpperBound(x, i, TestProblem::upper_bounds[i]);
281  }
282
283  Solver::Options options;
284  options.parameter_tolerance = 1e-18;
285  options.function_tolerance = 1e-18;
286  options.gradient_tolerance = 1e-18;
287  options.max_num_iterations = 1000;
288  options.linear_solver_type = DENSE_QR;
289  Solver::Summary summary;
290  Solve(options, &problem, &summary);
291
292  const double kMinLogRelativeError = 5.0;
293  const double log_relative_error = -std::log10(
294      std::abs(2.0 * summary.final_cost -
295               TestProblem::constrained_optimal_cost) /
296      (TestProblem::constrained_optimal_cost > 0.0
297       ? TestProblem::constrained_optimal_cost
298       : 1.0));
299
300  return (log_relative_error >= kMinLogRelativeError
301          ? "Success\n"
302          : "Failure\n");
303}
304
305template<typename TestProblem> string UnconstrainedSolve() {
306  double x[TestProblem::kNumParameters];
307  std::copy(TestProblem::initial_x,
308            TestProblem::initial_x + TestProblem::kNumParameters,
309            x);
310
311  Problem problem;
312  problem.AddResidualBlock(TestProblem::Create(), NULL, x);
313
314  Solver::Options options;
315  options.parameter_tolerance = 1e-18;
316  options.function_tolerance = 0.0;
317  options.gradient_tolerance = 1e-18;
318  options.max_num_iterations = 1000;
319  options.linear_solver_type = DENSE_QR;
320  Solver::Summary summary;
321  Solve(options, &problem, &summary);
322
323  const double kMinLogRelativeError = 5.0;
324  const double log_relative_error = -std::log10(
325      std::abs(2.0 * summary.final_cost -
326               TestProblem::unconstrained_optimal_cost) /
327      (TestProblem::unconstrained_optimal_cost > 0.0
328       ? TestProblem::unconstrained_optimal_cost
329       : 1.0));
330
331  return (log_relative_error >= kMinLogRelativeError
332          ? "Success\n"
333          : "Failure\n");
334}
335
336}  // namespace examples
337}  // namespace ceres
338
339int main(int argc, char** argv) {
340  google::ParseCommandLineFlags(&argc, &argv, true);
341  google::InitGoogleLogging(argv[0]);
342
343  using ceres::examples::UnconstrainedSolve;
344  using ceres::examples::ConstrainedSolve;
345
346#define UNCONSTRAINED_SOLVE(n)                                          \
347  std::cout << "Problem " << n << " : "                                 \
348            << UnconstrainedSolve<ceres::examples::TestProblem##n>();
349
350#define CONSTRAINED_SOLVE(n)                                            \
351  std::cout << "Problem " << n << " : "                                 \
352            << ConstrainedSolve<ceres::examples::TestProblem##n>();
353
354  std::cout << "Unconstrained problems\n";
355  UNCONSTRAINED_SOLVE(1);
356  UNCONSTRAINED_SOLVE(2);
357  UNCONSTRAINED_SOLVE(3);
358  UNCONSTRAINED_SOLVE(4);
359  UNCONSTRAINED_SOLVE(5);
360  UNCONSTRAINED_SOLVE(6);
361  UNCONSTRAINED_SOLVE(7);
362  UNCONSTRAINED_SOLVE(8);
363  UNCONSTRAINED_SOLVE(9);
364  UNCONSTRAINED_SOLVE(10);
365
366  std::cout << "\nConstrained problems\n";
367  CONSTRAINED_SOLVE(3);
368  CONSTRAINED_SOLVE(4);
369  CONSTRAINED_SOLVE(5);
370  CONSTRAINED_SOLVE(7);
371  CONSTRAINED_SOLVE(9);
372
373  return 0;
374}
375