1// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9//   this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11//   this list of conditions and the following disclaimer in the documentation
12//   and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14//   used to endorse or promote products derived from this software without
15//   specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30
31#include <iomanip>
32#include <iostream>  // NOLINT
33
34#include "ceres/line_search.h"
35
36#include "ceres/fpclassify.h"
37#include "ceres/evaluator.h"
38#include "ceres/internal/eigen.h"
39#include "ceres/polynomial.h"
40#include "ceres/stringprintf.h"
41#include "glog/logging.h"
42
43namespace ceres {
44namespace internal {
45namespace {
46// Precision used for floating point values in error message output.
47const int kErrorMessageNumericPrecision = 8;
48
49FunctionSample ValueSample(const double x, const double value) {
50  FunctionSample sample;
51  sample.x = x;
52  sample.value = value;
53  sample.value_is_valid = true;
54  return sample;
55};
56
57FunctionSample ValueAndGradientSample(const double x,
58                                      const double value,
59                                      const double gradient) {
60  FunctionSample sample;
61  sample.x = x;
62  sample.value = value;
63  sample.gradient = gradient;
64  sample.value_is_valid = true;
65  sample.gradient_is_valid = true;
66  return sample;
67};
68
69}  // namespace
70
71
72std::ostream& operator<<(std::ostream &os, const FunctionSample& sample);
73
74// Convenience stream operator for pushing FunctionSamples into log messages.
75std::ostream& operator<<(std::ostream &os, const FunctionSample& sample) {
76  os << sample.ToDebugString();
77  return os;
78}
79
80LineSearch::LineSearch(const LineSearch::Options& options)
81    : options_(options) {}
82
83LineSearch* LineSearch::Create(const LineSearchType line_search_type,
84                               const LineSearch::Options& options,
85                               string* error) {
86  LineSearch* line_search = NULL;
87  switch (line_search_type) {
88  case ceres::ARMIJO:
89    line_search = new ArmijoLineSearch(options);
90    break;
91  case ceres::WOLFE:
92    line_search = new WolfeLineSearch(options);
93    break;
94  default:
95    *error = string("Invalid line search algorithm type: ") +
96        LineSearchTypeToString(line_search_type) +
97        string(", unable to create line search.");
98    return NULL;
99  }
100  return line_search;
101}
102
103LineSearchFunction::LineSearchFunction(Evaluator* evaluator)
104    : evaluator_(evaluator),
105      position_(evaluator->NumParameters()),
106      direction_(evaluator->NumEffectiveParameters()),
107      evaluation_point_(evaluator->NumParameters()),
108      scaled_direction_(evaluator->NumEffectiveParameters()),
109      gradient_(evaluator->NumEffectiveParameters()) {
110}
111
112void LineSearchFunction::Init(const Vector& position,
113                              const Vector& direction) {
114  position_ = position;
115  direction_ = direction;
116}
117
118bool LineSearchFunction::Evaluate(double x, double* f, double* g) {
119  scaled_direction_ = x * direction_;
120  if (!evaluator_->Plus(position_.data(),
121                        scaled_direction_.data(),
122                        evaluation_point_.data())) {
123    return false;
124  }
125
126  if (g == NULL) {
127    return (evaluator_->Evaluate(evaluation_point_.data(),
128                                  f, NULL, NULL, NULL) &&
129            IsFinite(*f));
130  }
131
132  if (!evaluator_->Evaluate(evaluation_point_.data(),
133                            f,
134                            NULL,
135                            gradient_.data(), NULL)) {
136    return false;
137  }
138
139  *g = direction_.dot(gradient_);
140  return IsFinite(*f) && IsFinite(*g);
141}
142
143double LineSearchFunction::DirectionInfinityNorm() const {
144  return direction_.lpNorm<Eigen::Infinity>();
145}
146
147// Returns step_size \in [min_step_size, max_step_size] which minimizes the
148// polynomial of degree defined by interpolation_type which interpolates all
149// of the provided samples with valid values.
150double LineSearch::InterpolatingPolynomialMinimizingStepSize(
151    const LineSearchInterpolationType& interpolation_type,
152    const FunctionSample& lowerbound,
153    const FunctionSample& previous,
154    const FunctionSample& current,
155    const double min_step_size,
156    const double max_step_size) const {
157  if (!current.value_is_valid ||
158      (interpolation_type == BISECTION &&
159       max_step_size <= current.x)) {
160    // Either: sample is invalid; or we are using BISECTION and contracting
161    // the step size.
162    return min(max(current.x * 0.5, min_step_size), max_step_size);
163  } else if (interpolation_type == BISECTION) {
164    CHECK_GT(max_step_size, current.x);
165    // We are expanding the search (during a Wolfe bracketing phase) using
166    // BISECTION interpolation.  Using BISECTION when trying to expand is
167    // strictly speaking an oxymoron, but we define this to mean always taking
168    // the maximum step size so that the Armijo & Wolfe implementations are
169    // agnostic to the interpolation type.
170    return max_step_size;
171  }
172  // Only check if lower-bound is valid here, where it is required
173  // to avoid replicating current.value_is_valid == false
174  // behaviour in WolfeLineSearch.
175  CHECK(lowerbound.value_is_valid)
176      << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
177      << "Ceres bug: lower-bound sample for interpolation is invalid, "
178      << "please contact the developers!, interpolation_type: "
179      << LineSearchInterpolationTypeToString(interpolation_type)
180      << ", lowerbound: " << lowerbound << ", previous: " << previous
181      << ", current: " << current;
182
183  // Select step size by interpolating the function and gradient values
184  // and minimizing the corresponding polynomial.
185  vector<FunctionSample> samples;
186  samples.push_back(lowerbound);
187
188  if (interpolation_type == QUADRATIC) {
189    // Two point interpolation using function values and the
190    // gradient at the lower bound.
191    samples.push_back(ValueSample(current.x, current.value));
192
193    if (previous.value_is_valid) {
194      // Three point interpolation, using function values and the
195      // gradient at the lower bound.
196      samples.push_back(ValueSample(previous.x, previous.value));
197    }
198  } else if (interpolation_type == CUBIC) {
199    // Two point interpolation using the function values and the gradients.
200    samples.push_back(current);
201
202    if (previous.value_is_valid) {
203      // Three point interpolation using the function values and
204      // the gradients.
205      samples.push_back(previous);
206    }
207  } else {
208    LOG(FATAL) << "Ceres bug: No handler for interpolation_type: "
209               << LineSearchInterpolationTypeToString(interpolation_type)
210               << ", please contact the developers!";
211  }
212
213  double step_size = 0.0, unused_min_value = 0.0;
214  MinimizeInterpolatingPolynomial(samples, min_step_size, max_step_size,
215                                  &step_size, &unused_min_value);
216  return step_size;
217}
218
219ArmijoLineSearch::ArmijoLineSearch(const LineSearch::Options& options)
220    : LineSearch(options) {}
221
222void ArmijoLineSearch::Search(const double step_size_estimate,
223                              const double initial_cost,
224                              const double initial_gradient,
225                              Summary* summary) {
226  *CHECK_NOTNULL(summary) = LineSearch::Summary();
227  CHECK_GE(step_size_estimate, 0.0);
228  CHECK_GT(options().sufficient_decrease, 0.0);
229  CHECK_LT(options().sufficient_decrease, 1.0);
230  CHECK_GT(options().max_num_iterations, 0);
231  Function* function = options().function;
232
233  // Note initial_cost & initial_gradient are evaluated at step_size = 0,
234  // not step_size_estimate, which is our starting guess.
235  const FunctionSample initial_position =
236      ValueAndGradientSample(0.0, initial_cost, initial_gradient);
237
238  FunctionSample previous = ValueAndGradientSample(0.0, 0.0, 0.0);
239  previous.value_is_valid = false;
240
241  FunctionSample current = ValueAndGradientSample(step_size_estimate, 0.0, 0.0);
242  current.value_is_valid = false;
243
244  // As the Armijo line search algorithm always uses the initial point, for
245  // which both the function value and derivative are known, when fitting a
246  // minimizing polynomial, we can fit up to a quadratic without requiring the
247  // gradient at the current query point.
248  const bool interpolation_uses_gradient_at_current_sample =
249      options().interpolation_type == CUBIC;
250  const double descent_direction_max_norm =
251      static_cast<const LineSearchFunction*>(function)->DirectionInfinityNorm();
252
253  ++summary->num_function_evaluations;
254  if (interpolation_uses_gradient_at_current_sample) {
255    ++summary->num_gradient_evaluations;
256  }
257  current.value_is_valid =
258      function->Evaluate(current.x,
259                         &current.value,
260                         interpolation_uses_gradient_at_current_sample
261                         ? &current.gradient : NULL);
262  current.gradient_is_valid =
263      interpolation_uses_gradient_at_current_sample && current.value_is_valid;
264  while (!current.value_is_valid ||
265         current.value > (initial_cost
266                          + options().sufficient_decrease
267                          * initial_gradient
268                          * current.x)) {
269    // If current.value_is_valid is false, we treat it as if the cost at that
270    // point is not large enough to satisfy the sufficient decrease condition.
271    ++summary->num_iterations;
272    if (summary->num_iterations >= options().max_num_iterations) {
273      summary->error =
274          StringPrintf("Line search failed: Armijo failed to find a point "
275                       "satisfying the sufficient decrease condition within "
276                       "specified max_num_iterations: %d.",
277                       options().max_num_iterations);
278      LOG_IF(WARNING, !options().is_silent) << summary->error;
279      return;
280    }
281
282    const double step_size =
283        this->InterpolatingPolynomialMinimizingStepSize(
284            options().interpolation_type,
285            initial_position,
286            previous,
287            current,
288            (options().max_step_contraction * current.x),
289            (options().min_step_contraction * current.x));
290
291    if (step_size * descent_direction_max_norm < options().min_step_size) {
292      summary->error =
293          StringPrintf("Line search failed: step_size too small: %.5e "
294                       "with descent_direction_max_norm: %.5e.", step_size,
295                       descent_direction_max_norm);
296      LOG_IF(WARNING, !options().is_silent) << summary->error;
297      return;
298    }
299
300    previous = current;
301    current.x = step_size;
302
303    ++summary->num_function_evaluations;
304    if (interpolation_uses_gradient_at_current_sample) {
305      ++summary->num_gradient_evaluations;
306    }
307    current.value_is_valid =
308      function->Evaluate(current.x,
309                         &current.value,
310                         interpolation_uses_gradient_at_current_sample
311                         ? &current.gradient : NULL);
312    current.gradient_is_valid =
313        interpolation_uses_gradient_at_current_sample && current.value_is_valid;
314  }
315
316  summary->optimal_step_size = current.x;
317  summary->success = true;
318}
319
320WolfeLineSearch::WolfeLineSearch(const LineSearch::Options& options)
321    : LineSearch(options) {}
322
323void WolfeLineSearch::Search(const double step_size_estimate,
324                             const double initial_cost,
325                             const double initial_gradient,
326                             Summary* summary) {
327  *CHECK_NOTNULL(summary) = LineSearch::Summary();
328  // All parameters should have been validated by the Solver, but as
329  // invalid values would produce crazy nonsense, hard check them here.
330  CHECK_GE(step_size_estimate, 0.0);
331  CHECK_GT(options().sufficient_decrease, 0.0);
332  CHECK_GT(options().sufficient_curvature_decrease,
333           options().sufficient_decrease);
334  CHECK_LT(options().sufficient_curvature_decrease, 1.0);
335  CHECK_GT(options().max_step_expansion, 1.0);
336
337  // Note initial_cost & initial_gradient are evaluated at step_size = 0,
338  // not step_size_estimate, which is our starting guess.
339  const FunctionSample initial_position =
340      ValueAndGradientSample(0.0, initial_cost, initial_gradient);
341
342  bool do_zoom_search = false;
343  // Important: The high/low in bracket_high & bracket_low refer to their
344  // _function_ values, not their step sizes i.e. it is _not_ required that
345  // bracket_low.x < bracket_high.x.
346  FunctionSample solution, bracket_low, bracket_high;
347
348  // Wolfe bracketing phase: Increases step_size until either it finds a point
349  // that satisfies the (strong) Wolfe conditions, or an interval that brackets
350  // step sizes which satisfy the conditions.  From Nocedal & Wright [1] p61 the
351  // interval: (step_size_{k-1}, step_size_{k}) contains step lengths satisfying
352  // the strong Wolfe conditions if one of the following conditions are met:
353  //
354  //   1. step_size_{k} violates the sufficient decrease (Armijo) condition.
355  //   2. f(step_size_{k}) >= f(step_size_{k-1}).
356  //   3. f'(step_size_{k}) >= 0.
357  //
358  // Caveat: If f(step_size_{k}) is invalid, then step_size is reduced, ignoring
359  // this special case, step_size monotonically increases during bracketing.
360  if (!this->BracketingPhase(initial_position,
361                             step_size_estimate,
362                             &bracket_low,
363                             &bracket_high,
364                             &do_zoom_search,
365                             summary)) {
366    // Failed to find either a valid point, a valid bracket satisfying the Wolfe
367    // conditions, or even a step size > minimum tolerance satisfying the Armijo
368    // condition.
369    return;
370  }
371
372  if (!do_zoom_search) {
373    // Either: Bracketing phase already found a point satisfying the strong
374    // Wolfe conditions, thus no Zoom required.
375    //
376    // Or: Bracketing failed to find a valid bracket or a point satisfying the
377    // strong Wolfe conditions within max_num_iterations, or whilst searching
378    // shrank the bracket width until it was below our minimum tolerance.
379    // As these are 'artificial' constraints, and we would otherwise fail to
380    // produce a valid point when ArmijoLineSearch would succeed, we return the
381    // point with the lowest cost found thus far which satsifies the Armijo
382    // condition (but not the Wolfe conditions).
383    summary->optimal_step_size = bracket_low.x;
384    summary->success = true;
385    return;
386  }
387
388  VLOG(3) << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
389          << "Starting line search zoom phase with bracket_low: "
390          << bracket_low << ", bracket_high: " << bracket_high
391          << ", bracket width: " << fabs(bracket_low.x - bracket_high.x)
392          << ", bracket abs delta cost: "
393          << fabs(bracket_low.value - bracket_high.value);
394
395  // Wolfe Zoom phase: Called when the Bracketing phase finds an interval of
396  // non-zero, finite width that should bracket step sizes which satisfy the
397  // (strong) Wolfe conditions (before finding a step size that satisfies the
398  // conditions).  Zoom successively decreases the size of the interval until a
399  // step size which satisfies the Wolfe conditions is found.  The interval is
400  // defined by bracket_low & bracket_high, which satisfy:
401  //
402  //   1. The interval bounded by step sizes: bracket_low.x & bracket_high.x
403  //      contains step sizes that satsify the strong Wolfe conditions.
404  //   2. bracket_low.x is of all the step sizes evaluated *which satisifed the
405  //      Armijo sufficient decrease condition*, the one which generated the
406  //      smallest function value, i.e. bracket_low.value <
407  //      f(all other steps satisfying Armijo).
408  //        - Note that this does _not_ (necessarily) mean that initially
409  //          bracket_low.value < bracket_high.value (although this is typical)
410  //          e.g. when bracket_low = initial_position, and bracket_high is the
411  //          first sample, and which does not satisfy the Armijo condition,
412  //          but still has bracket_high.value < initial_position.value.
413  //   3. bracket_high is chosen after bracket_low, s.t.
414  //      bracket_low.gradient * (bracket_high.x - bracket_low.x) < 0.
415  if (!this->ZoomPhase(initial_position,
416                       bracket_low,
417                       bracket_high,
418                       &solution,
419                       summary) && !solution.value_is_valid) {
420    // Failed to find a valid point (given the specified decrease parameters)
421    // within the specified bracket.
422    return;
423  }
424  // Ensure that if we ran out of iterations whilst zooming the bracket, or
425  // shrank the bracket width to < tolerance and failed to find a point which
426  // satisfies the strong Wolfe curvature condition, that we return the point
427  // amongst those found thus far, which minimizes f() and satisfies the Armijo
428  // condition.
429  solution =
430      solution.value_is_valid && solution.value <= bracket_low.value
431      ? solution : bracket_low;
432
433  summary->optimal_step_size = solution.x;
434  summary->success = true;
435}
436
437// Returns true if either:
438//
439// A termination condition satisfying the (strong) Wolfe bracketing conditions
440// is found:
441//
442// - A valid point, defined as a bracket of zero width [zoom not required].
443// - A valid bracket (of width > tolerance), [zoom required].
444//
445// Or, searching was stopped due to an 'artificial' constraint, i.e. not
446// a condition imposed / required by the underlying algorithm, but instead an
447// engineering / implementation consideration. But a step which exceeds the
448// minimum step size, and satsifies the Armijo condition was still found,
449// and should thus be used [zoom not required].
450//
451// Returns false if no step size > minimum step size was found which
452// satisfies at least the Armijo condition.
453bool WolfeLineSearch::BracketingPhase(
454    const FunctionSample& initial_position,
455    const double step_size_estimate,
456    FunctionSample* bracket_low,
457    FunctionSample* bracket_high,
458    bool* do_zoom_search,
459    Summary* summary) {
460  Function* function = options().function;
461
462  FunctionSample previous = initial_position;
463  FunctionSample current = ValueAndGradientSample(step_size_estimate, 0.0, 0.0);
464  current.value_is_valid = false;
465
466  const double descent_direction_max_norm =
467      static_cast<const LineSearchFunction*>(function)->DirectionInfinityNorm();
468
469  *do_zoom_search = false;
470  *bracket_low = initial_position;
471
472  // As we require the gradient to evaluate the Wolfe condition, we always
473  // calculate it together with the value, irrespective of the interpolation
474  // type.  As opposed to only calculating the gradient after the Armijo
475  // condition is satisifed, as the computational saving from this approach
476  // would be slight (perhaps even negative due to the extra call).  Also,
477  // always calculating the value & gradient together protects against us
478  // reporting invalid solutions if the cost function returns slightly different
479  // function values when evaluated with / without gradients (due to numerical
480  // issues).
481  ++summary->num_function_evaluations;
482  ++summary->num_gradient_evaluations;
483  current.value_is_valid =
484      function->Evaluate(current.x,
485                         &current.value,
486                         &current.gradient);
487  current.gradient_is_valid = current.value_is_valid;
488
489  while (true) {
490    ++summary->num_iterations;
491
492    if (current.value_is_valid &&
493        (current.value > (initial_position.value
494                          + options().sufficient_decrease
495                          * initial_position.gradient
496                          * current.x) ||
497         (previous.value_is_valid && current.value > previous.value))) {
498      // Bracket found: current step size violates Armijo sufficient decrease
499      // condition, or has stepped past an inflection point of f() relative to
500      // previous step size.
501      *do_zoom_search = true;
502      *bracket_low = previous;
503      *bracket_high = current;
504      VLOG(3) << std::scientific
505              << std::setprecision(kErrorMessageNumericPrecision)
506              << "Bracket found: current step (" << current.x
507              << ") violates Armijo sufficient condition, or has passed an "
508              << "inflection point of f() based on value.";
509      break;
510    }
511
512    if (current.value_is_valid &&
513        fabs(current.gradient) <=
514        -options().sufficient_curvature_decrease * initial_position.gradient) {
515      // Current step size satisfies the strong Wolfe conditions, and is thus a
516      // valid termination point, therefore a Zoom not required.
517      *bracket_low = current;
518      *bracket_high = current;
519      VLOG(3) << std::scientific
520              << std::setprecision(kErrorMessageNumericPrecision)
521              << "Bracketing phase found step size: " << current.x
522              << ", satisfying strong Wolfe conditions, initial_position: "
523              << initial_position << ", current: " << current;
524      break;
525
526    } else if (current.value_is_valid && current.gradient >= 0) {
527      // Bracket found: current step size has stepped past an inflection point
528      // of f(), but Armijo sufficient decrease is still satisfied and
529      // f(current) is our best minimum thus far.  Remember step size
530      // monotonically increases, thus previous_step_size < current_step_size
531      // even though f(previous) > f(current).
532      *do_zoom_search = true;
533      // Note inverse ordering from first bracket case.
534      *bracket_low = current;
535      *bracket_high = previous;
536      VLOG(3) << "Bracket found: current step (" << current.x
537              << ") satisfies Armijo, but has gradient >= 0, thus have passed "
538              << "an inflection point of f().";
539      break;
540
541    } else if (current.value_is_valid &&
542               fabs(current.x - previous.x) * descent_direction_max_norm
543               < options().min_step_size) {
544      // We have shrunk the search bracket to a width less than our tolerance,
545      // and still not found either a point satisfying the strong Wolfe
546      // conditions, or a valid bracket containing such a point. Stop searching
547      // and set bracket_low to the size size amongst all those tested which
548      // minimizes f() and satisfies the Armijo condition.
549      LOG_IF(WARNING, !options().is_silent)
550          << "Line search failed: Wolfe bracketing phase shrank "
551          << "bracket width: " << fabs(current.x - previous.x)
552          <<  ", to < tolerance: " << options().min_step_size
553          << ", with descent_direction_max_norm: "
554          << descent_direction_max_norm << ", and failed to find "
555          << "a point satisfying the strong Wolfe conditions or a "
556          << "bracketing containing such a point. Accepting "
557          << "point found satisfying Armijo condition only, to "
558          << "allow continuation.";
559      *bracket_low = current;
560      break;
561
562    } else if (summary->num_iterations >= options().max_num_iterations) {
563      // Check num iterations bound here so that we always evaluate the
564      // max_num_iterations-th iteration against all conditions, and
565      // then perform no additional (unused) evaluations.
566      summary->error =
567          StringPrintf("Line search failed: Wolfe bracketing phase failed to "
568                       "find a point satisfying strong Wolfe conditions, or a "
569                       "bracket containing such a point within specified "
570                       "max_num_iterations: %d", options().max_num_iterations);
571      LOG_IF(WARNING, !options().is_silent) << summary->error;
572      // Ensure that bracket_low is always set to the step size amongst all
573      // those tested which minimizes f() and satisfies the Armijo condition
574      // when we terminate due to the 'artificial' max_num_iterations condition.
575      *bracket_low =
576          current.value_is_valid && current.value < bracket_low->value
577          ? current : *bracket_low;
578      break;
579    }
580    // Either: f(current) is invalid; or, f(current) is valid, but does not
581    // satisfy the strong Wolfe conditions itself, or the conditions for
582    // being a boundary of a bracket.
583
584    // If f(current) is valid, (but meets no criteria) expand the search by
585    // increasing the step size.
586    const double max_step_size =
587        current.value_is_valid
588        ? (current.x * options().max_step_expansion) : current.x;
589
590    // We are performing 2-point interpolation only here, but the API of
591    // InterpolatingPolynomialMinimizingStepSize() allows for up to
592    // 3-point interpolation, so pad call with a sample with an invalid
593    // value that will therefore be ignored.
594    const FunctionSample unused_previous;
595    DCHECK(!unused_previous.value_is_valid);
596    // Contracts step size if f(current) is not valid.
597    const double step_size =
598        this->InterpolatingPolynomialMinimizingStepSize(
599            options().interpolation_type,
600            previous,
601            unused_previous,
602            current,
603            previous.x,
604            max_step_size);
605    if (step_size * descent_direction_max_norm < options().min_step_size) {
606      summary->error =
607          StringPrintf("Line search failed: step_size too small: %.5e "
608                       "with descent_direction_max_norm: %.5e", step_size,
609                       descent_direction_max_norm);
610      LOG_IF(WARNING, !options().is_silent) << summary->error;
611      return false;
612    }
613
614    previous = current.value_is_valid ? current : previous;
615    current.x = step_size;
616
617    ++summary->num_function_evaluations;
618    ++summary->num_gradient_evaluations;
619    current.value_is_valid =
620        function->Evaluate(current.x,
621                           &current.value,
622                           &current.gradient);
623    current.gradient_is_valid = current.value_is_valid;
624  }
625
626  // Ensure that even if a valid bracket was found, we will only mark a zoom
627  // as required if the bracket's width is greater than our minimum tolerance.
628  if (*do_zoom_search &&
629      fabs(bracket_high->x - bracket_low->x) * descent_direction_max_norm
630      < options().min_step_size) {
631    *do_zoom_search = false;
632  }
633
634  return true;
635}
636
637// Returns true iff solution satisfies the strong Wolfe conditions. Otherwise,
638// on return false, if we stopped searching due to the 'artificial' condition of
639// reaching max_num_iterations, solution is the step size amongst all those
640// tested, which satisfied the Armijo decrease condition and minimized f().
641bool WolfeLineSearch::ZoomPhase(const FunctionSample& initial_position,
642                                FunctionSample bracket_low,
643                                FunctionSample bracket_high,
644                                FunctionSample* solution,
645                                Summary* summary) {
646  Function* function = options().function;
647
648  CHECK(bracket_low.value_is_valid && bracket_low.gradient_is_valid)
649      << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
650      << "Ceres bug: f_low input to Wolfe Zoom invalid, please contact "
651      << "the developers!, initial_position: " << initial_position
652      << ", bracket_low: " << bracket_low
653      << ", bracket_high: "<< bracket_high;
654  // We do not require bracket_high.gradient_is_valid as the gradient condition
655  // for a valid bracket is only dependent upon bracket_low.gradient, and
656  // in order to minimize jacobian evaluations, bracket_high.gradient may
657  // not have been calculated (if bracket_high.value does not satisfy the
658  // Armijo sufficient decrease condition and interpolation method does not
659  // require it).
660  //
661  // We also do not require that: bracket_low.value < bracket_high.value,
662  // although this is typical. This is to deal with the case when
663  // bracket_low = initial_position, bracket_high is the first sample,
664  // and bracket_high does not satisfy the Armijo condition, but still has
665  // bracket_high.value < initial_position.value.
666  CHECK(bracket_high.value_is_valid)
667      << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
668      << "Ceres bug: f_high input to Wolfe Zoom invalid, please "
669      << "contact the developers!, initial_position: " << initial_position
670      << ", bracket_low: " << bracket_low
671      << ", bracket_high: "<< bracket_high;
672
673  if (bracket_low.gradient * (bracket_high.x - bracket_low.x) >= 0) {
674    // The third condition for a valid initial bracket:
675    //
676    //   3. bracket_high is chosen after bracket_low, s.t.
677    //      bracket_low.gradient * (bracket_high.x - bracket_low.x) < 0.
678    //
679    // is not satisfied.  As this can happen when the users' cost function
680    // returns inconsistent gradient values relative to the function values,
681    // we do not CHECK_LT(), but we do stop processing and return an invalid
682    // value.
683    summary->error =
684        StringPrintf("Line search failed: Wolfe zoom phase passed a bracket "
685                     "which does not satisfy: bracket_low.gradient * "
686                     "(bracket_high.x - bracket_low.x) < 0 [%.8e !< 0] "
687                     "with initial_position: %s, bracket_low: %s, bracket_high:"
688                     " %s, the most likely cause of which is the cost function "
689                     "returning inconsistent gradient & function values.",
690                     bracket_low.gradient * (bracket_high.x - bracket_low.x),
691                     initial_position.ToDebugString().c_str(),
692                     bracket_low.ToDebugString().c_str(),
693                     bracket_high.ToDebugString().c_str());
694    LOG_IF(WARNING, !options().is_silent) << summary->error;
695    solution->value_is_valid = false;
696    return false;
697  }
698
699  const int num_bracketing_iterations = summary->num_iterations;
700  const double descent_direction_max_norm =
701      static_cast<const LineSearchFunction*>(function)->DirectionInfinityNorm();
702
703  while (true) {
704    // Set solution to bracket_low, as it is our best step size (smallest f())
705    // found thus far and satisfies the Armijo condition, even though it does
706    // not satisfy the Wolfe condition.
707    *solution = bracket_low;
708    if (summary->num_iterations >= options().max_num_iterations) {
709      summary->error =
710          StringPrintf("Line search failed: Wolfe zoom phase failed to "
711                       "find a point satisfying strong Wolfe conditions "
712                       "within specified max_num_iterations: %d, "
713                       "(num iterations taken for bracketing: %d).",
714                       options().max_num_iterations, num_bracketing_iterations);
715      LOG_IF(WARNING, !options().is_silent) << summary->error;
716      return false;
717    }
718    if (fabs(bracket_high.x - bracket_low.x) * descent_direction_max_norm
719        < options().min_step_size) {
720      // Bracket width has been reduced below tolerance, and no point satisfying
721      // the strong Wolfe conditions has been found.
722      summary->error =
723          StringPrintf("Line search failed: Wolfe zoom bracket width: %.5e "
724                       "too small with descent_direction_max_norm: %.5e.",
725                       fabs(bracket_high.x - bracket_low.x),
726                       descent_direction_max_norm);
727      LOG_IF(WARNING, !options().is_silent) << summary->error;
728      return false;
729    }
730
731    ++summary->num_iterations;
732    // Polynomial interpolation requires inputs ordered according to step size,
733    // not f(step size).
734    const FunctionSample& lower_bound_step =
735        bracket_low.x < bracket_high.x ? bracket_low : bracket_high;
736    const FunctionSample& upper_bound_step =
737        bracket_low.x < bracket_high.x ? bracket_high : bracket_low;
738    // We are performing 2-point interpolation only here, but the API of
739    // InterpolatingPolynomialMinimizingStepSize() allows for up to
740    // 3-point interpolation, so pad call with a sample with an invalid
741    // value that will therefore be ignored.
742    const FunctionSample unused_previous;
743    DCHECK(!unused_previous.value_is_valid);
744    solution->x =
745        this->InterpolatingPolynomialMinimizingStepSize(
746            options().interpolation_type,
747            lower_bound_step,
748            unused_previous,
749            upper_bound_step,
750            lower_bound_step.x,
751            upper_bound_step.x);
752    // No check on magnitude of step size being too small here as it is
753    // lower-bounded by the initial bracket start point, which was valid.
754    //
755    // As we require the gradient to evaluate the Wolfe condition, we always
756    // calculate it together with the value, irrespective of the interpolation
757    // type.  As opposed to only calculating the gradient after the Armijo
758    // condition is satisifed, as the computational saving from this approach
759    // would be slight (perhaps even negative due to the extra call).  Also,
760    // always calculating the value & gradient together protects against us
761    // reporting invalid solutions if the cost function returns slightly
762    // different function values when evaluated with / without gradients (due
763    // to numerical issues).
764    ++summary->num_function_evaluations;
765    ++summary->num_gradient_evaluations;
766    solution->value_is_valid =
767        function->Evaluate(solution->x,
768                           &solution->value,
769                           &solution->gradient);
770    solution->gradient_is_valid = solution->value_is_valid;
771    if (!solution->value_is_valid) {
772      summary->error =
773          StringPrintf("Line search failed: Wolfe Zoom phase found "
774                       "step_size: %.5e, for which function is invalid, "
775                       "between low_step: %.5e and high_step: %.5e "
776                       "at which function is valid.",
777                       solution->x, bracket_low.x, bracket_high.x);
778      LOG_IF(WARNING, !options().is_silent) << summary->error;
779      return false;
780    }
781
782    VLOG(3) << "Zoom iteration: "
783            << summary->num_iterations - num_bracketing_iterations
784            << ", bracket_low: " << bracket_low
785            << ", bracket_high: " << bracket_high
786            << ", minimizing solution: " << *solution;
787
788    if ((solution->value > (initial_position.value
789                            + options().sufficient_decrease
790                            * initial_position.gradient
791                            * solution->x)) ||
792        (solution->value >= bracket_low.value)) {
793      // Armijo sufficient decrease not satisfied, or not better
794      // than current lowest sample, use as new upper bound.
795      bracket_high = *solution;
796      continue;
797    }
798
799    // Armijo sufficient decrease satisfied, check strong Wolfe condition.
800    if (fabs(solution->gradient) <=
801        -options().sufficient_curvature_decrease * initial_position.gradient) {
802      // Found a valid termination point satisfying strong Wolfe conditions.
803      VLOG(3) << std::scientific
804              << std::setprecision(kErrorMessageNumericPrecision)
805              << "Zoom phase found step size: " << solution->x
806              << ", satisfying strong Wolfe conditions.";
807      break;
808
809    } else if (solution->gradient * (bracket_high.x - bracket_low.x) >= 0) {
810      bracket_high = bracket_low;
811    }
812
813    bracket_low = *solution;
814  }
815  // Solution contains a valid point which satisfies the strong Wolfe
816  // conditions.
817  return true;
818}
819
820}  // namespace internal
821}  // namespace ceres
822