1// Copyright (c) 2000, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8//     * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10//     * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14//     * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30// ---
31// Author: Urs Holzle <opensource@google.com>
32
33#include "config.h"
34#include <errno.h>
35#ifdef HAVE_FCNTL_H
36#include <fcntl.h>
37#endif
38#ifdef HAVE_INTTYPES_H
39#include <inttypes.h>
40#endif
41// We only need malloc.h for struct mallinfo.
42#ifdef HAVE_STRUCT_MALLINFO
43// Malloc can be in several places on older versions of OS X.
44# if defined(HAVE_MALLOC_H)
45# include <malloc.h>
46# elif defined(HAVE_MALLOC_MALLOC_H)
47# include <malloc/malloc.h>
48# elif defined(HAVE_SYS_MALLOC_H)
49# include <sys/malloc.h>
50# endif
51#endif
52#ifdef HAVE_PTHREAD
53#include <pthread.h>
54#endif
55#include <stdarg.h>
56#include <stdio.h>
57#include <string.h>
58#ifdef HAVE_MMAP
59#include <sys/mman.h>
60#endif
61#include <sys/stat.h>
62#include <sys/types.h>
63#ifdef HAVE_UNISTD_H
64#include <unistd.h>
65#endif
66
67#include <gperftools/malloc_extension.h>
68#include <gperftools/malloc_hook.h>
69#include <gperftools/stacktrace.h>
70#include "addressmap-inl.h"
71#include "base/abort.h"
72#include "base/commandlineflags.h"
73#include "base/googleinit.h"
74#include "base/logging.h"
75#include "base/spinlock.h"
76#include "malloc_hook-inl.h"
77#include "symbolize.h"
78
79#define TCMALLOC_USING_DEBUGALLOCATION
80#include "tcmalloc.cc"
81
82// __THROW is defined in glibc systems.  It means, counter-intuitively,
83// "This function will never throw an exception."  It's an optional
84// optimization tool, but we may need to use it to match glibc prototypes.
85#ifndef __THROW    // I guess we're not on a glibc system
86# define __THROW   // __THROW is just an optimization, so ok to make it ""
87#endif
88
89// On systems (like freebsd) that don't define MAP_ANONYMOUS, use the old
90// form of the name instead.
91#ifndef MAP_ANONYMOUS
92# define MAP_ANONYMOUS MAP_ANON
93#endif
94
95// ========================================================================= //
96
97DEFINE_bool(malloctrace,
98            EnvToBool("TCMALLOC_TRACE", false),
99            "Enables memory (de)allocation tracing to /tmp/google.alloc.");
100#ifdef HAVE_MMAP
101DEFINE_bool(malloc_page_fence,
102            EnvToBool("TCMALLOC_PAGE_FENCE", false),
103            "Enables putting of memory allocations at page boundaries "
104            "with a guard page following the allocation (to catch buffer "
105            "overruns right when they happen).");
106DEFINE_bool(malloc_page_fence_never_reclaim,
107            EnvToBool("TCMALLOC_PAGE_FRANCE_NEVER_RECLAIM", false),
108            "Enables making the virtual address space inaccessible "
109            "upon a deallocation instead of returning it and reusing later.");
110#else
111DEFINE_bool(malloc_page_fence, false, "Not usable (requires mmap)");
112DEFINE_bool(malloc_page_fence_never_reclaim, false, "Not usable (required mmap)");
113#endif
114DEFINE_bool(malloc_reclaim_memory,
115            EnvToBool("TCMALLOC_RECLAIM_MEMORY", true),
116            "If set to false, we never return memory to malloc "
117            "when an object is deallocated. This ensures that all "
118            "heap object addresses are unique.");
119DEFINE_int32(max_free_queue_size,
120             EnvToInt("TCMALLOC_MAX_FREE_QUEUE_SIZE", 10*1024*1024),
121             "If greater than 0, keep freed blocks in a queue instead of "
122             "releasing them to the allocator immediately.  Release them when "
123             "the total size of all blocks in the queue would otherwise exceed "
124             "this limit.");
125
126DEFINE_bool(symbolize_stacktrace,
127            EnvToBool("TCMALLOC_SYMBOLIZE_STACKTRACE", true),
128            "Symbolize the stack trace when provided (on some error exits)");
129
130// ========================================================================= //
131
132// A safe version of printf() that does not do any allocation and
133// uses very little stack space.
134static void TracePrintf(int fd, const char *fmt, ...)
135#ifdef __GNUC__
136  __attribute__ ((__format__ (__printf__, 2, 3)));
137#else
138  ;
139#endif
140
141// The do_* functions are defined in tcmalloc/tcmalloc.cc,
142// which is included before this file
143// when TCMALLOC_FOR_DEBUGALLOCATION is defined
144// TODO(csilvers): get rid of these now that we are tied to tcmalloc.
145#define BASE_MALLOC_NEW    do_malloc
146#define BASE_MALLOC        do_malloc
147#define BASE_FREE          do_free
148#define BASE_MALLOC_STATS  do_malloc_stats
149#define BASE_MALLOPT       do_mallopt
150#define BASE_MALLINFO      do_mallinfo
151
152// ========================================================================= //
153
154class MallocBlock;
155
156// A circular buffer to hold freed blocks of memory.  MallocBlock::Deallocate
157// (below) pushes blocks into this queue instead of returning them to the
158// underlying allocator immediately.  See MallocBlock::Deallocate for more
159// information.
160//
161// We can't use an STL class for this because we need to be careful not to
162// perform any heap de-allocations in any of the code in this class, since the
163// code in MallocBlock::Deallocate is not re-entrant.
164template <typename QueueEntry>
165class FreeQueue {
166 public:
167  FreeQueue() : q_front_(0), q_back_(0) {}
168
169  bool Full() {
170    return (q_front_ + 1) % kFreeQueueSize == q_back_;
171  }
172
173  void Push(const QueueEntry& block) {
174    q_[q_front_] = block;
175    q_front_ = (q_front_ + 1) % kFreeQueueSize;
176  }
177
178  QueueEntry Pop() {
179    RAW_CHECK(q_back_ != q_front_, "Queue is empty");
180    const QueueEntry& ret = q_[q_back_];
181    q_back_ = (q_back_ + 1) % kFreeQueueSize;
182    return ret;
183  }
184
185  size_t size() const {
186    return (q_front_ - q_back_ + kFreeQueueSize) % kFreeQueueSize;
187  }
188
189 private:
190  // Maximum number of blocks kept in the free queue before being freed.
191  static const int kFreeQueueSize = 1024;
192
193  QueueEntry q_[kFreeQueueSize];
194  int q_front_;
195  int q_back_;
196};
197
198struct MallocBlockQueueEntry {
199  MallocBlockQueueEntry() : block(NULL), size(0),
200                            num_deleter_pcs(0), deleter_threadid(0) {}
201  MallocBlockQueueEntry(MallocBlock* b, size_t s) : block(b), size(s) {
202    if (FLAGS_max_free_queue_size != 0 && b != NULL) {
203      // Adjust the number of frames to skip (4) if you change the
204      // location of this call.
205      num_deleter_pcs =
206          GetStackTrace(deleter_pcs,
207                        sizeof(deleter_pcs) / sizeof(deleter_pcs[0]),
208                        4);
209      deleter_threadid = pthread_self();
210    } else {
211      num_deleter_pcs = 0;
212      // Zero is an illegal pthread id by my reading of the pthread
213      // implementation:
214      deleter_threadid = 0;
215    }
216  }
217
218  MallocBlock* block;
219  size_t size;
220
221  // When deleted and put in the free queue, we (flag-controlled)
222  // record the stack so that if corruption is later found, we can
223  // print the deleter's stack.  (These three vars add 144 bytes of
224  // overhead under the LP64 data model.)
225  void* deleter_pcs[16];
226  int num_deleter_pcs;
227  pthread_t deleter_threadid;
228};
229
230class MallocBlock {
231 public:  // allocation type constants
232
233  // Different allocation types we distinguish.
234  // Note: The lower 4 bits are not random: we index kAllocName array
235  // by these values masked with kAllocTypeMask;
236  // the rest are "random" magic bits to help catch memory corruption.
237  static const int kMallocType = 0xEFCDAB90;
238  static const int kNewType = 0xFEBADC81;
239  static const int kArrayNewType = 0xBCEADF72;
240
241 private:  // constants
242
243  // A mask used on alloc types above to get to 0, 1, 2
244  static const int kAllocTypeMask = 0x3;
245  // An additional bit to set in AllocType constants
246  // to mark now deallocated regions.
247  static const int kDeallocatedTypeBit = 0x4;
248
249  // For better memory debugging, we initialize all storage to known
250  // values, and overwrite the storage when it's deallocated:
251  // Byte that fills uninitialized storage.
252  static const int kMagicUninitializedByte = 0xAB;
253  // Byte that fills deallocated storage.
254  // NOTE: tcmalloc.cc depends on the value of kMagicDeletedByte
255  //       to work around a bug in the pthread library.
256  static const int kMagicDeletedByte = 0xCD;
257  // A size_t (type of alloc_type_ below) in a deallocated storage
258  // filled with kMagicDeletedByte.
259  static const size_t kMagicDeletedSizeT =
260      0xCDCDCDCD | (((size_t)0xCDCDCDCD << 16) << 16);
261    // Initializer works for 32 and 64 bit size_ts;
262    // "<< 16 << 16" is to fool gcc from issuing a warning
263    // when size_ts are 32 bits.
264
265  // NOTE: on Linux, you can enable malloc debugging support in libc by
266  // setting the environment variable MALLOC_CHECK_ to 1 before you
267  // start the program (see man malloc).
268
269  // We use either BASE_MALLOC or mmap to make the actual allocation. In
270  // order to remember which one of the two was used for any block, we store an
271  // appropriate magic word next to the block.
272  static const int kMagicMalloc = 0xDEADBEEF;
273  static const int kMagicMMap = 0xABCDEFAB;
274
275  // This array will be filled with 0xCD, for use with memcmp.
276  static unsigned char kMagicDeletedBuffer[1024];
277  static pthread_once_t deleted_buffer_initialized_;
278  static bool deleted_buffer_initialized_no_pthreads_;
279
280 private:  // data layout
281
282                    // The four fields size1_,offset_,magic1_,alloc_type_
283                    // should together occupy a multiple of 16 bytes. (At the
284                    // moment, sizeof(size_t) == 4 or 8 depending on piii vs
285                    // k8, and 4 of those sum to 16 or 32 bytes).
286                    // This, combined with BASE_MALLOC's alignment guarantees,
287                    // ensures that SSE types can be stored into the returned
288                    // block, at &size2_.
289  size_t size1_;
290  size_t offset_;   // normally 0 unless memaligned memory
291                    // see comments in memalign() and FromRawPointer().
292  size_t magic1_;
293  size_t alloc_type_;
294  // here comes the actual data (variable length)
295  // ...
296  // then come the size2_ and magic2_, or a full page of mprotect-ed memory
297  // if the malloc_page_fence feature is enabled.
298  size_t size2_;
299  int magic2_;
300
301 private:  // static data and helpers
302
303  // Allocation map: stores the allocation type for each allocated object,
304  // or the type or'ed with kDeallocatedTypeBit
305  // for each formerly allocated object.
306  typedef AddressMap<int> AllocMap;
307  static AllocMap* alloc_map_;
308  // This protects alloc_map_ and consistent state of metadata
309  // for each still-allocated object in it.
310  // We use spin locks instead of pthread_mutex_t locks
311  // to prevent crashes via calls to pthread_mutex_(un)lock
312  // for the (de)allocations coming from pthreads initialization itself.
313  static SpinLock alloc_map_lock_;
314
315  // A queue of freed blocks.  Instead of releasing blocks to the allocator
316  // immediately, we put them in a queue, freeing them only when necessary
317  // to keep the total size of all the freed blocks below the limit set by
318  // FLAGS_max_free_queue_size.
319  static FreeQueue<MallocBlockQueueEntry>* free_queue_;
320
321  static size_t free_queue_size_;  // total size of blocks in free_queue_
322  // protects free_queue_ and free_queue_size_
323  static SpinLock free_queue_lock_;
324
325  // Names of allocation types (kMallocType, kNewType, kArrayNewType)
326  static const char* const kAllocName[];
327  // Names of corresponding deallocation types
328  static const char* const kDeallocName[];
329
330  static const char* AllocName(int type) {
331    return kAllocName[type & kAllocTypeMask];
332  }
333
334  static const char* DeallocName(int type) {
335    return kDeallocName[type & kAllocTypeMask];
336  }
337
338 private:  // helper accessors
339
340  bool IsMMapped() const { return kMagicMMap == magic1_; }
341
342  bool IsValidMagicValue(int value) const {
343    return kMagicMMap == value  ||  kMagicMalloc == value;
344  }
345
346  static size_t real_malloced_size(size_t size) {
347    return size + sizeof(MallocBlock);
348  }
349  static size_t real_mmapped_size(size_t size) {
350    return size + MallocBlock::data_offset();
351  }
352
353  size_t real_size() {
354    return IsMMapped() ? real_mmapped_size(size1_) : real_malloced_size(size1_);
355  }
356
357  // NOTE: if the block is mmapped (that is, we're using the
358  // malloc_page_fence option) then there's no size2 or magic2
359  // (instead, the guard page begins where size2 would be).
360
361  size_t* size2_addr() { return (size_t*)((char*)&size2_ + size1_); }
362  const size_t* size2_addr() const {
363    return (const size_t*)((char*)&size2_ + size1_);
364  }
365
366  int* magic2_addr() { return (int*)(size2_addr() + 1); }
367  const int* magic2_addr() const { return (const int*)(size2_addr() + 1); }
368
369 private:  // other helpers
370
371  void Initialize(size_t size, int type) {
372    RAW_CHECK(IsValidMagicValue(magic1_), "");
373    // record us as allocated in the map
374    alloc_map_lock_.Lock();
375    if (!alloc_map_) {
376      void* p = BASE_MALLOC(sizeof(AllocMap));
377      alloc_map_ = new(p) AllocMap(BASE_MALLOC, BASE_FREE);
378    }
379    alloc_map_->Insert(data_addr(), type);
380    // initialize us
381    size1_ = size;
382    offset_ = 0;
383    alloc_type_ = type;
384    if (!IsMMapped()) {
385      *magic2_addr() = magic1_;
386      *size2_addr() = size;
387    }
388    alloc_map_lock_.Unlock();
389    memset(data_addr(), kMagicUninitializedByte, size);
390    if (!IsMMapped()) {
391      RAW_CHECK(size1_ == *size2_addr(), "should hold");
392      RAW_CHECK(magic1_ == *magic2_addr(), "should hold");
393    }
394  }
395
396  size_t CheckAndClear(int type) {
397    alloc_map_lock_.Lock();
398    CheckLocked(type);
399    if (!IsMMapped()) {
400      RAW_CHECK(size1_ == *size2_addr(), "should hold");
401    }
402    // record us as deallocated in the map
403    alloc_map_->Insert(data_addr(), type | kDeallocatedTypeBit);
404    alloc_map_lock_.Unlock();
405    // clear us
406    const size_t size = real_size();
407    memset(this, kMagicDeletedByte, size);
408    return size;
409  }
410
411  void CheckLocked(int type) const {
412    int map_type = 0;
413    const int* found_type =
414      alloc_map_ != NULL ? alloc_map_->Find(data_addr()) : NULL;
415    if (found_type == NULL) {
416      RAW_LOG(FATAL, "memory allocation bug: object at %p "
417                     "has never been allocated", data_addr());
418    } else {
419      map_type = *found_type;
420    }
421    if ((map_type & kDeallocatedTypeBit) != 0) {
422      RAW_LOG(FATAL, "memory allocation bug: object at %p "
423                     "has been already deallocated (it was allocated with %s)",
424                     data_addr(), AllocName(map_type & ~kDeallocatedTypeBit));
425    }
426    if (alloc_type_ == kMagicDeletedSizeT) {
427      RAW_LOG(FATAL, "memory stomping bug: a word before object at %p "
428                     "has been corrupted; or else the object has been already "
429                     "deallocated and our memory map has been corrupted",
430                     data_addr());
431    }
432    if (!IsValidMagicValue(magic1_)) {
433      RAW_LOG(FATAL, "memory stomping bug: a word before object at %p "
434                     "has been corrupted; "
435                     "or else our memory map has been corrupted and this is a "
436                     "deallocation for not (currently) heap-allocated object",
437                     data_addr());
438    }
439    if (!IsMMapped()) {
440      if (size1_ != *size2_addr()) {
441        RAW_LOG(FATAL, "memory stomping bug: a word after object at %p "
442                       "has been corrupted", data_addr());
443      }
444      if (!IsValidMagicValue(*magic2_addr())) {
445        RAW_LOG(FATAL, "memory stomping bug: a word after object at %p "
446                "has been corrupted", data_addr());
447      }
448    }
449    if (alloc_type_ != type) {
450      if ((alloc_type_ != MallocBlock::kMallocType) &&
451          (alloc_type_ != MallocBlock::kNewType)    &&
452          (alloc_type_ != MallocBlock::kArrayNewType)) {
453        RAW_LOG(FATAL, "memory stomping bug: a word before object at %p "
454                       "has been corrupted", data_addr());
455      }
456      RAW_LOG(FATAL, "memory allocation/deallocation mismatch at %p: "
457                     "allocated with %s being deallocated with %s",
458                     data_addr(), AllocName(alloc_type_), DeallocName(type));
459    }
460    if (alloc_type_ != map_type) {
461      RAW_LOG(FATAL, "memory stomping bug: our memory map has been corrupted : "
462                     "allocation at %p made with %s "
463                     "is recorded in the map to be made with %s",
464                     data_addr(), AllocName(alloc_type_),  AllocName(map_type));
465    }
466  }
467
468 public:  // public accessors
469
470  void* data_addr() { return (void*)&size2_; }
471  const void* data_addr() const { return (const void*)&size2_; }
472
473  static size_t data_offset() { return OFFSETOF_MEMBER(MallocBlock, size2_); }
474
475  size_t data_size() const { return size1_; }
476
477  void set_offset(int offset) { this->offset_ = offset; }
478
479 public:  // our main interface
480
481  static MallocBlock* Allocate(size_t size, int type) {
482    // Prevent an integer overflow / crash with large allocation sizes.
483    // TODO - Note that for a e.g. 64-bit size_t, max_size_t may not actually
484    // be the maximum value, depending on how the compiler treats ~0. The worst
485    // practical effect is that allocations are limited to 4Gb or so, even if
486    // the address space could take more.
487    static size_t max_size_t = ~0;
488    if (size > max_size_t - sizeof(MallocBlock)) {
489      RAW_LOG(ERROR, "Massive size passed to malloc: %"PRIuS"", size);
490      return NULL;
491    }
492    MallocBlock* b = NULL;
493    const bool use_malloc_page_fence = FLAGS_malloc_page_fence;
494#ifdef HAVE_MMAP
495    if (use_malloc_page_fence) {
496      // Put the block towards the end of the page and make the next page
497      // inaccessible. This will catch buffer overrun right when it happens.
498      size_t sz = real_mmapped_size(size);
499      int pagesize = getpagesize();
500      int num_pages = (sz + pagesize - 1) / pagesize + 1;
501      char* p = (char*) mmap(NULL, num_pages * pagesize, PROT_READ|PROT_WRITE,
502                             MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
503      if (p == MAP_FAILED) {
504        // If the allocation fails, abort rather than returning NULL to
505        // malloc. This is because in most cases, the program will run out
506        // of memory in this mode due to tremendous amount of wastage. There
507        // is no point in propagating the error elsewhere.
508        RAW_LOG(FATAL, "Out of memory: possibly due to page fence overhead: %s",
509                strerror(errno));
510      }
511      // Mark the page after the block inaccessible
512      if (mprotect(p + (num_pages - 1) * pagesize, pagesize, PROT_NONE)) {
513        RAW_LOG(FATAL, "Guard page setup failed: %s", strerror(errno));
514      }
515      b = (MallocBlock*) (p + (num_pages - 1) * pagesize - sz);
516    } else {
517      b = (MallocBlock*) (type == kMallocType ?
518                          BASE_MALLOC(real_malloced_size(size)) :
519                          BASE_MALLOC_NEW(real_malloced_size(size)));
520    }
521#else
522    b = (MallocBlock*) (type == kMallocType ?
523                        BASE_MALLOC(real_malloced_size(size)) :
524                        BASE_MALLOC_NEW(real_malloced_size(size)));
525#endif
526
527    // It would be nice to output a diagnostic on allocation failure
528    // here, but logging (other than FATAL) requires allocating
529    // memory, which could trigger a nasty recursion. Instead, preserve
530    // malloc semantics and return NULL on failure.
531    if (b != NULL) {
532      b->magic1_ = use_malloc_page_fence ? kMagicMMap : kMagicMalloc;
533      b->Initialize(size, type);
534    }
535    return b;
536  }
537
538  void Deallocate(int type) {
539    if (IsMMapped()) {  // have to do this before CheckAndClear
540#ifdef HAVE_MMAP
541      int size = CheckAndClear(type);
542      int pagesize = getpagesize();
543      int num_pages = (size + pagesize - 1) / pagesize + 1;
544      char* p = (char*) this;
545      if (FLAGS_malloc_page_fence_never_reclaim  ||
546          !FLAGS_malloc_reclaim_memory) {
547        mprotect(p - (num_pages - 1) * pagesize + size,
548                 num_pages * pagesize, PROT_NONE);
549      } else {
550        munmap(p - (num_pages - 1) * pagesize + size, num_pages * pagesize);
551      }
552#endif
553    } else {
554      const size_t size = CheckAndClear(type);
555      if (FLAGS_malloc_reclaim_memory) {
556        // Instead of freeing the block immediately, push it onto a queue of
557        // recently freed blocks.  Free only enough blocks to keep from
558        // exceeding the capacity of the queue or causing the total amount of
559        // un-released memory in the queue from exceeding
560        // FLAGS_max_free_queue_size.
561        ProcessFreeQueue(this, size, FLAGS_max_free_queue_size);
562      }
563    }
564  }
565
566  static size_t FreeQueueSize() {
567    SpinLockHolder l(&free_queue_lock_);
568    return free_queue_size_;
569  }
570
571  static void ProcessFreeQueue(MallocBlock* b, size_t size,
572                               int max_free_queue_size) {
573    // MallocBlockQueueEntry are about 144 in size, so we can only
574    // use a small array of them on the stack.
575    MallocBlockQueueEntry entries[4];
576    int num_entries = 0;
577    MallocBlockQueueEntry new_entry(b, size);
578    free_queue_lock_.Lock();
579    if (free_queue_ == NULL)
580      free_queue_ = new FreeQueue<MallocBlockQueueEntry>;
581    RAW_CHECK(!free_queue_->Full(), "Free queue mustn't be full!");
582
583    if (b != NULL) {
584      free_queue_size_ += size + sizeof(MallocBlockQueueEntry);
585      free_queue_->Push(new_entry);
586    }
587
588    // Free blocks until the total size of unfreed blocks no longer exceeds
589    // max_free_queue_size, and the free queue has at least one free
590    // space in it.
591    while (free_queue_size_ > max_free_queue_size || free_queue_->Full()) {
592      RAW_CHECK(num_entries < arraysize(entries), "entries array overflow");
593      entries[num_entries] = free_queue_->Pop();
594      free_queue_size_ -=
595          entries[num_entries].size + sizeof(MallocBlockQueueEntry);
596      num_entries++;
597      if (num_entries == arraysize(entries)) {
598        // The queue will not be full at this point, so it is ok to
599        // release the lock.  The queue may still contain more than
600        // max_free_queue_size, but this is not a strict invariant.
601        free_queue_lock_.Unlock();
602        for (int i = 0; i < num_entries; i++) {
603          CheckForDanglingWrites(entries[i]);
604          BASE_FREE(entries[i].block);
605        }
606        num_entries = 0;
607        free_queue_lock_.Lock();
608      }
609    }
610    RAW_CHECK(free_queue_size_ >= 0, "Free queue size went negative!");
611    free_queue_lock_.Unlock();
612    for (int i = 0; i < num_entries; i++) {
613      CheckForDanglingWrites(entries[i]);
614      BASE_FREE(entries[i].block);
615    }
616  }
617
618  static void InitDeletedBuffer() {
619    memset(kMagicDeletedBuffer, kMagicDeletedByte, sizeof(kMagicDeletedBuffer));
620    deleted_buffer_initialized_no_pthreads_ = true;
621  }
622
623  static void CheckForDanglingWrites(const MallocBlockQueueEntry& queue_entry) {
624    perftools_pthread_once(&deleted_buffer_initialized_, &InitDeletedBuffer);
625    if (!deleted_buffer_initialized_no_pthreads_) {
626      // This will be the case on systems that don't link in pthreads,
627      // including on FreeBSD where pthread_once has a non-zero address
628      // (but doesn't do anything) even when pthreads isn't linked in.
629      InitDeletedBuffer();
630    }
631
632    const unsigned char* p =
633        reinterpret_cast<unsigned char*>(queue_entry.block);
634
635    static const size_t size_of_buffer = sizeof(kMagicDeletedBuffer);
636    const size_t size = queue_entry.size;
637    const size_t buffers = size / size_of_buffer;
638    const size_t remainder = size % size_of_buffer;
639    size_t buffer_idx;
640    for (buffer_idx = 0; buffer_idx < buffers; ++buffer_idx) {
641      CheckForCorruptedBuffer(queue_entry, buffer_idx, p, size_of_buffer);
642      p += size_of_buffer;
643    }
644    CheckForCorruptedBuffer(queue_entry, buffer_idx, p, remainder);
645  }
646
647  static void CheckForCorruptedBuffer(const MallocBlockQueueEntry& queue_entry,
648                                      size_t buffer_idx,
649                                      const unsigned char* buffer,
650                                      size_t size_of_buffer) {
651    if (memcmp(buffer, kMagicDeletedBuffer, size_of_buffer) == 0) {
652      return;
653    }
654
655    RAW_LOG(ERROR,
656            "Found a corrupted memory buffer in MallocBlock (may be offset "
657            "from user ptr): buffer index: %zd, buffer ptr: %p, size of "
658            "buffer: %zd", buffer_idx, buffer, size_of_buffer);
659
660    // The magic deleted buffer should only be 1024 bytes, but in case
661    // this changes, let's put an upper limit on the number of debug
662    // lines we'll output:
663    if (size_of_buffer <= 1024) {
664      for (int i = 0; i < size_of_buffer; ++i) {
665        if (buffer[i] != kMagicDeletedByte) {
666          RAW_LOG(ERROR, "Buffer byte %d is 0x%02x (should be 0x%02x).",
667                  i, buffer[i], kMagicDeletedByte);
668        }
669      }
670    } else {
671      RAW_LOG(ERROR, "Buffer too large to print corruption.");
672    }
673
674    const MallocBlock* b = queue_entry.block;
675    const size_t size = queue_entry.size;
676    if (queue_entry.num_deleter_pcs > 0) {
677      TracePrintf(STDERR_FILENO, "Deleted by thread %p\n",
678                  reinterpret_cast<void*>(
679                      PRINTABLE_PTHREAD(queue_entry.deleter_threadid)));
680
681      // We don't want to allocate or deallocate memory here, so we use
682      // placement-new.  It's ok that we don't destroy this, since we're
683      // just going to error-exit below anyway.  Union is for alignment.
684      union { void* alignment; char buf[sizeof(SymbolTable)]; } tablebuf;
685      SymbolTable* symbolization_table = new (tablebuf.buf) SymbolTable;
686      for (int i = 0; i < queue_entry.num_deleter_pcs; i++) {
687        // Symbolizes the previous address of pc because pc may be in the
688        // next function.  This may happen when the function ends with
689        // a call to a function annotated noreturn (e.g. CHECK).
690        char *pc = reinterpret_cast<char*>(queue_entry.deleter_pcs[i]);
691        symbolization_table->Add(pc - 1);
692      }
693      if (FLAGS_symbolize_stacktrace)
694        symbolization_table->Symbolize();
695      for (int i = 0; i < queue_entry.num_deleter_pcs; i++) {
696        char *pc = reinterpret_cast<char*>(queue_entry.deleter_pcs[i]);
697        TracePrintf(STDERR_FILENO, "    @ %p %s\n",
698                    pc, symbolization_table->GetSymbol(pc - 1));
699      }
700    } else {
701      RAW_LOG(ERROR,
702              "Skipping the printing of the deleter's stack!  Its stack was "
703              "not found; either the corruption occurred too early in "
704              "execution to obtain a stack trace or --max_free_queue_size was "
705              "set to 0.");
706    }
707
708    RAW_LOG(FATAL,
709            "Memory was written to after being freed.  MallocBlock: %p, user "
710            "ptr: %p, size: %zd.  If you can't find the source of the error, "
711            "try using ASan (http://code.google.com/p/address-sanitizer/), "
712            "Valgrind, or Purify, or study the "
713            "output of the deleter's stack printed above.",
714            b, b->data_addr(), size);
715  }
716
717  static MallocBlock* FromRawPointer(void* p) {
718    const size_t data_offset = MallocBlock::data_offset();
719    // Find the header just before client's memory.
720    MallocBlock *mb = reinterpret_cast<MallocBlock *>(
721                reinterpret_cast<char *>(p) - data_offset);
722    // If mb->alloc_type_ is kMagicDeletedSizeT, we're not an ok pointer.
723    if (mb->alloc_type_ == kMagicDeletedSizeT) {
724      RAW_LOG(FATAL, "memory allocation bug: object at %p has been already"
725                     " deallocated; or else a word before the object has been"
726                     " corrupted (memory stomping bug)", p);
727    }
728    // If mb->offset_ is zero (common case), mb is the real header.  If
729    // mb->offset_ is non-zero, this block was allocated by memalign, and
730    // mb->offset_ is the distance backwards to the real header from mb,
731    // which is a fake header.  The following subtraction works for both zero
732    // and non-zero values.
733    return reinterpret_cast<MallocBlock *>(
734                reinterpret_cast<char *>(mb) - mb->offset_);
735  }
736  static const MallocBlock* FromRawPointer(const void* p) {
737    // const-safe version: we just cast about
738    return FromRawPointer(const_cast<void*>(p));
739  }
740
741  // Return whether p points to memory returned by memalign.
742  // Requires that p be non-zero and has been checked for sanity with
743  // FromRawPointer().
744  static bool IsMemaligned(const void* p) {
745    const MallocBlock* mb = reinterpret_cast<const MallocBlock*>(
746        reinterpret_cast<const char*>(p) - MallocBlock::data_offset());
747    // If the offset is non-zero, the block was allocated by memalign
748    // (see FromRawPointer above).
749    return mb->offset_ != 0;
750  }
751
752  void Check(int type) const {
753    alloc_map_lock_.Lock();
754    CheckLocked(type);
755    alloc_map_lock_.Unlock();
756  }
757
758  static bool CheckEverything() {
759    alloc_map_lock_.Lock();
760    if (alloc_map_ != NULL)  alloc_map_->Iterate(CheckCallback, 0);
761    alloc_map_lock_.Unlock();
762    return true;  // if we get here, we're okay
763  }
764
765  static bool MemoryStats(int* blocks, size_t* total,
766                          int histogram[kMallocHistogramSize]) {
767    memset(histogram, 0, kMallocHistogramSize * sizeof(int));
768    alloc_map_lock_.Lock();
769    stats_blocks_ = 0;
770    stats_total_ = 0;
771    stats_histogram_ = histogram;
772    if (alloc_map_ != NULL) alloc_map_->Iterate(StatsCallback, 0);
773    *blocks = stats_blocks_;
774    *total = stats_total_;
775    alloc_map_lock_.Unlock();
776    return true;
777  }
778
779 private:  // helpers for CheckEverything and MemoryStats
780
781  static void CheckCallback(const void* ptr, int* type, int dummy) {
782    if ((*type & kDeallocatedTypeBit) == 0) {
783      FromRawPointer(ptr)->CheckLocked(*type);
784    }
785  }
786
787  // Accumulation variables for StatsCallback protected by alloc_map_lock_
788  static int stats_blocks_;
789  static size_t stats_total_;
790  static int* stats_histogram_;
791
792  static void StatsCallback(const void* ptr, int* type, int dummy) {
793    if ((*type & kDeallocatedTypeBit) == 0) {
794      const MallocBlock* b = FromRawPointer(ptr);
795      b->CheckLocked(*type);
796      ++stats_blocks_;
797      size_t mysize = b->size1_;
798      int entry = 0;
799      stats_total_ += mysize;
800      while (mysize) {
801        ++entry;
802        mysize >>= 1;
803      }
804      RAW_CHECK(entry < kMallocHistogramSize,
805                "kMallocHistogramSize should be at least as large as log2 "
806                "of the maximum process memory size");
807      stats_histogram_[entry] += 1;
808    }
809  }
810};
811
812void DanglingWriteChecker() {
813  // Clear out the remaining free queue to check for dangling writes.
814  MallocBlock::ProcessFreeQueue(NULL, 0, 0);
815}
816
817// ========================================================================= //
818
819const int MallocBlock::kMagicMalloc;
820const int MallocBlock::kMagicMMap;
821
822MallocBlock::AllocMap* MallocBlock::alloc_map_ = NULL;
823SpinLock MallocBlock::alloc_map_lock_(SpinLock::LINKER_INITIALIZED);
824
825FreeQueue<MallocBlockQueueEntry>* MallocBlock::free_queue_ = NULL;
826size_t MallocBlock::free_queue_size_ = 0;
827SpinLock MallocBlock::free_queue_lock_(SpinLock::LINKER_INITIALIZED);
828
829unsigned char MallocBlock::kMagicDeletedBuffer[1024];
830pthread_once_t MallocBlock::deleted_buffer_initialized_ = PTHREAD_ONCE_INIT;
831bool MallocBlock::deleted_buffer_initialized_no_pthreads_ = false;
832
833const char* const MallocBlock::kAllocName[] = {
834  "malloc",
835  "new",
836  "new []",
837  NULL,
838};
839
840const char* const MallocBlock::kDeallocName[] = {
841  "free",
842  "delete",
843  "delete []",
844  NULL,
845};
846
847int MallocBlock::stats_blocks_;
848size_t MallocBlock::stats_total_;
849int* MallocBlock::stats_histogram_;
850
851// ========================================================================= //
852
853// The following cut-down version of printf() avoids
854// using stdio or ostreams.
855// This is to guarantee no recursive calls into
856// the allocator and to bound the stack space consumed.  (The pthread
857// manager thread in linuxthreads has a very small stack,
858// so fprintf can't be called.)
859static void TracePrintf(int fd, const char *fmt, ...) {
860  char buf[64];
861  int i = 0;
862  va_list ap;
863  va_start(ap, fmt);
864  const char *p = fmt;
865  char numbuf[25];
866  numbuf[sizeof(numbuf)-1] = 0;
867  while (*p != '\0') {              // until end of format string
868    char *s = &numbuf[sizeof(numbuf)-1];
869    if (p[0] == '%' && p[1] != 0) {  // handle % formats
870      int64 l = 0;
871      unsigned long base = 0;
872      if (*++p == 's') {                            // %s
873        s = va_arg(ap, char *);
874      } else if (*p == 'l' && p[1] == 'd') {        // %ld
875        l = va_arg(ap, long);
876        base = 10;
877        p++;
878      } else if (*p == 'l' && p[1] == 'u') {        // %lu
879        l = va_arg(ap, unsigned long);
880        base = 10;
881        p++;
882      } else if (*p == 'z' && p[1] == 'u') {        // %zu
883        l = va_arg(ap, size_t);
884        base = 10;
885        p++;
886      } else if (*p == 'u') {                       // %u
887        l = va_arg(ap, unsigned int);
888        base = 10;
889      } else if (*p == 'd') {                       // %d
890        l = va_arg(ap, int);
891        base = 10;
892      } else if (*p == 'p') {                       // %p
893        l = va_arg(ap, intptr_t);
894        base = 16;
895      } else {
896        write(STDERR_FILENO, "Unimplemented TracePrintf format\n", 33);
897        write(STDERR_FILENO, p, 2);
898        write(STDERR_FILENO, "\n", 1);
899        tcmalloc::Abort();
900      }
901      p++;
902      if (base != 0) {
903        bool minus = (l < 0 && base == 10);
904        uint64 ul = minus? -l : l;
905        do {
906          *--s = "0123456789abcdef"[ul % base];
907          ul /= base;
908        } while (ul != 0);
909        if (base == 16) {
910          *--s = 'x';
911          *--s = '0';
912        } else if (minus) {
913          *--s = '-';
914        }
915      }
916    } else {                        // handle normal characters
917      *--s = *p++;
918    }
919    while (*s != 0) {
920      if (i == sizeof(buf)) {
921        write(fd, buf, i);
922        i = 0;
923      }
924      buf[i++] = *s++;
925    }
926  }
927  if (i != 0) {
928    write(fd, buf, i);
929  }
930  va_end(ap);
931}
932
933// Return the file descriptor we're writing a log to
934static int TraceFd() {
935  static int trace_fd = -1;
936  if (trace_fd == -1) {            // Open the trace file on the first call
937    trace_fd = open("/tmp/google.alloc", O_CREAT|O_TRUNC|O_WRONLY, 0666);
938    if (trace_fd == -1) {
939      trace_fd = 2;
940      TracePrintf(trace_fd,
941                  "Can't open /tmp/google.alloc.  Logging to stderr.\n");
942    }
943    // Add a header to the log.
944    TracePrintf(trace_fd, "Trace started: %lu\n",
945                static_cast<unsigned long>(time(NULL)));
946    TracePrintf(trace_fd,
947                "func\tsize\tptr\tthread_id\tstack pcs for tools/symbolize\n");
948  }
949  return trace_fd;
950}
951
952// Print the hex stack dump on a single line.   PCs are separated by tabs.
953static void TraceStack(void) {
954  void *pcs[16];
955  int n = GetStackTrace(pcs, sizeof(pcs)/sizeof(pcs[0]), 0);
956  for (int i = 0; i != n; i++) {
957    TracePrintf(TraceFd(), "\t%p", pcs[i]);
958  }
959}
960
961// This protects MALLOC_TRACE, to make sure its info is atomically written.
962static SpinLock malloc_trace_lock(SpinLock::LINKER_INITIALIZED);
963
964#define MALLOC_TRACE(name, size, addr)                                  \
965  do {                                                                  \
966    if (FLAGS_malloctrace) {                                            \
967      SpinLockHolder l(&malloc_trace_lock);                             \
968      TracePrintf(TraceFd(), "%s\t%"PRIuS"\t%p\t%"GPRIuPTHREAD,         \
969                  name, size, addr, PRINTABLE_PTHREAD(pthread_self())); \
970      TraceStack();                                                     \
971      TracePrintf(TraceFd(), "\n");                                     \
972    }                                                                   \
973  } while (0)
974
975// ========================================================================= //
976
977// Write the characters buf[0, ..., size-1] to
978// the malloc trace buffer.
979// This function is intended for debugging,
980// and is not declared in any header file.
981// You must insert a declaration of it by hand when you need
982// to use it.
983void __malloctrace_write(const char *buf, size_t size) {
984  if (FLAGS_malloctrace) {
985    write(TraceFd(), buf, size);
986  }
987}
988
989// ========================================================================= //
990
991// General debug allocation/deallocation
992
993static inline void* DebugAllocate(size_t size, int type) {
994  MallocBlock* ptr = MallocBlock::Allocate(size, type);
995  if (ptr == NULL)  return NULL;
996  MALLOC_TRACE("malloc", size, ptr->data_addr());
997  return ptr->data_addr();
998}
999
1000static inline void DebugDeallocate(void* ptr, int type) {
1001  MALLOC_TRACE("free",
1002               (ptr != 0 ? MallocBlock::FromRawPointer(ptr)->data_size() : 0),
1003               ptr);
1004  if (ptr)  MallocBlock::FromRawPointer(ptr)->Deallocate(type);
1005}
1006
1007// ========================================================================= //
1008
1009// The following functions may be called via MallocExtension::instance()
1010// for memory verification and statistics.
1011class DebugMallocImplementation : public TCMallocImplementation {
1012 public:
1013  virtual bool GetNumericProperty(const char* name, size_t* value) {
1014    bool result = TCMallocImplementation::GetNumericProperty(name, value);
1015    if (result && (strcmp(name, "generic.current_allocated_bytes") == 0)) {
1016      // Subtract bytes kept in the free queue
1017      size_t qsize = MallocBlock::FreeQueueSize();
1018      if (*value >= qsize) {
1019        *value -= qsize;
1020      }
1021    }
1022    return result;
1023  }
1024
1025  virtual bool VerifyNewMemory(const void* p) {
1026    if (p)  MallocBlock::FromRawPointer(p)->Check(MallocBlock::kNewType);
1027    return true;
1028  }
1029
1030  virtual bool VerifyArrayNewMemory(const void* p) {
1031    if (p)  MallocBlock::FromRawPointer(p)->Check(MallocBlock::kArrayNewType);
1032    return true;
1033  }
1034
1035  virtual bool VerifyMallocMemory(const void* p) {
1036    if (p)  MallocBlock::FromRawPointer(p)->Check(MallocBlock::kMallocType);
1037    return true;
1038  }
1039
1040  virtual bool VerifyAllMemory() {
1041    return MallocBlock::CheckEverything();
1042  }
1043
1044  virtual bool MallocMemoryStats(int* blocks, size_t* total,
1045                                 int histogram[kMallocHistogramSize]) {
1046    return MallocBlock::MemoryStats(blocks, total, histogram);
1047  }
1048
1049  virtual size_t GetEstimatedAllocatedSize(size_t size) {
1050    return size;
1051  }
1052
1053  virtual size_t GetAllocatedSize(const void* p) {
1054    if (p) {
1055      RAW_CHECK(GetOwnership(p) != MallocExtension::kNotOwned,
1056                "ptr not allocated by tcmalloc");
1057      return MallocBlock::FromRawPointer(p)->data_size();
1058    }
1059    return 0;
1060  }
1061
1062  virtual MallocExtension::Ownership GetOwnership(const void* p) {
1063    if (p) {
1064      const MallocBlock* mb = MallocBlock::FromRawPointer(p);
1065      return TCMallocImplementation::GetOwnership(mb);
1066    }
1067    return MallocExtension::kNotOwned;   // nobody owns NULL
1068  }
1069
1070  virtual void GetFreeListSizes(vector<MallocExtension::FreeListInfo>* v) {
1071    static const char* kDebugFreeQueue = "debug.free_queue";
1072
1073    TCMallocImplementation::GetFreeListSizes(v);
1074
1075    MallocExtension::FreeListInfo i;
1076    i.type = kDebugFreeQueue;
1077    i.min_object_size = 0;
1078    i.max_object_size = numeric_limits<size_t>::max();
1079    i.total_bytes_free = MallocBlock::FreeQueueSize();
1080    v->push_back(i);
1081  }
1082
1083 };
1084
1085static DebugMallocImplementation debug_malloc_implementation;
1086
1087REGISTER_MODULE_INITIALIZER(debugallocation, {
1088  // Either we or valgrind will control memory management.  We
1089  // register our extension if we're the winner. Otherwise let
1090  // Valgrind use its own malloc (so don't register our extension).
1091  if (!RunningOnValgrind()) {
1092    MallocExtension::Register(&debug_malloc_implementation);
1093  }
1094});
1095
1096REGISTER_MODULE_DESTRUCTOR(debugallocation, {
1097  if (!RunningOnValgrind()) {
1098    // When the program exits, check all blocks still in the free
1099    // queue for corruption.
1100    DanglingWriteChecker();
1101  }
1102});
1103
1104// ========================================================================= //
1105
1106// This is mostly the same a cpp_alloc in tcmalloc.cc.
1107// TODO(csilvers): change Allocate() above to call cpp_alloc, so we
1108// don't have to reproduce the logic here.  To make tc_new_mode work
1109// properly, I think we'll need to separate out the logic of throwing
1110// from the logic of calling the new-handler.
1111inline void* debug_cpp_alloc(size_t size, int new_type, bool nothrow) {
1112  for (;;) {
1113    void* p = DebugAllocate(size, new_type);
1114#ifdef PREANSINEW
1115    return p;
1116#else
1117    if (p == NULL) {  // allocation failed
1118      // Get the current new handler.  NB: this function is not
1119      // thread-safe.  We make a feeble stab at making it so here, but
1120      // this lock only protects against tcmalloc interfering with
1121      // itself, not with other libraries calling set_new_handler.
1122      std::new_handler nh;
1123      {
1124        SpinLockHolder h(&set_new_handler_lock);
1125        nh = std::set_new_handler(0);
1126        (void) std::set_new_handler(nh);
1127      }
1128#if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
1129      if (nh) {
1130        // Since exceptions are disabled, we don't really know if new_handler
1131        // failed.  Assume it will abort if it fails.
1132        (*nh)();
1133        continue;
1134      }
1135      return 0;
1136#else
1137      // If no new_handler is established, the allocation failed.
1138      if (!nh) {
1139        if (nothrow) return 0;
1140        throw std::bad_alloc();
1141      }
1142      // Otherwise, try the new_handler.  If it returns, retry the
1143      // allocation.  If it throws std::bad_alloc, fail the allocation.
1144      // if it throws something else, don't interfere.
1145      try {
1146        (*nh)();
1147      } catch (const std::bad_alloc&) {
1148        if (!nothrow) throw;
1149        return p;
1150      }
1151#endif  // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
1152    } else {  // allocation success
1153      return p;
1154    }
1155#endif  // PREANSINEW
1156  }
1157}
1158
1159inline void* do_debug_malloc_or_debug_cpp_alloc(size_t size) {
1160  return tc_new_mode ? debug_cpp_alloc(size, MallocBlock::kMallocType, true)
1161                     : DebugAllocate(size, MallocBlock::kMallocType);
1162}
1163
1164// Exported routines
1165
1166extern "C" PERFTOOLS_DLL_DECL void* tc_malloc(size_t size) __THROW {
1167  void* ptr = do_debug_malloc_or_debug_cpp_alloc(size);
1168  MallocHook::InvokeNewHook(ptr, size);
1169  return ptr;
1170}
1171
1172extern "C" PERFTOOLS_DLL_DECL void tc_free(void* ptr) __THROW {
1173  MallocHook::InvokeDeleteHook(ptr);
1174  DebugDeallocate(ptr, MallocBlock::kMallocType);
1175}
1176
1177extern "C" PERFTOOLS_DLL_DECL void* tc_calloc(size_t count, size_t size) __THROW {
1178  // Overflow check
1179  const size_t total_size = count * size;
1180  if (size != 0 && total_size / size != count) return NULL;
1181
1182  void* block = do_debug_malloc_or_debug_cpp_alloc(total_size);
1183  MallocHook::InvokeNewHook(block, total_size);
1184  if (block)  memset(block, 0, total_size);
1185  return block;
1186}
1187
1188extern "C" PERFTOOLS_DLL_DECL void tc_cfree(void* ptr) __THROW {
1189  MallocHook::InvokeDeleteHook(ptr);
1190  DebugDeallocate(ptr, MallocBlock::kMallocType);
1191}
1192
1193extern "C" PERFTOOLS_DLL_DECL void* tc_realloc(void* ptr, size_t size) __THROW {
1194  if (ptr == NULL) {
1195    ptr = do_debug_malloc_or_debug_cpp_alloc(size);
1196    MallocHook::InvokeNewHook(ptr, size);
1197    return ptr;
1198  }
1199  MallocBlock* old = MallocBlock::FromRawPointer(ptr);
1200  old->Check(MallocBlock::kMallocType);
1201  if (MallocBlock::IsMemaligned(ptr)) {
1202    RAW_LOG(FATAL, "realloc/memalign mismatch at %p: "
1203            "non-NULL pointers passed to realloc must be obtained "
1204            "from malloc, calloc, or realloc", ptr);
1205  }
1206  if (size == 0) {
1207    MallocHook::InvokeDeleteHook(ptr);
1208    DebugDeallocate(ptr, MallocBlock::kMallocType);
1209    return NULL;
1210  }
1211  MallocBlock* p = MallocBlock::Allocate(size, MallocBlock::kMallocType);
1212
1213  // If realloc fails we are to leave the old block untouched and
1214  // return null
1215  if (p == NULL)  return NULL;
1216
1217  memcpy(p->data_addr(), old->data_addr(),
1218         (old->data_size() < size) ? old->data_size() : size);
1219  MallocHook::InvokeDeleteHook(ptr);
1220  MallocHook::InvokeNewHook(p->data_addr(), size);
1221  DebugDeallocate(ptr, MallocBlock::kMallocType);
1222  MALLOC_TRACE("realloc", p->data_size(), p->data_addr());
1223  return p->data_addr();
1224}
1225
1226extern "C" PERFTOOLS_DLL_DECL void* tc_new(size_t size) {
1227  void* ptr = debug_cpp_alloc(size, MallocBlock::kNewType, false);
1228  MallocHook::InvokeNewHook(ptr, size);
1229  if (ptr == NULL) {
1230    RAW_LOG(FATAL, "Unable to allocate %"PRIuS" bytes: new failed.", size);
1231  }
1232  return ptr;
1233}
1234
1235extern "C" PERFTOOLS_DLL_DECL void* tc_new_nothrow(size_t size, const std::nothrow_t&) __THROW {
1236  void* ptr = debug_cpp_alloc(size, MallocBlock::kNewType, true);
1237  MallocHook::InvokeNewHook(ptr, size);
1238  return ptr;
1239}
1240
1241extern "C" PERFTOOLS_DLL_DECL void tc_delete(void* p) __THROW {
1242  MallocHook::InvokeDeleteHook(p);
1243  DebugDeallocate(p, MallocBlock::kNewType);
1244}
1245
1246// Some STL implementations explicitly invoke this.
1247// It is completely equivalent to a normal delete (delete never throws).
1248extern "C" PERFTOOLS_DLL_DECL void tc_delete_nothrow(void* p, const std::nothrow_t&) __THROW {
1249  MallocHook::InvokeDeleteHook(p);
1250  DebugDeallocate(p, MallocBlock::kNewType);
1251}
1252
1253extern "C" PERFTOOLS_DLL_DECL void* tc_newarray(size_t size) {
1254  void* ptr = debug_cpp_alloc(size, MallocBlock::kArrayNewType, false);
1255  MallocHook::InvokeNewHook(ptr, size);
1256  if (ptr == NULL) {
1257    RAW_LOG(FATAL, "Unable to allocate %"PRIuS" bytes: new[] failed.", size);
1258  }
1259  return ptr;
1260}
1261
1262extern "C" PERFTOOLS_DLL_DECL void* tc_newarray_nothrow(size_t size, const std::nothrow_t&)
1263    __THROW {
1264  void* ptr = debug_cpp_alloc(size, MallocBlock::kArrayNewType, true);
1265  MallocHook::InvokeNewHook(ptr, size);
1266  return ptr;
1267}
1268
1269extern "C" PERFTOOLS_DLL_DECL void tc_deletearray(void* p) __THROW {
1270  MallocHook::InvokeDeleteHook(p);
1271  DebugDeallocate(p, MallocBlock::kArrayNewType);
1272}
1273
1274// Some STL implementations explicitly invoke this.
1275// It is completely equivalent to a normal delete (delete never throws).
1276extern "C" PERFTOOLS_DLL_DECL void tc_deletearray_nothrow(void* p, const std::nothrow_t&) __THROW {
1277  MallocHook::InvokeDeleteHook(p);
1278  DebugDeallocate(p, MallocBlock::kArrayNewType);
1279}
1280
1281// Round "value" up to next "alignment" boundary.
1282// Requires that "alignment" be a power of two.
1283static intptr_t RoundUp(intptr_t value, intptr_t alignment) {
1284  return (value + alignment - 1) & ~(alignment - 1);
1285}
1286
1287// This is mostly the same as do_memalign in tcmalloc.cc.
1288static void *do_debug_memalign(size_t alignment, size_t size) {
1289  // Allocate >= size bytes aligned on "alignment" boundary
1290  // "alignment" is a power of two.
1291  void *p = 0;
1292  RAW_CHECK((alignment & (alignment-1)) == 0, "must be power of two");
1293  const size_t data_offset = MallocBlock::data_offset();
1294  // Allocate "alignment-1" extra bytes to ensure alignment is possible, and
1295  // a further data_offset bytes for an additional fake header.
1296  size_t extra_bytes = data_offset + alignment - 1;
1297  if (size + extra_bytes < size) return NULL;         // Overflow
1298  p = DebugAllocate(size + extra_bytes, MallocBlock::kMallocType);
1299  if (p != 0) {
1300    intptr_t orig_p = reinterpret_cast<intptr_t>(p);
1301    // Leave data_offset bytes for fake header, and round up to meet
1302    // alignment.
1303    p = reinterpret_cast<void *>(RoundUp(orig_p + data_offset, alignment));
1304    // Create a fake header block with an offset_ that points back to the
1305    // real header.  FromRawPointer uses this value.
1306    MallocBlock *fake_hdr = reinterpret_cast<MallocBlock *>(
1307                reinterpret_cast<char *>(p) - data_offset);
1308    // offset_ is distance between real and fake headers.
1309    // p is now end of fake header (beginning of client area),
1310    // and orig_p is the end of the real header, so offset_
1311    // is their difference.
1312    fake_hdr->set_offset(reinterpret_cast<intptr_t>(p) - orig_p);
1313  }
1314  return p;
1315}
1316
1317// This is mostly the same as cpp_memalign in tcmalloc.cc.
1318static void* debug_cpp_memalign(size_t align, size_t size) {
1319  for (;;) {
1320    void* p = do_debug_memalign(align, size);
1321#ifdef PREANSINEW
1322    return p;
1323#else
1324    if (p == NULL) {  // allocation failed
1325      // Get the current new handler.  NB: this function is not
1326      // thread-safe.  We make a feeble stab at making it so here, but
1327      // this lock only protects against tcmalloc interfering with
1328      // itself, not with other libraries calling set_new_handler.
1329      std::new_handler nh;
1330      {
1331        SpinLockHolder h(&set_new_handler_lock);
1332        nh = std::set_new_handler(0);
1333        (void) std::set_new_handler(nh);
1334      }
1335#if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
1336      if (nh) {
1337        // Since exceptions are disabled, we don't really know if new_handler
1338        // failed.  Assume it will abort if it fails.
1339        (*nh)();
1340        continue;
1341      }
1342      return 0;
1343#else
1344      // If no new_handler is established, the allocation failed.
1345      if (!nh)
1346        return 0;
1347
1348      // Otherwise, try the new_handler.  If it returns, retry the
1349      // allocation.  If it throws std::bad_alloc, fail the allocation.
1350      // if it throws something else, don't interfere.
1351      try {
1352        (*nh)();
1353      } catch (const std::bad_alloc&) {
1354        return p;
1355      }
1356#endif  // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
1357    } else {  // allocation success
1358      return p;
1359    }
1360#endif  // PREANSINEW
1361  }
1362}
1363
1364inline void* do_debug_memalign_or_debug_cpp_memalign(size_t align,
1365                                                     size_t size) {
1366  return tc_new_mode ? debug_cpp_memalign(align, size)
1367                     : do_debug_memalign(align, size);
1368}
1369
1370extern "C" PERFTOOLS_DLL_DECL void* tc_memalign(size_t align, size_t size) __THROW {
1371  void *p = do_debug_memalign_or_debug_cpp_memalign(align, size);
1372  MallocHook::InvokeNewHook(p, size);
1373  return p;
1374}
1375
1376// Implementation taken from tcmalloc/tcmalloc.cc
1377extern "C" PERFTOOLS_DLL_DECL int tc_posix_memalign(void** result_ptr, size_t align, size_t size)
1378    __THROW {
1379  if (((align % sizeof(void*)) != 0) ||
1380      ((align & (align - 1)) != 0) ||
1381      (align == 0)) {
1382    return EINVAL;
1383  }
1384
1385  void* result = do_debug_memalign_or_debug_cpp_memalign(align, size);
1386  MallocHook::InvokeNewHook(result, size);
1387  if (result == NULL) {
1388    return ENOMEM;
1389  } else {
1390    *result_ptr = result;
1391    return 0;
1392  }
1393}
1394
1395extern "C" PERFTOOLS_DLL_DECL void* tc_valloc(size_t size) __THROW {
1396  // Allocate >= size bytes starting on a page boundary
1397  void *p = do_debug_memalign_or_debug_cpp_memalign(getpagesize(), size);
1398  MallocHook::InvokeNewHook(p, size);
1399  return p;
1400}
1401
1402extern "C" PERFTOOLS_DLL_DECL void* tc_pvalloc(size_t size) __THROW {
1403  // Round size up to a multiple of pages
1404  // then allocate memory on a page boundary
1405  int pagesize = getpagesize();
1406  size = RoundUp(size, pagesize);
1407  if (size == 0) {     // pvalloc(0) should allocate one page, according to
1408    size = pagesize;   // http://man.free4web.biz/man3/libmpatrol.3.html
1409  }
1410  void *p = do_debug_memalign_or_debug_cpp_memalign(pagesize, size);
1411  MallocHook::InvokeNewHook(p, size);
1412  return p;
1413}
1414
1415// malloc_stats just falls through to the base implementation.
1416extern "C" PERFTOOLS_DLL_DECL void tc_malloc_stats(void) __THROW {
1417  BASE_MALLOC_STATS();
1418}
1419
1420extern "C" PERFTOOLS_DLL_DECL int tc_mallopt(int cmd, int value) __THROW {
1421  return BASE_MALLOPT(cmd, value);
1422}
1423
1424#ifdef HAVE_STRUCT_MALLINFO
1425extern "C" PERFTOOLS_DLL_DECL struct mallinfo tc_mallinfo(void) __THROW {
1426  return BASE_MALLINFO();
1427}
1428#endif
1429
1430extern "C" PERFTOOLS_DLL_DECL size_t tc_malloc_size(void* ptr) __THROW {
1431  return MallocExtension::instance()->GetAllocatedSize(ptr);
1432}
1433
1434#if defined(OS_LINUX)
1435extern "C" PERFTOOLS_DLL_DECL void* tc_malloc_skip_new_handler(size_t size) {
1436  void* result = DebugAllocate(size, MallocBlock::kMallocType);
1437  MallocHook::InvokeNewHook(result, size);
1438  return result;
1439}
1440#endif
1441