1/*
2 * jmemmgr.c
3 *
4 * Copyright (C) 1991-1997, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This file contains the JPEG system-independent memory management
9 * routines.  This code is usable across a wide variety of machines; most
10 * of the system dependencies have been isolated in a separate file.
11 * The major functions provided here are:
12 *   * pool-based allocation and freeing of memory;
13 *   * policy decisions about how to divide available memory among the
14 *     virtual arrays;
15 *   * control logic for swapping virtual arrays between main memory and
16 *     backing storage.
17 * The separate system-dependent file provides the actual backing-storage
18 * access code, and it contains the policy decision about how much total
19 * main memory to use.
20 * This file is system-dependent in the sense that some of its functions
21 * are unnecessary in some systems.  For example, if there is enough virtual
22 * memory so that backing storage will never be used, much of the virtual
23 * array control logic could be removed.  (Of course, if you have that much
24 * memory then you shouldn't care about a little bit of unused code...)
25 */
26
27#define JPEG_INTERNALS
28#define AM_MEMORY_MANAGER	/* we define jvirt_Xarray_control structs */
29#include "jinclude.h"
30#include "jpeglib.h"
31#include "jmemsys.h"		/* import the system-dependent declarations */
32
33#ifndef NO_GETENV
34#ifndef HAVE_STDLIB_H		/* <stdlib.h> should declare getenv() */
35extern char * getenv JPP((const char * name));
36#endif
37#endif
38
39
40LOCAL(size_t)
41round_up_pow2 (size_t a, size_t b)
42/* a rounded up to the next multiple of b, i.e. ceil(a/b)*b */
43/* Assumes a >= 0, b > 0, and b is a power of 2 */
44{
45  return ((a + b - 1) & (~(b - 1)));
46}
47
48
49/*
50 * Some important notes:
51 *   The allocation routines provided here must never return NULL.
52 *   They should exit to error_exit if unsuccessful.
53 *
54 *   It's not a good idea to try to merge the sarray and barray routines,
55 *   even though they are textually almost the same, because samples are
56 *   usually stored as bytes while coefficients are shorts or ints.  Thus,
57 *   in machines where byte pointers have a different representation from
58 *   word pointers, the resulting machine code could not be the same.
59 */
60
61
62/*
63 * Many machines require storage alignment: longs must start on 4-byte
64 * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
65 * always returns pointers that are multiples of the worst-case alignment
66 * requirement, and we had better do so too.
67 * There isn't any really portable way to determine the worst-case alignment
68 * requirement.  This module assumes that the alignment requirement is
69 * multiples of ALIGN_SIZE.
70 * By default, we define ALIGN_SIZE as sizeof(double).  This is necessary on some
71 * workstations (where doubles really do need 8-byte alignment) and will work
72 * fine on nearly everything.  If your machine has lesser alignment needs,
73 * you can save a few bytes by making ALIGN_SIZE smaller.
74 * The only place I know of where this will NOT work is certain Macintosh
75 * 680x0 compilers that define double as a 10-byte IEEE extended float.
76 * Doing 10-byte alignment is counterproductive because longwords won't be
77 * aligned well.  Put "#define ALIGN_SIZE 4" in jconfig.h if you have
78 * such a compiler.
79 */
80
81#ifndef ALIGN_SIZE		/* so can override from jconfig.h */
82#ifndef WITH_SIMD
83#define ALIGN_SIZE  SIZEOF(double)
84#else
85#define ALIGN_SIZE  16 /* Most SIMD implementations require this */
86#endif
87#endif
88
89/*
90 * We allocate objects from "pools", where each pool is gotten with a single
91 * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
92 * overhead within a pool, except for alignment padding.  Each pool has a
93 * header with a link to the next pool of the same class.
94 * Small and large pool headers are identical except that the latter's
95 * link pointer must be FAR on 80x86 machines.
96 */
97
98typedef struct small_pool_struct * small_pool_ptr;
99
100typedef struct small_pool_struct {
101  small_pool_ptr next;	/* next in list of pools */
102  size_t bytes_used;		/* how many bytes already used within pool */
103  size_t bytes_left;		/* bytes still available in this pool */
104} small_pool_hdr;
105
106typedef struct large_pool_struct FAR * large_pool_ptr;
107
108typedef struct large_pool_struct {
109  large_pool_ptr next;	/* next in list of pools */
110  size_t bytes_used;		/* how many bytes already used within pool */
111  size_t bytes_left;		/* bytes still available in this pool */
112} large_pool_hdr;
113
114/*
115 * Here is the full definition of a memory manager object.
116 */
117
118typedef struct {
119  struct jpeg_memory_mgr pub;	/* public fields */
120
121  /* Each pool identifier (lifetime class) names a linked list of pools. */
122  small_pool_ptr small_list[JPOOL_NUMPOOLS];
123  large_pool_ptr large_list[JPOOL_NUMPOOLS];
124
125  /* Since we only have one lifetime class of virtual arrays, only one
126   * linked list is necessary (for each datatype).  Note that the virtual
127   * array control blocks being linked together are actually stored somewhere
128   * in the small-pool list.
129   */
130  jvirt_sarray_ptr virt_sarray_list;
131  jvirt_barray_ptr virt_barray_list;
132
133  /* This counts total space obtained from jpeg_get_small/large */
134  size_t total_space_allocated;
135
136  /* alloc_sarray and alloc_barray set this value for use by virtual
137   * array routines.
138   */
139  JDIMENSION last_rowsperchunk;	/* from most recent alloc_sarray/barray */
140} my_memory_mgr;
141
142typedef my_memory_mgr * my_mem_ptr;
143
144
145/*
146 * The control blocks for virtual arrays.
147 * Note that these blocks are allocated in the "small" pool area.
148 * System-dependent info for the associated backing store (if any) is hidden
149 * inside the backing_store_info struct.
150 */
151
152struct jvirt_sarray_control {
153  JSAMPARRAY mem_buffer;	/* => the in-memory buffer */
154  JDIMENSION rows_in_array;	/* total virtual array height */
155  JDIMENSION samplesperrow;	/* width of array (and of memory buffer) */
156  JDIMENSION maxaccess;		/* max rows accessed by access_virt_sarray */
157  JDIMENSION rows_in_mem;	/* height of memory buffer */
158  JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
159  JDIMENSION cur_start_row;	/* first logical row # in the buffer */
160  JDIMENSION first_undef_row;	/* row # of first uninitialized row */
161  boolean pre_zero;		/* pre-zero mode requested? */
162  boolean dirty;		/* do current buffer contents need written? */
163  boolean b_s_open;		/* is backing-store data valid? */
164  jvirt_sarray_ptr next;	/* link to next virtual sarray control block */
165  backing_store_info b_s_info;	/* System-dependent control info */
166};
167
168struct jvirt_barray_control {
169  JBLOCKARRAY mem_buffer;	/* => the in-memory buffer */
170  JDIMENSION rows_in_array;	/* total virtual array height */
171  JDIMENSION blocksperrow;	/* width of array (and of memory buffer) */
172  JDIMENSION maxaccess;		/* max rows accessed by access_virt_barray */
173  JDIMENSION rows_in_mem;	/* height of memory buffer */
174  JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
175  JDIMENSION cur_start_row;	/* first logical row # in the buffer */
176  JDIMENSION first_undef_row;	/* row # of first uninitialized row */
177  boolean pre_zero;		/* pre-zero mode requested? */
178  boolean dirty;		/* do current buffer contents need written? */
179  boolean b_s_open;		/* is backing-store data valid? */
180  jvirt_barray_ptr next;	/* link to next virtual barray control block */
181  backing_store_info b_s_info;	/* System-dependent control info */
182};
183
184
185#ifdef MEM_STATS		/* optional extra stuff for statistics */
186
187LOCAL(void)
188print_mem_stats (j_common_ptr cinfo, int pool_id)
189{
190  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
191  small_pool_ptr shdr_ptr;
192  large_pool_ptr lhdr_ptr;
193
194  /* Since this is only a debugging stub, we can cheat a little by using
195   * fprintf directly rather than going through the trace message code.
196   * This is helpful because message parm array can't handle longs.
197   */
198  fprintf(stderr, "Freeing pool %d, total space = %ld\n",
199	  pool_id, mem->total_space_allocated);
200
201  for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
202       lhdr_ptr = lhdr_ptr->next) {
203    fprintf(stderr, "  Large chunk used %ld\n",
204	    (long) lhdr_ptr->bytes_used);
205  }
206
207  for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
208       shdr_ptr = shdr_ptr->next) {
209    fprintf(stderr, "  Small chunk used %ld free %ld\n",
210	    (long) shdr_ptr->bytes_used,
211	    (long) shdr_ptr->bytes_left);
212  }
213}
214
215#endif /* MEM_STATS */
216
217
218LOCAL(void)
219out_of_memory (j_common_ptr cinfo, int which)
220/* Report an out-of-memory error and stop execution */
221/* If we compiled MEM_STATS support, report alloc requests before dying */
222{
223#ifdef MEM_STATS
224  cinfo->err->trace_level = 2;	/* force self_destruct to report stats */
225#endif
226  ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
227}
228
229
230/*
231 * Allocation of "small" objects.
232 *
233 * For these, we use pooled storage.  When a new pool must be created,
234 * we try to get enough space for the current request plus a "slop" factor,
235 * where the slop will be the amount of leftover space in the new pool.
236 * The speed vs. space tradeoff is largely determined by the slop values.
237 * A different slop value is provided for each pool class (lifetime),
238 * and we also distinguish the first pool of a class from later ones.
239 * NOTE: the values given work fairly well on both 16- and 32-bit-int
240 * machines, but may be too small if longs are 64 bits or more.
241 *
242 * Since we do not know what alignment malloc() gives us, we have to
243 * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment
244 * adjustment.
245 */
246
247static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
248{
249	1600,			/* first PERMANENT pool */
250	16000			/* first IMAGE pool */
251};
252
253static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
254{
255	0,			/* additional PERMANENT pools */
256	5000			/* additional IMAGE pools */
257};
258
259#define MIN_SLOP  50		/* greater than 0 to avoid futile looping */
260
261
262METHODDEF(void *)
263alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
264/* Allocate a "small" object */
265{
266  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
267  small_pool_ptr hdr_ptr, prev_hdr_ptr;
268  char * data_ptr;
269  size_t min_request, slop;
270
271  /*
272   * Round up the requested size to a multiple of ALIGN_SIZE in order
273   * to assure alignment for the next object allocated in the same pool
274   * and so that algorithms can straddle outside the proper area up
275   * to the next alignment.
276   */
277  sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
278
279  /* Check for unsatisfiable request (do now to ensure no overflow below) */
280  if ((SIZEOF(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > MAX_ALLOC_CHUNK)
281    out_of_memory(cinfo, 1);	/* request exceeds malloc's ability */
282
283  /* See if space is available in any existing pool */
284  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
285    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
286  prev_hdr_ptr = NULL;
287  hdr_ptr = mem->small_list[pool_id];
288  while (hdr_ptr != NULL) {
289    if (hdr_ptr->bytes_left >= sizeofobject)
290      break;			/* found pool with enough space */
291    prev_hdr_ptr = hdr_ptr;
292    hdr_ptr = hdr_ptr->next;
293  }
294
295  /* Time to make a new pool? */
296  if (hdr_ptr == NULL) {
297    /* min_request is what we need now, slop is what will be leftover */
298    min_request = SIZEOF(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1;
299    if (prev_hdr_ptr == NULL)	/* first pool in class? */
300      slop = first_pool_slop[pool_id];
301    else
302      slop = extra_pool_slop[pool_id];
303    /* Don't ask for more than MAX_ALLOC_CHUNK */
304    if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
305      slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
306    /* Try to get space, if fail reduce slop and try again */
307    for (;;) {
308      hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
309      if (hdr_ptr != NULL)
310	break;
311      slop /= 2;
312      if (slop < MIN_SLOP)	/* give up when it gets real small */
313	out_of_memory(cinfo, 2); /* jpeg_get_small failed */
314    }
315    mem->total_space_allocated += min_request + slop;
316    /* Success, initialize the new pool header and add to end of list */
317    hdr_ptr->next = NULL;
318    hdr_ptr->bytes_used = 0;
319    hdr_ptr->bytes_left = sizeofobject + slop;
320    if (prev_hdr_ptr == NULL)	/* first pool in class? */
321      mem->small_list[pool_id] = hdr_ptr;
322    else
323      prev_hdr_ptr->next = hdr_ptr;
324  }
325
326  /* OK, allocate the object from the current pool */
327  data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */
328  data_ptr += SIZEOF(small_pool_hdr); /* ...by skipping the header... */
329  if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
330    data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
331  data_ptr += hdr_ptr->bytes_used; /* point to place for object */
332  hdr_ptr->bytes_used += sizeofobject;
333  hdr_ptr->bytes_left -= sizeofobject;
334
335  return (void *) data_ptr;
336}
337
338
339/*
340 * Allocation of "large" objects.
341 *
342 * The external semantics of these are the same as "small" objects,
343 * except that FAR pointers are used on 80x86.  However the pool
344 * management heuristics are quite different.  We assume that each
345 * request is large enough that it may as well be passed directly to
346 * jpeg_get_large; the pool management just links everything together
347 * so that we can free it all on demand.
348 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
349 * structures.  The routines that create these structures (see below)
350 * deliberately bunch rows together to ensure a large request size.
351 */
352
353METHODDEF(void FAR *)
354alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
355/* Allocate a "large" object */
356{
357  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
358  large_pool_ptr hdr_ptr;
359  char FAR * data_ptr;
360
361  /*
362   * Round up the requested size to a multiple of ALIGN_SIZE so that
363   * algorithms can straddle outside the proper area up to the next
364   * alignment.
365   */
366  sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
367
368  /* Check for unsatisfiable request (do now to ensure no overflow below) */
369  if ((SIZEOF(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > MAX_ALLOC_CHUNK)
370    out_of_memory(cinfo, 3);	/* request exceeds malloc's ability */
371
372  /* Always make a new pool */
373  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
374    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
375
376  hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
377					    SIZEOF(large_pool_hdr) +
378					    ALIGN_SIZE - 1);
379  if (hdr_ptr == NULL)
380    out_of_memory(cinfo, 4);	/* jpeg_get_large failed */
381  mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr) + ALIGN_SIZE - 1;
382
383  /* Success, initialize the new pool header and add to list */
384  hdr_ptr->next = mem->large_list[pool_id];
385  /* We maintain space counts in each pool header for statistical purposes,
386   * even though they are not needed for allocation.
387   */
388  hdr_ptr->bytes_used = sizeofobject;
389  hdr_ptr->bytes_left = 0;
390  mem->large_list[pool_id] = hdr_ptr;
391
392  data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */
393  data_ptr += SIZEOF(small_pool_hdr); /* ...by skipping the header... */
394  if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
395    data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
396
397  return (void FAR *) data_ptr;
398}
399
400
401/*
402 * Creation of 2-D sample arrays.
403 * The pointers are in near heap, the samples themselves in FAR heap.
404 *
405 * To minimize allocation overhead and to allow I/O of large contiguous
406 * blocks, we allocate the sample rows in groups of as many rows as possible
407 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
408 * NB: the virtual array control routines, later in this file, know about
409 * this chunking of rows.  The rowsperchunk value is left in the mem manager
410 * object so that it can be saved away if this sarray is the workspace for
411 * a virtual array.
412 *
413 * Since we are often upsampling with a factor 2, we align the size (not
414 * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have
415 * to be as careful about size.
416 */
417
418METHODDEF(JSAMPARRAY)
419alloc_sarray (j_common_ptr cinfo, int pool_id,
420	      JDIMENSION samplesperrow, JDIMENSION numrows)
421/* Allocate a 2-D sample array */
422{
423  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
424  JSAMPARRAY result;
425  JSAMPROW workspace;
426  JDIMENSION rowsperchunk, currow, i;
427  long ltemp;
428
429  /* Make sure each row is properly aligned */
430  if ((ALIGN_SIZE % SIZEOF(JSAMPLE)) != 0)
431    out_of_memory(cinfo, 5);	/* safety check */
432  samplesperrow = (JDIMENSION)round_up_pow2(samplesperrow, (2 * ALIGN_SIZE) / SIZEOF(JSAMPLE));
433
434  /* Calculate max # of rows allowed in one allocation chunk */
435  ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
436	  ((long) samplesperrow * SIZEOF(JSAMPLE));
437  if (ltemp <= 0)
438    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
439  if (ltemp < (long) numrows)
440    rowsperchunk = (JDIMENSION) ltemp;
441  else
442    rowsperchunk = numrows;
443  mem->last_rowsperchunk = rowsperchunk;
444
445  /* Get space for row pointers (small object) */
446  result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
447				    (size_t) (numrows * SIZEOF(JSAMPROW)));
448
449  /* Get the rows themselves (large objects) */
450  currow = 0;
451  while (currow < numrows) {
452    rowsperchunk = MIN(rowsperchunk, numrows - currow);
453    workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
454	(size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
455		  * SIZEOF(JSAMPLE)));
456    for (i = rowsperchunk; i > 0; i--) {
457      result[currow++] = workspace;
458      workspace += samplesperrow;
459    }
460  }
461
462  return result;
463}
464
465
466/*
467 * Creation of 2-D coefficient-block arrays.
468 * This is essentially the same as the code for sample arrays, above.
469 */
470
471METHODDEF(JBLOCKARRAY)
472alloc_barray (j_common_ptr cinfo, int pool_id,
473	      JDIMENSION blocksperrow, JDIMENSION numrows)
474/* Allocate a 2-D coefficient-block array */
475{
476  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
477  JBLOCKARRAY result;
478  JBLOCKROW workspace;
479  JDIMENSION rowsperchunk, currow, i;
480  long ltemp;
481
482  /* Make sure each row is properly aligned */
483  if ((SIZEOF(JBLOCK) % ALIGN_SIZE) != 0)
484    out_of_memory(cinfo, 6);	/* safety check */
485
486  /* Calculate max # of rows allowed in one allocation chunk */
487  ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
488	  ((long) blocksperrow * SIZEOF(JBLOCK));
489  if (ltemp <= 0)
490    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
491  if (ltemp < (long) numrows)
492    rowsperchunk = (JDIMENSION) ltemp;
493  else
494    rowsperchunk = numrows;
495  mem->last_rowsperchunk = rowsperchunk;
496
497  /* Get space for row pointers (small object) */
498  result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
499				     (size_t) (numrows * SIZEOF(JBLOCKROW)));
500
501  /* Get the rows themselves (large objects) */
502  currow = 0;
503  while (currow < numrows) {
504    rowsperchunk = MIN(rowsperchunk, numrows - currow);
505    workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
506	(size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
507		  * SIZEOF(JBLOCK)));
508    for (i = rowsperchunk; i > 0; i--) {
509      result[currow++] = workspace;
510      workspace += blocksperrow;
511    }
512  }
513
514  return result;
515}
516
517
518/*
519 * About virtual array management:
520 *
521 * The above "normal" array routines are only used to allocate strip buffers
522 * (as wide as the image, but just a few rows high).  Full-image-sized buffers
523 * are handled as "virtual" arrays.  The array is still accessed a strip at a
524 * time, but the memory manager must save the whole array for repeated
525 * accesses.  The intended implementation is that there is a strip buffer in
526 * memory (as high as is possible given the desired memory limit), plus a
527 * backing file that holds the rest of the array.
528 *
529 * The request_virt_array routines are told the total size of the image and
530 * the maximum number of rows that will be accessed at once.  The in-memory
531 * buffer must be at least as large as the maxaccess value.
532 *
533 * The request routines create control blocks but not the in-memory buffers.
534 * That is postponed until realize_virt_arrays is called.  At that time the
535 * total amount of space needed is known (approximately, anyway), so free
536 * memory can be divided up fairly.
537 *
538 * The access_virt_array routines are responsible for making a specific strip
539 * area accessible (after reading or writing the backing file, if necessary).
540 * Note that the access routines are told whether the caller intends to modify
541 * the accessed strip; during a read-only pass this saves having to rewrite
542 * data to disk.  The access routines are also responsible for pre-zeroing
543 * any newly accessed rows, if pre-zeroing was requested.
544 *
545 * In current usage, the access requests are usually for nonoverlapping
546 * strips; that is, successive access start_row numbers differ by exactly
547 * num_rows = maxaccess.  This means we can get good performance with simple
548 * buffer dump/reload logic, by making the in-memory buffer be a multiple
549 * of the access height; then there will never be accesses across bufferload
550 * boundaries.  The code will still work with overlapping access requests,
551 * but it doesn't handle bufferload overlaps very efficiently.
552 */
553
554
555METHODDEF(jvirt_sarray_ptr)
556request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
557		     JDIMENSION samplesperrow, JDIMENSION numrows,
558		     JDIMENSION maxaccess)
559/* Request a virtual 2-D sample array */
560{
561  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
562  jvirt_sarray_ptr result;
563
564  /* Only IMAGE-lifetime virtual arrays are currently supported */
565  if (pool_id != JPOOL_IMAGE)
566    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
567
568  /* get control block */
569  result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
570					  SIZEOF(struct jvirt_sarray_control));
571
572  result->mem_buffer = NULL;	/* marks array not yet realized */
573  result->rows_in_array = numrows;
574  result->samplesperrow = samplesperrow;
575  result->maxaccess = maxaccess;
576  result->pre_zero = pre_zero;
577  result->b_s_open = FALSE;	/* no associated backing-store object */
578  result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
579  mem->virt_sarray_list = result;
580
581  return result;
582}
583
584
585METHODDEF(jvirt_barray_ptr)
586request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
587		     JDIMENSION blocksperrow, JDIMENSION numrows,
588		     JDIMENSION maxaccess)
589/* Request a virtual 2-D coefficient-block array */
590{
591  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
592  jvirt_barray_ptr result;
593
594  /* Only IMAGE-lifetime virtual arrays are currently supported */
595  if (pool_id != JPOOL_IMAGE)
596    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
597
598  /* get control block */
599  result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
600					  SIZEOF(struct jvirt_barray_control));
601
602  result->mem_buffer = NULL;	/* marks array not yet realized */
603  result->rows_in_array = numrows;
604  result->blocksperrow = blocksperrow;
605  result->maxaccess = maxaccess;
606  result->pre_zero = pre_zero;
607  result->b_s_open = FALSE;	/* no associated backing-store object */
608  result->next = mem->virt_barray_list; /* add to list of virtual arrays */
609  mem->virt_barray_list = result;
610
611  return result;
612}
613
614
615METHODDEF(void)
616realize_virt_arrays (j_common_ptr cinfo)
617/* Allocate the in-memory buffers for any unrealized virtual arrays */
618{
619  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
620  size_t space_per_minheight, maximum_space, avail_mem;
621  size_t minheights, max_minheights;
622  jvirt_sarray_ptr sptr;
623  jvirt_barray_ptr bptr;
624
625  /* Compute the minimum space needed (maxaccess rows in each buffer)
626   * and the maximum space needed (full image height in each buffer).
627   * These may be of use to the system-dependent jpeg_mem_available routine.
628   */
629  space_per_minheight = 0;
630  maximum_space = 0;
631  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
632    if (sptr->mem_buffer == NULL) { /* if not realized yet */
633      space_per_minheight += (long) sptr->maxaccess *
634			     (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
635      maximum_space += (long) sptr->rows_in_array *
636		       (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
637    }
638  }
639  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
640    if (bptr->mem_buffer == NULL) { /* if not realized yet */
641      space_per_minheight += (long) bptr->maxaccess *
642			     (long) bptr->blocksperrow * SIZEOF(JBLOCK);
643      maximum_space += (long) bptr->rows_in_array *
644		       (long) bptr->blocksperrow * SIZEOF(JBLOCK);
645    }
646  }
647
648  if (space_per_minheight <= 0)
649    return;			/* no unrealized arrays, no work */
650
651  /* Determine amount of memory to actually use; this is system-dependent. */
652  avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
653				 mem->total_space_allocated);
654
655  /* If the maximum space needed is available, make all the buffers full
656   * height; otherwise parcel it out with the same number of minheights
657   * in each buffer.
658   */
659  if (avail_mem >= maximum_space)
660    max_minheights = 1000000000L;
661  else {
662    max_minheights = avail_mem / space_per_minheight;
663    /* If there doesn't seem to be enough space, try to get the minimum
664     * anyway.  This allows a "stub" implementation of jpeg_mem_available().
665     */
666    if (max_minheights <= 0)
667      max_minheights = 1;
668  }
669
670  /* Allocate the in-memory buffers and initialize backing store as needed. */
671
672  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
673    if (sptr->mem_buffer == NULL) { /* if not realized yet */
674      minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
675      if (minheights <= max_minheights) {
676	/* This buffer fits in memory */
677	sptr->rows_in_mem = sptr->rows_in_array;
678      } else {
679	/* It doesn't fit in memory, create backing store. */
680	sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
681	jpeg_open_backing_store(cinfo, & sptr->b_s_info,
682				(long) sptr->rows_in_array *
683				(long) sptr->samplesperrow *
684				(long) SIZEOF(JSAMPLE));
685	sptr->b_s_open = TRUE;
686      }
687      sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
688				      sptr->samplesperrow, sptr->rows_in_mem);
689      sptr->rowsperchunk = mem->last_rowsperchunk;
690      sptr->cur_start_row = 0;
691      sptr->first_undef_row = 0;
692      sptr->dirty = FALSE;
693    }
694  }
695
696  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
697    if (bptr->mem_buffer == NULL) { /* if not realized yet */
698      minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
699      if (minheights <= max_minheights) {
700	/* This buffer fits in memory */
701	bptr->rows_in_mem = bptr->rows_in_array;
702      } else {
703	/* It doesn't fit in memory, create backing store. */
704	bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
705	jpeg_open_backing_store(cinfo, & bptr->b_s_info,
706				(long) bptr->rows_in_array *
707				(long) bptr->blocksperrow *
708				(long) SIZEOF(JBLOCK));
709	bptr->b_s_open = TRUE;
710      }
711      bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
712				      bptr->blocksperrow, bptr->rows_in_mem);
713      bptr->rowsperchunk = mem->last_rowsperchunk;
714      bptr->cur_start_row = 0;
715      bptr->first_undef_row = 0;
716      bptr->dirty = FALSE;
717    }
718  }
719}
720
721
722LOCAL(void)
723do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
724/* Do backing store read or write of a virtual sample array */
725{
726  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
727
728  bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
729  file_offset = ptr->cur_start_row * bytesperrow;
730  /* Loop to read or write each allocation chunk in mem_buffer */
731  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
732    /* One chunk, but check for short chunk at end of buffer */
733    rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
734    /* Transfer no more than is currently defined */
735    thisrow = (long) ptr->cur_start_row + i;
736    rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
737    /* Transfer no more than fits in file */
738    rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
739    if (rows <= 0)		/* this chunk might be past end of file! */
740      break;
741    byte_count = rows * bytesperrow;
742    if (writing)
743      (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
744					    (void FAR *) ptr->mem_buffer[i],
745					    file_offset, byte_count);
746    else
747      (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
748					   (void FAR *) ptr->mem_buffer[i],
749					   file_offset, byte_count);
750    file_offset += byte_count;
751  }
752}
753
754
755LOCAL(void)
756do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
757/* Do backing store read or write of a virtual coefficient-block array */
758{
759  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
760
761  bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
762  file_offset = ptr->cur_start_row * bytesperrow;
763  /* Loop to read or write each allocation chunk in mem_buffer */
764  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
765    /* One chunk, but check for short chunk at end of buffer */
766    rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
767    /* Transfer no more than is currently defined */
768    thisrow = (long) ptr->cur_start_row + i;
769    rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
770    /* Transfer no more than fits in file */
771    rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
772    if (rows <= 0)		/* this chunk might be past end of file! */
773      break;
774    byte_count = rows * bytesperrow;
775    if (writing)
776      (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
777					    (void FAR *) ptr->mem_buffer[i],
778					    file_offset, byte_count);
779    else
780      (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
781					   (void FAR *) ptr->mem_buffer[i],
782					   file_offset, byte_count);
783    file_offset += byte_count;
784  }
785}
786
787
788METHODDEF(JSAMPARRAY)
789access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
790		    JDIMENSION start_row, JDIMENSION num_rows,
791		    boolean writable)
792/* Access the part of a virtual sample array starting at start_row */
793/* and extending for num_rows rows.  writable is true if  */
794/* caller intends to modify the accessed area. */
795{
796  JDIMENSION end_row = start_row + num_rows;
797  JDIMENSION undef_row;
798
799  /* debugging check */
800  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
801      ptr->mem_buffer == NULL)
802    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
803
804  /* Make the desired part of the virtual array accessible */
805  if (start_row < ptr->cur_start_row ||
806      end_row > ptr->cur_start_row+ptr->rows_in_mem) {
807    if (! ptr->b_s_open)
808      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
809    /* Flush old buffer contents if necessary */
810    if (ptr->dirty) {
811      do_sarray_io(cinfo, ptr, TRUE);
812      ptr->dirty = FALSE;
813    }
814    /* Decide what part of virtual array to access.
815     * Algorithm: if target address > current window, assume forward scan,
816     * load starting at target address.  If target address < current window,
817     * assume backward scan, load so that target area is top of window.
818     * Note that when switching from forward write to forward read, will have
819     * start_row = 0, so the limiting case applies and we load from 0 anyway.
820     */
821    if (start_row > ptr->cur_start_row) {
822      ptr->cur_start_row = start_row;
823    } else {
824      /* use long arithmetic here to avoid overflow & unsigned problems */
825      long ltemp;
826
827      ltemp = (long) end_row - (long) ptr->rows_in_mem;
828      if (ltemp < 0)
829	ltemp = 0;		/* don't fall off front end of file */
830      ptr->cur_start_row = (JDIMENSION) ltemp;
831    }
832    /* Read in the selected part of the array.
833     * During the initial write pass, we will do no actual read
834     * because the selected part is all undefined.
835     */
836    do_sarray_io(cinfo, ptr, FALSE);
837  }
838  /* Ensure the accessed part of the array is defined; prezero if needed.
839   * To improve locality of access, we only prezero the part of the array
840   * that the caller is about to access, not the entire in-memory array.
841   */
842  if (ptr->first_undef_row < end_row) {
843    if (ptr->first_undef_row < start_row) {
844      if (writable)		/* writer skipped over a section of array */
845	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
846      undef_row = start_row;	/* but reader is allowed to read ahead */
847    } else {
848      undef_row = ptr->first_undef_row;
849    }
850    if (writable)
851      ptr->first_undef_row = end_row;
852    if (ptr->pre_zero) {
853      size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
854      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
855      end_row -= ptr->cur_start_row;
856      while (undef_row < end_row) {
857	jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
858	undef_row++;
859      }
860    } else {
861      if (! writable)		/* reader looking at undefined data */
862	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
863    }
864  }
865  /* Flag the buffer dirty if caller will write in it */
866  if (writable)
867    ptr->dirty = TRUE;
868  /* Return address of proper part of the buffer */
869  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
870}
871
872
873METHODDEF(JBLOCKARRAY)
874access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
875		    JDIMENSION start_row, JDIMENSION num_rows,
876		    boolean writable)
877/* Access the part of a virtual block array starting at start_row */
878/* and extending for num_rows rows.  writable is true if  */
879/* caller intends to modify the accessed area. */
880{
881  JDIMENSION end_row = start_row + num_rows;
882  JDIMENSION undef_row;
883
884  /* debugging check */
885  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
886      ptr->mem_buffer == NULL)
887    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
888
889  /* Make the desired part of the virtual array accessible */
890  if (start_row < ptr->cur_start_row ||
891      end_row > ptr->cur_start_row+ptr->rows_in_mem) {
892    if (! ptr->b_s_open)
893      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
894    /* Flush old buffer contents if necessary */
895    if (ptr->dirty) {
896      do_barray_io(cinfo, ptr, TRUE);
897      ptr->dirty = FALSE;
898    }
899    /* Decide what part of virtual array to access.
900     * Algorithm: if target address > current window, assume forward scan,
901     * load starting at target address.  If target address < current window,
902     * assume backward scan, load so that target area is top of window.
903     * Note that when switching from forward write to forward read, will have
904     * start_row = 0, so the limiting case applies and we load from 0 anyway.
905     */
906    if (start_row > ptr->cur_start_row) {
907      ptr->cur_start_row = start_row;
908    } else {
909      /* use long arithmetic here to avoid overflow & unsigned problems */
910      long ltemp;
911
912      ltemp = (long) end_row - (long) ptr->rows_in_mem;
913      if (ltemp < 0)
914	ltemp = 0;		/* don't fall off front end of file */
915      ptr->cur_start_row = (JDIMENSION) ltemp;
916    }
917    /* Read in the selected part of the array.
918     * During the initial write pass, we will do no actual read
919     * because the selected part is all undefined.
920     */
921    do_barray_io(cinfo, ptr, FALSE);
922  }
923  /* Ensure the accessed part of the array is defined; prezero if needed.
924   * To improve locality of access, we only prezero the part of the array
925   * that the caller is about to access, not the entire in-memory array.
926   */
927  if (ptr->first_undef_row < end_row) {
928    if (ptr->first_undef_row < start_row) {
929      if (writable)		/* writer skipped over a section of array */
930	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
931      undef_row = start_row;	/* but reader is allowed to read ahead */
932    } else {
933      undef_row = ptr->first_undef_row;
934    }
935    if (writable)
936      ptr->first_undef_row = end_row;
937    if (ptr->pre_zero) {
938      size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
939      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
940      end_row -= ptr->cur_start_row;
941      while (undef_row < end_row) {
942	jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
943	undef_row++;
944      }
945    } else {
946      if (! writable)		/* reader looking at undefined data */
947	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
948    }
949  }
950  /* Flag the buffer dirty if caller will write in it */
951  if (writable)
952    ptr->dirty = TRUE;
953  /* Return address of proper part of the buffer */
954  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
955}
956
957
958/*
959 * Release all objects belonging to a specified pool.
960 */
961
962METHODDEF(void)
963free_pool (j_common_ptr cinfo, int pool_id)
964{
965  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
966  small_pool_ptr shdr_ptr;
967  large_pool_ptr lhdr_ptr;
968  size_t space_freed;
969
970  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
971    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
972
973#ifdef MEM_STATS
974  if (cinfo->err->trace_level > 1)
975    print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
976#endif
977
978  /* If freeing IMAGE pool, close any virtual arrays first */
979  if (pool_id == JPOOL_IMAGE) {
980    jvirt_sarray_ptr sptr;
981    jvirt_barray_ptr bptr;
982
983    for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
984      if (sptr->b_s_open) {	/* there may be no backing store */
985	sptr->b_s_open = FALSE;	/* prevent recursive close if error */
986	(*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
987      }
988    }
989    mem->virt_sarray_list = NULL;
990    for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
991      if (bptr->b_s_open) {	/* there may be no backing store */
992	bptr->b_s_open = FALSE;	/* prevent recursive close if error */
993	(*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
994      }
995    }
996    mem->virt_barray_list = NULL;
997  }
998
999  /* Release large objects */
1000  lhdr_ptr = mem->large_list[pool_id];
1001  mem->large_list[pool_id] = NULL;
1002
1003  while (lhdr_ptr != NULL) {
1004    large_pool_ptr next_lhdr_ptr = lhdr_ptr->next;
1005    space_freed = lhdr_ptr->bytes_used +
1006		  lhdr_ptr->bytes_left +
1007		  SIZEOF(large_pool_hdr);
1008    jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
1009    mem->total_space_allocated -= space_freed;
1010    lhdr_ptr = next_lhdr_ptr;
1011  }
1012
1013  /* Release small objects */
1014  shdr_ptr = mem->small_list[pool_id];
1015  mem->small_list[pool_id] = NULL;
1016
1017  while (shdr_ptr != NULL) {
1018    small_pool_ptr next_shdr_ptr = shdr_ptr->next;
1019    space_freed = shdr_ptr->bytes_used +
1020		  shdr_ptr->bytes_left +
1021		  SIZEOF(small_pool_hdr);
1022    jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
1023    mem->total_space_allocated -= space_freed;
1024    shdr_ptr = next_shdr_ptr;
1025  }
1026}
1027
1028
1029/*
1030 * Close up shop entirely.
1031 * Note that this cannot be called unless cinfo->mem is non-NULL.
1032 */
1033
1034METHODDEF(void)
1035self_destruct (j_common_ptr cinfo)
1036{
1037  int pool;
1038
1039  /* Close all backing store, release all memory.
1040   * Releasing pools in reverse order might help avoid fragmentation
1041   * with some (brain-damaged) malloc libraries.
1042   */
1043  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1044    free_pool(cinfo, pool);
1045  }
1046
1047  /* Release the memory manager control block too. */
1048  jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
1049  cinfo->mem = NULL;		/* ensures I will be called only once */
1050
1051  jpeg_mem_term(cinfo);		/* system-dependent cleanup */
1052}
1053
1054
1055/*
1056 * Memory manager initialization.
1057 * When this is called, only the error manager pointer is valid in cinfo!
1058 */
1059
1060GLOBAL(void)
1061jinit_memory_mgr (j_common_ptr cinfo)
1062{
1063  my_mem_ptr mem;
1064  long max_to_use;
1065  int pool;
1066  size_t test_mac;
1067
1068  cinfo->mem = NULL;		/* for safety if init fails */
1069
1070  /* Check for configuration errors.
1071   * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1072   * doesn't reflect any real hardware alignment requirement.
1073   * The test is a little tricky: for X>0, X and X-1 have no one-bits
1074   * in common if and only if X is a power of 2, ie has only one one-bit.
1075   * Some compilers may give an "unreachable code" warning here; ignore it.
1076   */
1077  if ((ALIGN_SIZE & (ALIGN_SIZE-1)) != 0)
1078    ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1079  /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1080   * a multiple of ALIGN_SIZE.
1081   * Again, an "unreachable code" warning may be ignored here.
1082   * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1083   */
1084  test_mac = (size_t) MAX_ALLOC_CHUNK;
1085  if ((long) test_mac != MAX_ALLOC_CHUNK ||
1086      (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0)
1087    ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1088
1089  max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1090
1091  /* Attempt to allocate memory manager's control block */
1092  mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
1093
1094  if (mem == NULL) {
1095    jpeg_mem_term(cinfo);	/* system-dependent cleanup */
1096    ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1097  }
1098
1099  /* OK, fill in the method pointers */
1100  mem->pub.alloc_small = alloc_small;
1101  mem->pub.alloc_large = alloc_large;
1102  mem->pub.alloc_sarray = alloc_sarray;
1103  mem->pub.alloc_barray = alloc_barray;
1104  mem->pub.request_virt_sarray = request_virt_sarray;
1105  mem->pub.request_virt_barray = request_virt_barray;
1106  mem->pub.realize_virt_arrays = realize_virt_arrays;
1107  mem->pub.access_virt_sarray = access_virt_sarray;
1108  mem->pub.access_virt_barray = access_virt_barray;
1109  mem->pub.free_pool = free_pool;
1110  mem->pub.self_destruct = self_destruct;
1111
1112  /* Make MAX_ALLOC_CHUNK accessible to other modules */
1113  mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1114
1115  /* Initialize working state */
1116  mem->pub.max_memory_to_use = max_to_use;
1117
1118  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1119    mem->small_list[pool] = NULL;
1120    mem->large_list[pool] = NULL;
1121  }
1122  mem->virt_sarray_list = NULL;
1123  mem->virt_barray_list = NULL;
1124
1125  mem->total_space_allocated = SIZEOF(my_memory_mgr);
1126
1127  /* Declare ourselves open for business */
1128  cinfo->mem = & mem->pub;
1129
1130  /* Check for an environment variable JPEGMEM; if found, override the
1131   * default max_memory setting from jpeg_mem_init.  Note that the
1132   * surrounding application may again override this value.
1133   * If your system doesn't support getenv(), define NO_GETENV to disable
1134   * this feature.
1135   */
1136#ifndef NO_GETENV
1137  { char * memenv;
1138
1139    if ((memenv = getenv("JPEGMEM")) != NULL) {
1140      char ch = 'x';
1141
1142      if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1143	if (ch == 'm' || ch == 'M')
1144	  max_to_use *= 1000L;
1145	mem->pub.max_memory_to_use = max_to_use * 1000L;
1146      }
1147    }
1148  }
1149#endif
1150
1151}
1152