1/*
2 *  Copyright (c) 2012 The WebM project authors. All Rights Reserved.
3 *
4 *  Use of this source code is governed by a BSD-style license
5 *  that can be found in the LICENSE file in the root of the source
6 *  tree. An additional intellectual property rights grant can be found
7 *  in the file PATENTS.  All contributing project authors may
8 *  be found in the AUTHORS file in the root of the source tree.
9 */
10
11#include <limits.h>
12
13#include "denoising.h"
14
15#include "vp8/common/reconinter.h"
16#include "vpx/vpx_integer.h"
17#include "vpx_mem/vpx_mem.h"
18#include "vp8_rtcd.h"
19
20static const unsigned int NOISE_MOTION_THRESHOLD = 25 * 25;
21/* SSE_DIFF_THRESHOLD is selected as ~95% confidence assuming
22 * var(noise) ~= 100.
23 */
24static const unsigned int SSE_DIFF_THRESHOLD = 16 * 16 * 20;
25static const unsigned int SSE_THRESHOLD = 16 * 16 * 40;
26static const unsigned int SSE_THRESHOLD_HIGH = 16 * 16 * 60;
27
28/*
29 * The filter function was modified to reduce the computational complexity.
30 * Step 1:
31 * Instead of applying tap coefficients for each pixel, we calculated the
32 * pixel adjustments vs. pixel diff value ahead of time.
33 *     adjustment = filtered_value - current_raw
34 *                = (filter_coefficient * diff + 128) >> 8
35 * where
36 *     filter_coefficient = (255 << 8) / (256 + ((absdiff * 330) >> 3));
37 *     filter_coefficient += filter_coefficient /
38 *                           (3 + motion_magnitude_adjustment);
39 *     filter_coefficient is clamped to 0 ~ 255.
40 *
41 * Step 2:
42 * The adjustment vs. diff curve becomes flat very quick when diff increases.
43 * This allowed us to use only several levels to approximate the curve without
44 * changing the filtering algorithm too much.
45 * The adjustments were further corrected by checking the motion magnitude.
46 * The levels used are:
47 * diff       adjustment w/o motion correction   adjustment w/ motion correction
48 * [-255, -16]           -6                                   -7
49 * [-15, -8]             -4                                   -5
50 * [-7, -4]              -3                                   -4
51 * [-3, 3]               diff                                 diff
52 * [4, 7]                 3                                    4
53 * [8, 15]                4                                    5
54 * [16, 255]              6                                    7
55 */
56
57int vp8_denoiser_filter_c(unsigned char *mc_running_avg_y, int mc_avg_y_stride,
58                          unsigned char *running_avg_y, int avg_y_stride,
59                          unsigned char *sig, int sig_stride,
60                          unsigned int motion_magnitude,
61                          int increase_denoising)
62{
63    unsigned char *running_avg_y_start = running_avg_y;
64    unsigned char *sig_start = sig;
65    int sum_diff_thresh;
66    int r, c;
67    int sum_diff = 0;
68    int adj_val[3] = {3, 4, 6};
69    int shift_inc1 = 0;
70    int shift_inc2 = 1;
71    int col_sum[16] = {0, 0, 0, 0,
72                       0, 0, 0, 0,
73                       0, 0, 0, 0,
74                       0, 0, 0, 0};
75    /* If motion_magnitude is small, making the denoiser more aggressive by
76     * increasing the adjustment for each level. Add another increment for
77     * blocks that are labeled for increase denoising. */
78    if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD)
79    {
80      if (increase_denoising) {
81        shift_inc1 = 1;
82        shift_inc2 = 2;
83      }
84      adj_val[0] += shift_inc2;
85      adj_val[1] += shift_inc2;
86      adj_val[2] += shift_inc2;
87    }
88
89    for (r = 0; r < 16; ++r)
90    {
91        for (c = 0; c < 16; ++c)
92        {
93            int diff = 0;
94            int adjustment = 0;
95            int absdiff = 0;
96
97            diff = mc_running_avg_y[c] - sig[c];
98            absdiff = abs(diff);
99
100            // When |diff| <= |3 + shift_inc1|, use pixel value from
101            // last denoised raw.
102            if (absdiff <= 3 + shift_inc1)
103            {
104                running_avg_y[c] = mc_running_avg_y[c];
105                col_sum[c] += diff;
106            }
107            else
108            {
109                if (absdiff >= 4 + shift_inc1 && absdiff <= 7)
110                    adjustment = adj_val[0];
111                else if (absdiff >= 8 && absdiff <= 15)
112                    adjustment = adj_val[1];
113                else
114                    adjustment = adj_val[2];
115
116                if (diff > 0)
117                {
118                    if ((sig[c] + adjustment) > 255)
119                        running_avg_y[c] = 255;
120                    else
121                        running_avg_y[c] = sig[c] + adjustment;
122
123                    col_sum[c] += adjustment;
124                }
125                else
126                {
127                    if ((sig[c] - adjustment) < 0)
128                        running_avg_y[c] = 0;
129                    else
130                        running_avg_y[c] = sig[c] - adjustment;
131
132                    col_sum[c] -= adjustment;
133                }
134            }
135        }
136
137        /* Update pointers for next iteration. */
138        sig += sig_stride;
139        mc_running_avg_y += mc_avg_y_stride;
140        running_avg_y += avg_y_stride;
141    }
142
143    for (c = 0; c < 16; ++c) {
144      // Below we clip the value in the same way which SSE code use.
145      // When adopting aggressive denoiser, the adj_val for each pixel
146      // could be at most 8 (this is current max adjustment of the map).
147      // In SSE code, we calculate the sum of adj_val for
148      // the columns, so the sum could be upto 128(16 rows). However,
149      // the range of the value is -128 ~ 127 in SSE code, that's why
150      // we do this change in C code.
151      // We don't do this for UV denoiser, since there are only 8 rows,
152      // and max adjustments <= 8, so the sum of the columns will not
153      // exceed 64.
154      if (col_sum[c] >= 128) {
155        col_sum[c] = 127;
156      }
157      sum_diff += col_sum[c];
158    }
159
160    sum_diff_thresh= SUM_DIFF_THRESHOLD;
161    if (increase_denoising) sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH;
162    if (abs(sum_diff) > sum_diff_thresh) {
163      // Before returning to copy the block (i.e., apply no denoising), check
164      // if we can still apply some (weaker) temporal filtering to this block,
165      // that would otherwise not be denoised at all. Simplest is to apply
166      // an additional adjustment to running_avg_y to bring it closer to sig.
167      // The adjustment is capped by a maximum delta, and chosen such that
168      // in most cases the resulting sum_diff will be within the
169      // accceptable range given by sum_diff_thresh.
170
171      // The delta is set by the excess of absolute pixel diff over threshold.
172      int delta = ((abs(sum_diff) - sum_diff_thresh) >> 8) + 1;
173      // Only apply the adjustment for max delta up to 3.
174      if (delta < 4) {
175        sig -= sig_stride * 16;
176        mc_running_avg_y -= mc_avg_y_stride * 16;
177        running_avg_y -= avg_y_stride * 16;
178        for (r = 0; r < 16; ++r) {
179          for (c = 0; c < 16; ++c) {
180            int diff = mc_running_avg_y[c] - sig[c];
181            int adjustment = abs(diff);
182            if (adjustment > delta)
183              adjustment = delta;
184            if (diff > 0) {
185              // Bring denoised signal down.
186              if (running_avg_y[c] - adjustment < 0)
187                running_avg_y[c] = 0;
188              else
189                running_avg_y[c] = running_avg_y[c] - adjustment;
190              col_sum[c] -= adjustment;
191            } else if (diff < 0) {
192              // Bring denoised signal up.
193              if (running_avg_y[c] + adjustment > 255)
194                running_avg_y[c] = 255;
195              else
196                running_avg_y[c] = running_avg_y[c] + adjustment;
197              col_sum[c] += adjustment;
198            }
199          }
200          // TODO(marpan): Check here if abs(sum_diff) has gone below the
201          // threshold sum_diff_thresh, and if so, we can exit the row loop.
202          sig += sig_stride;
203          mc_running_avg_y += mc_avg_y_stride;
204          running_avg_y += avg_y_stride;
205        }
206
207        sum_diff = 0;
208        for (c = 0; c < 16; ++c) {
209          if (col_sum[c] >= 128) {
210            col_sum[c] = 127;
211          }
212          sum_diff += col_sum[c];
213        }
214
215        if (abs(sum_diff) > sum_diff_thresh)
216          return COPY_BLOCK;
217      } else {
218        return COPY_BLOCK;
219      }
220    }
221
222    vp8_copy_mem16x16(running_avg_y_start, avg_y_stride, sig_start, sig_stride);
223    return FILTER_BLOCK;
224}
225
226int vp8_denoiser_filter_uv_c(unsigned char *mc_running_avg_uv,
227                             int mc_avg_uv_stride,
228                             unsigned char *running_avg_uv,
229                             int avg_uv_stride,
230                             unsigned char *sig,
231                             int sig_stride,
232                             unsigned int motion_magnitude,
233                             int increase_denoising) {
234    unsigned char *running_avg_uv_start = running_avg_uv;
235    unsigned char *sig_start = sig;
236    int sum_diff_thresh;
237    int r, c;
238    int sum_diff = 0;
239    int sum_block = 0;
240    int adj_val[3] = {3, 4, 6};
241    int shift_inc1 = 0;
242    int shift_inc2 = 1;
243    /* If motion_magnitude is small, making the denoiser more aggressive by
244     * increasing the adjustment for each level. Add another increment for
245     * blocks that are labeled for increase denoising. */
246    if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD_UV) {
247      if (increase_denoising) {
248        shift_inc1 = 1;
249        shift_inc2 = 2;
250      }
251      adj_val[0] += shift_inc2;
252      adj_val[1] += shift_inc2;
253      adj_val[2] += shift_inc2;
254    }
255
256    // Avoid denoising color signal if its close to average level.
257    for (r = 0; r < 8; ++r) {
258      for (c = 0; c < 8; ++c) {
259        sum_block += sig[c];
260      }
261      sig += sig_stride;
262    }
263    if (abs(sum_block - (128 * 8 * 8)) < SUM_DIFF_FROM_AVG_THRESH_UV) {
264      return COPY_BLOCK;
265    }
266
267    sig -= sig_stride * 8;
268    for (r = 0; r < 8; ++r) {
269      for (c = 0; c < 8; ++c) {
270        int diff = 0;
271        int adjustment = 0;
272        int absdiff = 0;
273
274        diff = mc_running_avg_uv[c] - sig[c];
275        absdiff = abs(diff);
276
277        // When |diff| <= |3 + shift_inc1|, use pixel value from
278        // last denoised raw.
279        if (absdiff <= 3 + shift_inc1) {
280          running_avg_uv[c] = mc_running_avg_uv[c];
281          sum_diff += diff;
282        } else {
283          if (absdiff >= 4 && absdiff <= 7)
284            adjustment = adj_val[0];
285          else if (absdiff >= 8 && absdiff <= 15)
286            adjustment = adj_val[1];
287          else
288            adjustment = adj_val[2];
289          if (diff > 0) {
290            if ((sig[c] + adjustment) > 255)
291              running_avg_uv[c] = 255;
292            else
293              running_avg_uv[c] = sig[c] + adjustment;
294            sum_diff += adjustment;
295          } else {
296            if ((sig[c] - adjustment) < 0)
297              running_avg_uv[c] = 0;
298            else
299              running_avg_uv[c] = sig[c] - adjustment;
300            sum_diff -= adjustment;
301          }
302        }
303      }
304      /* Update pointers for next iteration. */
305      sig += sig_stride;
306      mc_running_avg_uv += mc_avg_uv_stride;
307      running_avg_uv += avg_uv_stride;
308    }
309
310    sum_diff_thresh= SUM_DIFF_THRESHOLD_UV;
311    if (increase_denoising) sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH_UV;
312    if (abs(sum_diff) > sum_diff_thresh) {
313      // Before returning to copy the block (i.e., apply no denoising), check
314      // if we can still apply some (weaker) temporal filtering to this block,
315      // that would otherwise not be denoised at all. Simplest is to apply
316      // an additional adjustment to running_avg_y to bring it closer to sig.
317      // The adjustment is capped by a maximum delta, and chosen such that
318      // in most cases the resulting sum_diff will be within the
319      // accceptable range given by sum_diff_thresh.
320
321      // The delta is set by the excess of absolute pixel diff over threshold.
322      int delta = ((abs(sum_diff) - sum_diff_thresh) >> 8) + 1;
323      // Only apply the adjustment for max delta up to 3.
324      if (delta < 4) {
325        sig -= sig_stride * 8;
326        mc_running_avg_uv -= mc_avg_uv_stride * 8;
327        running_avg_uv -= avg_uv_stride * 8;
328        for (r = 0; r < 8; ++r) {
329          for (c = 0; c < 8; ++c) {
330            int diff = mc_running_avg_uv[c] - sig[c];
331            int adjustment = abs(diff);
332            if (adjustment > delta)
333              adjustment = delta;
334            if (diff > 0) {
335              // Bring denoised signal down.
336              if (running_avg_uv[c] - adjustment < 0)
337                running_avg_uv[c] = 0;
338              else
339                running_avg_uv[c] = running_avg_uv[c] - adjustment;
340              sum_diff -= adjustment;
341            } else if (diff < 0) {
342              // Bring denoised signal up.
343              if (running_avg_uv[c] + adjustment > 255)
344                running_avg_uv[c] = 255;
345              else
346                running_avg_uv[c] = running_avg_uv[c] + adjustment;
347              sum_diff += adjustment;
348            }
349          }
350          // TODO(marpan): Check here if abs(sum_diff) has gone below the
351          // threshold sum_diff_thresh, and if so, we can exit the row loop.
352          sig += sig_stride;
353          mc_running_avg_uv += mc_avg_uv_stride;
354          running_avg_uv += avg_uv_stride;
355        }
356        if (abs(sum_diff) > sum_diff_thresh)
357          return COPY_BLOCK;
358      } else {
359        return COPY_BLOCK;
360      }
361    }
362
363    vp8_copy_mem8x8(running_avg_uv_start, avg_uv_stride, sig_start,
364                    sig_stride);
365    return FILTER_BLOCK;
366}
367
368void vp8_denoiser_set_parameters(VP8_DENOISER *denoiser, int mode) {
369  assert(mode > 0);  // Denoiser is allocated only if mode > 0.
370  if (mode == 1) {
371    denoiser->denoiser_mode = kDenoiserOnYOnly;
372  } else if (mode == 2) {
373    denoiser->denoiser_mode = kDenoiserOnYUV;
374  } else if (mode == 3) {
375    denoiser->denoiser_mode = kDenoiserOnYUVAggressive;
376  } else {
377    denoiser->denoiser_mode = kDenoiserOnAdaptive;
378  }
379  if (denoiser->denoiser_mode != kDenoiserOnYUVAggressive) {
380    denoiser->denoise_pars.scale_sse_thresh = 1;
381    denoiser->denoise_pars.scale_motion_thresh = 8;
382    denoiser->denoise_pars.scale_increase_filter = 0;
383    denoiser->denoise_pars.denoise_mv_bias = 95;
384    denoiser->denoise_pars.pickmode_mv_bias = 100;
385    denoiser->denoise_pars.qp_thresh = 0;
386    denoiser->denoise_pars.consec_zerolast = UINT_MAX;
387    denoiser->denoise_pars.spatial_blur = 0;
388  } else {
389    denoiser->denoise_pars.scale_sse_thresh = 2;
390    denoiser->denoise_pars.scale_motion_thresh = 16;
391    denoiser->denoise_pars.scale_increase_filter = 1;
392    denoiser->denoise_pars.denoise_mv_bias = 60;
393    denoiser->denoise_pars.pickmode_mv_bias = 60;
394    denoiser->denoise_pars.qp_thresh = 100;
395    denoiser->denoise_pars.consec_zerolast = 10;
396    denoiser->denoise_pars.spatial_blur = 20;
397  }
398}
399
400int vp8_denoiser_allocate(VP8_DENOISER *denoiser, int width, int height,
401                          int num_mb_rows, int num_mb_cols, int mode)
402{
403    int i;
404    assert(denoiser);
405    denoiser->num_mb_cols = num_mb_cols;
406
407    for (i = 0; i < MAX_REF_FRAMES; i++)
408    {
409        denoiser->yv12_running_avg[i].flags = 0;
410
411        if (vp8_yv12_alloc_frame_buffer(&(denoiser->yv12_running_avg[i]), width,
412                                        height, VP8BORDERINPIXELS)
413            < 0)
414        {
415            vp8_denoiser_free(denoiser);
416            return 1;
417        }
418        vpx_memset(denoiser->yv12_running_avg[i].buffer_alloc, 0,
419                   denoiser->yv12_running_avg[i].frame_size);
420
421    }
422    denoiser->yv12_mc_running_avg.flags = 0;
423
424    if (vp8_yv12_alloc_frame_buffer(&(denoiser->yv12_mc_running_avg), width,
425                                   height, VP8BORDERINPIXELS) < 0)
426    {
427        vp8_denoiser_free(denoiser);
428        return 1;
429    }
430
431    vpx_memset(denoiser->yv12_mc_running_avg.buffer_alloc, 0,
432               denoiser->yv12_mc_running_avg.frame_size);
433
434    if (vp8_yv12_alloc_frame_buffer(&denoiser->yv12_last_source, width,
435                                    height, VP8BORDERINPIXELS) < 0) {
436      vp8_denoiser_free(denoiser);
437      return 1;
438    }
439    vpx_memset(denoiser->yv12_last_source.buffer_alloc, 0,
440               denoiser->yv12_last_source.frame_size);
441
442    denoiser->denoise_state = vpx_calloc((num_mb_rows * num_mb_cols), 1);
443    vpx_memset(denoiser->denoise_state, 0, (num_mb_rows * num_mb_cols));
444    vp8_denoiser_set_parameters(denoiser, mode);
445    denoiser->nmse_source_diff = 0;
446    denoiser->nmse_source_diff_count = 0;
447    denoiser->qp_avg = 0;
448    // QP threshold below which we can go up to aggressive mode.
449    denoiser->qp_threshold_up = 80;
450    // QP threshold above which we can go back down to normal mode.
451    // For now keep this second threshold high, so not used currently.
452    denoiser->qp_threshold_down = 128;
453    // Bitrate thresholds and noise metric (nmse) thresholds for switching to
454    // aggressive mode.
455    // TODO(marpan): Adjust thresholds, including effect on resolution.
456    denoiser->bitrate_threshold = 200000;  // (bits/sec).
457    denoiser->threshold_aggressive_mode = 35;
458    if (width * height > 640 * 480) {
459      denoiser->bitrate_threshold = 500000;
460      denoiser->threshold_aggressive_mode = 100;
461    } else if (width * height > 960 * 540) {
462      denoiser->bitrate_threshold = 800000;
463      denoiser->threshold_aggressive_mode = 150;
464    } else if (width * height > 1280 * 720) {
465      denoiser->bitrate_threshold = 2000000;
466      denoiser->threshold_aggressive_mode = 1400;
467    }
468    return 0;
469}
470
471
472void vp8_denoiser_free(VP8_DENOISER *denoiser)
473{
474    int i;
475    assert(denoiser);
476
477    for (i = 0; i < MAX_REF_FRAMES ; i++)
478    {
479        vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_running_avg[i]);
480    }
481    vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_mc_running_avg);
482    vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_last_source);
483    vpx_free(denoiser->denoise_state);
484}
485
486
487void vp8_denoiser_denoise_mb(VP8_DENOISER *denoiser,
488                             MACROBLOCK *x,
489                             unsigned int best_sse,
490                             unsigned int zero_mv_sse,
491                             int recon_yoffset,
492                             int recon_uvoffset,
493                             loop_filter_info_n *lfi_n,
494                             int mb_row,
495                             int mb_col,
496                             int block_index)
497
498{
499    int mv_row;
500    int mv_col;
501    unsigned int motion_threshold;
502    unsigned int motion_magnitude2;
503    unsigned int sse_thresh;
504    int sse_diff_thresh = 0;
505    // Spatial loop filter: only applied selectively based on
506    // temporal filter state of block relative to top/left neighbors.
507    int apply_spatial_loop_filter = 1;
508    MV_REFERENCE_FRAME frame = x->best_reference_frame;
509    MV_REFERENCE_FRAME zero_frame = x->best_zeromv_reference_frame;
510
511    enum vp8_denoiser_decision decision = FILTER_BLOCK;
512    enum vp8_denoiser_decision decision_u = COPY_BLOCK;
513    enum vp8_denoiser_decision decision_v = COPY_BLOCK;
514
515    if (zero_frame)
516    {
517        YV12_BUFFER_CONFIG *src = &denoiser->yv12_running_avg[frame];
518        YV12_BUFFER_CONFIG *dst = &denoiser->yv12_mc_running_avg;
519        YV12_BUFFER_CONFIG saved_pre,saved_dst;
520        MB_MODE_INFO saved_mbmi;
521        MACROBLOCKD *filter_xd = &x->e_mbd;
522        MB_MODE_INFO *mbmi = &filter_xd->mode_info_context->mbmi;
523        int sse_diff = 0;
524        // Bias on zero motion vector sse.
525        const int zero_bias = denoiser->denoise_pars.denoise_mv_bias;
526        zero_mv_sse = (unsigned int)((int64_t)zero_mv_sse * zero_bias / 100);
527        sse_diff = zero_mv_sse - best_sse;
528
529        saved_mbmi = *mbmi;
530
531        /* Use the best MV for the compensation. */
532        mbmi->ref_frame = x->best_reference_frame;
533        mbmi->mode = x->best_sse_inter_mode;
534        mbmi->mv = x->best_sse_mv;
535        mbmi->need_to_clamp_mvs = x->need_to_clamp_best_mvs;
536        mv_col = x->best_sse_mv.as_mv.col;
537        mv_row = x->best_sse_mv.as_mv.row;
538        // Bias to zero_mv if small amount of motion.
539        // Note sse_diff_thresh is intialized to zero, so this ensures
540        // we will always choose zero_mv for denoising if
541        // zero_mv_see <= best_sse (i.e., sse_diff <= 0).
542        if ((unsigned int)(mv_row * mv_row + mv_col * mv_col)
543            <= NOISE_MOTION_THRESHOLD)
544            sse_diff_thresh = (int)SSE_DIFF_THRESHOLD;
545
546        if (frame == INTRA_FRAME ||
547            sse_diff <= sse_diff_thresh)
548        {
549            /*
550             * Handle intra blocks as referring to last frame with zero motion
551             * and let the absolute pixel difference affect the filter factor.
552             * Also consider small amount of motion as being random walk due
553             * to noise, if it doesn't mean that we get a much bigger error.
554             * Note that any changes to the mode info only affects the
555             * denoising.
556             */
557            mbmi->ref_frame =
558                    x->best_zeromv_reference_frame;
559
560            src = &denoiser->yv12_running_avg[zero_frame];
561
562            mbmi->mode = ZEROMV;
563            mbmi->mv.as_int = 0;
564            x->best_sse_inter_mode = ZEROMV;
565            x->best_sse_mv.as_int = 0;
566            best_sse = zero_mv_sse;
567        }
568
569        saved_pre = filter_xd->pre;
570        saved_dst = filter_xd->dst;
571
572        /* Compensate the running average. */
573        filter_xd->pre.y_buffer = src->y_buffer + recon_yoffset;
574        filter_xd->pre.u_buffer = src->u_buffer + recon_uvoffset;
575        filter_xd->pre.v_buffer = src->v_buffer + recon_uvoffset;
576        /* Write the compensated running average to the destination buffer. */
577        filter_xd->dst.y_buffer = dst->y_buffer + recon_yoffset;
578        filter_xd->dst.u_buffer = dst->u_buffer + recon_uvoffset;
579        filter_xd->dst.v_buffer = dst->v_buffer + recon_uvoffset;
580
581        if (!x->skip)
582        {
583            vp8_build_inter_predictors_mb(filter_xd);
584        }
585        else
586        {
587            vp8_build_inter16x16_predictors_mb(filter_xd,
588                                               filter_xd->dst.y_buffer,
589                                               filter_xd->dst.u_buffer,
590                                               filter_xd->dst.v_buffer,
591                                               filter_xd->dst.y_stride,
592                                               filter_xd->dst.uv_stride);
593        }
594        filter_xd->pre = saved_pre;
595        filter_xd->dst = saved_dst;
596        *mbmi = saved_mbmi;
597
598    }
599
600    mv_row = x->best_sse_mv.as_mv.row;
601    mv_col = x->best_sse_mv.as_mv.col;
602    motion_magnitude2 = mv_row * mv_row + mv_col * mv_col;
603    motion_threshold = denoiser->denoise_pars.scale_motion_thresh *
604        NOISE_MOTION_THRESHOLD;
605
606    if (motion_magnitude2 <
607        denoiser->denoise_pars.scale_increase_filter * NOISE_MOTION_THRESHOLD)
608      x->increase_denoising = 1;
609
610    sse_thresh = denoiser->denoise_pars.scale_sse_thresh * SSE_THRESHOLD;
611    if (x->increase_denoising)
612      sse_thresh = denoiser->denoise_pars.scale_sse_thresh * SSE_THRESHOLD_HIGH;
613
614    if (best_sse > sse_thresh || motion_magnitude2 > motion_threshold)
615      decision = COPY_BLOCK;
616
617    if (decision == FILTER_BLOCK)
618    {
619        unsigned char *mc_running_avg_y =
620            denoiser->yv12_mc_running_avg.y_buffer + recon_yoffset;
621        int mc_avg_y_stride = denoiser->yv12_mc_running_avg.y_stride;
622        unsigned char *running_avg_y =
623            denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset;
624        int avg_y_stride = denoiser->yv12_running_avg[INTRA_FRAME].y_stride;
625
626        /* Filter. */
627        decision = vp8_denoiser_filter(mc_running_avg_y, mc_avg_y_stride,
628                                       running_avg_y, avg_y_stride,
629                                       x->thismb, 16, motion_magnitude2,
630                                       x->increase_denoising);
631        denoiser->denoise_state[block_index] = motion_magnitude2 > 0 ?
632            kFilterNonZeroMV : kFilterZeroMV;
633        // Only denoise UV for zero motion, and if y channel was denoised.
634        if (denoiser->denoiser_mode != kDenoiserOnYOnly &&
635            motion_magnitude2 == 0 &&
636            decision == FILTER_BLOCK) {
637          unsigned char *mc_running_avg_u =
638              denoiser->yv12_mc_running_avg.u_buffer + recon_uvoffset;
639          unsigned char *running_avg_u =
640              denoiser->yv12_running_avg[INTRA_FRAME].u_buffer + recon_uvoffset;
641          unsigned char *mc_running_avg_v =
642              denoiser->yv12_mc_running_avg.v_buffer + recon_uvoffset;
643          unsigned char *running_avg_v =
644              denoiser->yv12_running_avg[INTRA_FRAME].v_buffer + recon_uvoffset;
645          int mc_avg_uv_stride = denoiser->yv12_mc_running_avg.uv_stride;
646          int avg_uv_stride = denoiser->yv12_running_avg[INTRA_FRAME].uv_stride;
647          int signal_stride = x->block[16].src_stride;
648          decision_u =
649              vp8_denoiser_filter_uv(mc_running_avg_u, mc_avg_uv_stride,
650                                      running_avg_u, avg_uv_stride,
651                                      x->block[16].src + *x->block[16].base_src,
652                                      signal_stride, motion_magnitude2, 0);
653          decision_v =
654              vp8_denoiser_filter_uv(mc_running_avg_v, mc_avg_uv_stride,
655                                      running_avg_v, avg_uv_stride,
656                                      x->block[20].src + *x->block[20].base_src,
657                                      signal_stride, motion_magnitude2, 0);
658        }
659    }
660    if (decision == COPY_BLOCK)
661    {
662        /* No filtering of this block; it differs too much from the predictor,
663         * or the motion vector magnitude is considered too big.
664         */
665        vp8_copy_mem16x16(
666                x->thismb, 16,
667                denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
668                denoiser->yv12_running_avg[INTRA_FRAME].y_stride);
669        denoiser->denoise_state[block_index] = kNoFilter;
670    }
671    if (denoiser->denoiser_mode != kDenoiserOnYOnly) {
672      if (decision_u == COPY_BLOCK) {
673        vp8_copy_mem8x8(
674            x->block[16].src + *x->block[16].base_src, x->block[16].src_stride,
675            denoiser->yv12_running_avg[INTRA_FRAME].u_buffer + recon_uvoffset,
676            denoiser->yv12_running_avg[INTRA_FRAME].uv_stride);
677      }
678      if (decision_v == COPY_BLOCK) {
679        vp8_copy_mem8x8(
680            x->block[20].src + *x->block[20].base_src, x->block[16].src_stride,
681            denoiser->yv12_running_avg[INTRA_FRAME].v_buffer + recon_uvoffset,
682            denoiser->yv12_running_avg[INTRA_FRAME].uv_stride);
683      }
684    }
685    // Option to selectively deblock the denoised signal, for y channel only.
686    if (apply_spatial_loop_filter) {
687      loop_filter_info lfi;
688      int apply_filter_col = 0;
689      int apply_filter_row = 0;
690      int apply_filter = 0;
691      int y_stride = denoiser->yv12_running_avg[INTRA_FRAME].y_stride;
692      int uv_stride =denoiser->yv12_running_avg[INTRA_FRAME].uv_stride;
693
694      // Fix filter level to some nominal value for now.
695      int filter_level = 32;
696
697      int hev_index = lfi_n->hev_thr_lut[INTER_FRAME][filter_level];
698      lfi.mblim = lfi_n->mblim[filter_level];
699      lfi.blim = lfi_n->blim[filter_level];
700      lfi.lim = lfi_n->lim[filter_level];
701      lfi.hev_thr = lfi_n->hev_thr[hev_index];
702
703      // Apply filter if there is a difference in the denoiser filter state
704      // between the current and left/top block, or if non-zero motion vector
705      // is used for the motion-compensated filtering.
706      if (mb_col > 0) {
707        apply_filter_col = !((denoiser->denoise_state[block_index] ==
708            denoiser->denoise_state[block_index - 1]) &&
709            denoiser->denoise_state[block_index] != kFilterNonZeroMV);
710        if (apply_filter_col) {
711          // Filter left vertical edge.
712          apply_filter = 1;
713          vp8_loop_filter_mbv(
714              denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
715              NULL, NULL, y_stride, uv_stride, &lfi);
716        }
717      }
718      if (mb_row > 0) {
719        apply_filter_row = !((denoiser->denoise_state[block_index] ==
720            denoiser->denoise_state[block_index - denoiser->num_mb_cols]) &&
721            denoiser->denoise_state[block_index] != kFilterNonZeroMV);
722        if (apply_filter_row) {
723          // Filter top horizontal edge.
724          apply_filter = 1;
725          vp8_loop_filter_mbh(
726              denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
727              NULL, NULL, y_stride, uv_stride, &lfi);
728        }
729      }
730      if (apply_filter) {
731        // Update the signal block |x|. Pixel changes are only to top and/or
732        // left boundary pixels: can we avoid full block copy here.
733        vp8_copy_mem16x16(
734            denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
735            y_stride, x->thismb, 16);
736      }
737    }
738}
739