1//===--- Decl.cpp - Declaration AST Node Implementation -------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the Decl subclasses. 11// 12//===----------------------------------------------------------------------===// 13 14#include "clang/AST/Decl.h" 15#include "clang/AST/ASTContext.h" 16#include "clang/AST/ASTLambda.h" 17#include "clang/AST/ASTMutationListener.h" 18#include "clang/AST/Attr.h" 19#include "clang/AST/DeclCXX.h" 20#include "clang/AST/DeclObjC.h" 21#include "clang/AST/DeclTemplate.h" 22#include "clang/AST/Expr.h" 23#include "clang/AST/ExprCXX.h" 24#include "clang/AST/PrettyPrinter.h" 25#include "clang/AST/Stmt.h" 26#include "clang/AST/TypeLoc.h" 27#include "clang/Basic/Builtins.h" 28#include "clang/Basic/IdentifierTable.h" 29#include "clang/Basic/Module.h" 30#include "clang/Basic/Specifiers.h" 31#include "clang/Basic/TargetInfo.h" 32#include "llvm/Support/ErrorHandling.h" 33#include <algorithm> 34 35using namespace clang; 36 37Decl *clang::getPrimaryMergedDecl(Decl *D) { 38 return D->getASTContext().getPrimaryMergedDecl(D); 39} 40 41//===----------------------------------------------------------------------===// 42// NamedDecl Implementation 43//===----------------------------------------------------------------------===// 44 45// Visibility rules aren't rigorously externally specified, but here 46// are the basic principles behind what we implement: 47// 48// 1. An explicit visibility attribute is generally a direct expression 49// of the user's intent and should be honored. Only the innermost 50// visibility attribute applies. If no visibility attribute applies, 51// global visibility settings are considered. 52// 53// 2. There is one caveat to the above: on or in a template pattern, 54// an explicit visibility attribute is just a default rule, and 55// visibility can be decreased by the visibility of template 56// arguments. But this, too, has an exception: an attribute on an 57// explicit specialization or instantiation causes all the visibility 58// restrictions of the template arguments to be ignored. 59// 60// 3. A variable that does not otherwise have explicit visibility can 61// be restricted by the visibility of its type. 62// 63// 4. A visibility restriction is explicit if it comes from an 64// attribute (or something like it), not a global visibility setting. 65// When emitting a reference to an external symbol, visibility 66// restrictions are ignored unless they are explicit. 67// 68// 5. When computing the visibility of a non-type, including a 69// non-type member of a class, only non-type visibility restrictions 70// are considered: the 'visibility' attribute, global value-visibility 71// settings, and a few special cases like __private_extern. 72// 73// 6. When computing the visibility of a type, including a type member 74// of a class, only type visibility restrictions are considered: 75// the 'type_visibility' attribute and global type-visibility settings. 76// However, a 'visibility' attribute counts as a 'type_visibility' 77// attribute on any declaration that only has the former. 78// 79// The visibility of a "secondary" entity, like a template argument, 80// is computed using the kind of that entity, not the kind of the 81// primary entity for which we are computing visibility. For example, 82// the visibility of a specialization of either of these templates: 83// template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X); 84// template <class T, bool (&compare)(T, X)> class matcher; 85// is restricted according to the type visibility of the argument 'T', 86// the type visibility of 'bool(&)(T,X)', and the value visibility of 87// the argument function 'compare'. That 'has_match' is a value 88// and 'matcher' is a type only matters when looking for attributes 89// and settings from the immediate context. 90 91const unsigned IgnoreExplicitVisibilityBit = 2; 92const unsigned IgnoreAllVisibilityBit = 4; 93 94/// Kinds of LV computation. The linkage side of the computation is 95/// always the same, but different things can change how visibility is 96/// computed. 97enum LVComputationKind { 98 /// Do an LV computation for, ultimately, a type. 99 /// Visibility may be restricted by type visibility settings and 100 /// the visibility of template arguments. 101 LVForType = NamedDecl::VisibilityForType, 102 103 /// Do an LV computation for, ultimately, a non-type declaration. 104 /// Visibility may be restricted by value visibility settings and 105 /// the visibility of template arguments. 106 LVForValue = NamedDecl::VisibilityForValue, 107 108 /// Do an LV computation for, ultimately, a type that already has 109 /// some sort of explicit visibility. Visibility may only be 110 /// restricted by the visibility of template arguments. 111 LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit), 112 113 /// Do an LV computation for, ultimately, a non-type declaration 114 /// that already has some sort of explicit visibility. Visibility 115 /// may only be restricted by the visibility of template arguments. 116 LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit), 117 118 /// Do an LV computation when we only care about the linkage. 119 LVForLinkageOnly = 120 LVForValue | IgnoreExplicitVisibilityBit | IgnoreAllVisibilityBit 121}; 122 123/// Does this computation kind permit us to consider additional 124/// visibility settings from attributes and the like? 125static bool hasExplicitVisibilityAlready(LVComputationKind computation) { 126 return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0); 127} 128 129/// Given an LVComputationKind, return one of the same type/value sort 130/// that records that it already has explicit visibility. 131static LVComputationKind 132withExplicitVisibilityAlready(LVComputationKind oldKind) { 133 LVComputationKind newKind = 134 static_cast<LVComputationKind>(unsigned(oldKind) | 135 IgnoreExplicitVisibilityBit); 136 assert(oldKind != LVForType || newKind == LVForExplicitType); 137 assert(oldKind != LVForValue || newKind == LVForExplicitValue); 138 assert(oldKind != LVForExplicitType || newKind == LVForExplicitType); 139 assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue); 140 return newKind; 141} 142 143static Optional<Visibility> getExplicitVisibility(const NamedDecl *D, 144 LVComputationKind kind) { 145 assert(!hasExplicitVisibilityAlready(kind) && 146 "asking for explicit visibility when we shouldn't be"); 147 return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind); 148} 149 150/// Is the given declaration a "type" or a "value" for the purposes of 151/// visibility computation? 152static bool usesTypeVisibility(const NamedDecl *D) { 153 return isa<TypeDecl>(D) || 154 isa<ClassTemplateDecl>(D) || 155 isa<ObjCInterfaceDecl>(D); 156} 157 158/// Does the given declaration have member specialization information, 159/// and if so, is it an explicit specialization? 160template <class T> static typename 161std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type 162isExplicitMemberSpecialization(const T *D) { 163 if (const MemberSpecializationInfo *member = 164 D->getMemberSpecializationInfo()) { 165 return member->isExplicitSpecialization(); 166 } 167 return false; 168} 169 170/// For templates, this question is easier: a member template can't be 171/// explicitly instantiated, so there's a single bit indicating whether 172/// or not this is an explicit member specialization. 173static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) { 174 return D->isMemberSpecialization(); 175} 176 177/// Given a visibility attribute, return the explicit visibility 178/// associated with it. 179template <class T> 180static Visibility getVisibilityFromAttr(const T *attr) { 181 switch (attr->getVisibility()) { 182 case T::Default: 183 return DefaultVisibility; 184 case T::Hidden: 185 return HiddenVisibility; 186 case T::Protected: 187 return ProtectedVisibility; 188 } 189 llvm_unreachable("bad visibility kind"); 190} 191 192/// Return the explicit visibility of the given declaration. 193static Optional<Visibility> getVisibilityOf(const NamedDecl *D, 194 NamedDecl::ExplicitVisibilityKind kind) { 195 // If we're ultimately computing the visibility of a type, look for 196 // a 'type_visibility' attribute before looking for 'visibility'. 197 if (kind == NamedDecl::VisibilityForType) { 198 if (const TypeVisibilityAttr *A = D->getAttr<TypeVisibilityAttr>()) { 199 return getVisibilityFromAttr(A); 200 } 201 } 202 203 // If this declaration has an explicit visibility attribute, use it. 204 if (const VisibilityAttr *A = D->getAttr<VisibilityAttr>()) { 205 return getVisibilityFromAttr(A); 206 } 207 208 // If we're on Mac OS X, an 'availability' for Mac OS X attribute 209 // implies visibility(default). 210 if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) { 211 for (const auto *A : D->specific_attrs<AvailabilityAttr>()) 212 if (A->getPlatform()->getName().equals("macosx")) 213 return DefaultVisibility; 214 } 215 216 return None; 217} 218 219static LinkageInfo 220getLVForType(const Type &T, LVComputationKind computation) { 221 if (computation == LVForLinkageOnly) 222 return LinkageInfo(T.getLinkage(), DefaultVisibility, true); 223 return T.getLinkageAndVisibility(); 224} 225 226/// \brief Get the most restrictive linkage for the types in the given 227/// template parameter list. For visibility purposes, template 228/// parameters are part of the signature of a template. 229static LinkageInfo 230getLVForTemplateParameterList(const TemplateParameterList *Params, 231 LVComputationKind computation) { 232 LinkageInfo LV; 233 for (const NamedDecl *P : *Params) { 234 // Template type parameters are the most common and never 235 // contribute to visibility, pack or not. 236 if (isa<TemplateTypeParmDecl>(P)) 237 continue; 238 239 // Non-type template parameters can be restricted by the value type, e.g. 240 // template <enum X> class A { ... }; 241 // We have to be careful here, though, because we can be dealing with 242 // dependent types. 243 if (const NonTypeTemplateParmDecl *NTTP = 244 dyn_cast<NonTypeTemplateParmDecl>(P)) { 245 // Handle the non-pack case first. 246 if (!NTTP->isExpandedParameterPack()) { 247 if (!NTTP->getType()->isDependentType()) { 248 LV.merge(getLVForType(*NTTP->getType(), computation)); 249 } 250 continue; 251 } 252 253 // Look at all the types in an expanded pack. 254 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) { 255 QualType type = NTTP->getExpansionType(i); 256 if (!type->isDependentType()) 257 LV.merge(type->getLinkageAndVisibility()); 258 } 259 continue; 260 } 261 262 // Template template parameters can be restricted by their 263 // template parameters, recursively. 264 const TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(P); 265 266 // Handle the non-pack case first. 267 if (!TTP->isExpandedParameterPack()) { 268 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(), 269 computation)); 270 continue; 271 } 272 273 // Look at all expansions in an expanded pack. 274 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters(); 275 i != n; ++i) { 276 LV.merge(getLVForTemplateParameterList( 277 TTP->getExpansionTemplateParameters(i), computation)); 278 } 279 } 280 281 return LV; 282} 283 284/// getLVForDecl - Get the linkage and visibility for the given declaration. 285static LinkageInfo getLVForDecl(const NamedDecl *D, 286 LVComputationKind computation); 287 288static const Decl *getOutermostFuncOrBlockContext(const Decl *D) { 289 const Decl *Ret = nullptr; 290 const DeclContext *DC = D->getDeclContext(); 291 while (DC->getDeclKind() != Decl::TranslationUnit) { 292 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC)) 293 Ret = cast<Decl>(DC); 294 DC = DC->getParent(); 295 } 296 return Ret; 297} 298 299/// \brief Get the most restrictive linkage for the types and 300/// declarations in the given template argument list. 301/// 302/// Note that we don't take an LVComputationKind because we always 303/// want to honor the visibility of template arguments in the same way. 304static LinkageInfo getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args, 305 LVComputationKind computation) { 306 LinkageInfo LV; 307 308 for (const TemplateArgument &Arg : Args) { 309 switch (Arg.getKind()) { 310 case TemplateArgument::Null: 311 case TemplateArgument::Integral: 312 case TemplateArgument::Expression: 313 continue; 314 315 case TemplateArgument::Type: 316 LV.merge(getLVForType(*Arg.getAsType(), computation)); 317 continue; 318 319 case TemplateArgument::Declaration: 320 if (NamedDecl *ND = dyn_cast<NamedDecl>(Arg.getAsDecl())) { 321 assert(!usesTypeVisibility(ND)); 322 LV.merge(getLVForDecl(ND, computation)); 323 } 324 continue; 325 326 case TemplateArgument::NullPtr: 327 LV.merge(Arg.getNullPtrType()->getLinkageAndVisibility()); 328 continue; 329 330 case TemplateArgument::Template: 331 case TemplateArgument::TemplateExpansion: 332 if (TemplateDecl *Template = 333 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) 334 LV.merge(getLVForDecl(Template, computation)); 335 continue; 336 337 case TemplateArgument::Pack: 338 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation)); 339 continue; 340 } 341 llvm_unreachable("bad template argument kind"); 342 } 343 344 return LV; 345} 346 347static LinkageInfo 348getLVForTemplateArgumentList(const TemplateArgumentList &TArgs, 349 LVComputationKind computation) { 350 return getLVForTemplateArgumentList(TArgs.asArray(), computation); 351} 352 353static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn, 354 const FunctionTemplateSpecializationInfo *specInfo) { 355 // Include visibility from the template parameters and arguments 356 // only if this is not an explicit instantiation or specialization 357 // with direct explicit visibility. (Implicit instantiations won't 358 // have a direct attribute.) 359 if (!specInfo->isExplicitInstantiationOrSpecialization()) 360 return true; 361 362 return !fn->hasAttr<VisibilityAttr>(); 363} 364 365/// Merge in template-related linkage and visibility for the given 366/// function template specialization. 367/// 368/// We don't need a computation kind here because we can assume 369/// LVForValue. 370/// 371/// \param[out] LV the computation to use for the parent 372static void 373mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn, 374 const FunctionTemplateSpecializationInfo *specInfo, 375 LVComputationKind computation) { 376 bool considerVisibility = 377 shouldConsiderTemplateVisibility(fn, specInfo); 378 379 // Merge information from the template parameters. 380 FunctionTemplateDecl *temp = specInfo->getTemplate(); 381 LinkageInfo tempLV = 382 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 383 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 384 385 // Merge information from the template arguments. 386 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments; 387 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 388 LV.mergeMaybeWithVisibility(argsLV, considerVisibility); 389} 390 391/// Does the given declaration have a direct visibility attribute 392/// that would match the given rules? 393static bool hasDirectVisibilityAttribute(const NamedDecl *D, 394 LVComputationKind computation) { 395 switch (computation) { 396 case LVForType: 397 case LVForExplicitType: 398 if (D->hasAttr<TypeVisibilityAttr>()) 399 return true; 400 // fallthrough 401 case LVForValue: 402 case LVForExplicitValue: 403 if (D->hasAttr<VisibilityAttr>()) 404 return true; 405 return false; 406 case LVForLinkageOnly: 407 return false; 408 } 409 llvm_unreachable("bad visibility computation kind"); 410} 411 412/// Should we consider visibility associated with the template 413/// arguments and parameters of the given class template specialization? 414static bool shouldConsiderTemplateVisibility( 415 const ClassTemplateSpecializationDecl *spec, 416 LVComputationKind computation) { 417 // Include visibility from the template parameters and arguments 418 // only if this is not an explicit instantiation or specialization 419 // with direct explicit visibility (and note that implicit 420 // instantiations won't have a direct attribute). 421 // 422 // Furthermore, we want to ignore template parameters and arguments 423 // for an explicit specialization when computing the visibility of a 424 // member thereof with explicit visibility. 425 // 426 // This is a bit complex; let's unpack it. 427 // 428 // An explicit class specialization is an independent, top-level 429 // declaration. As such, if it or any of its members has an 430 // explicit visibility attribute, that must directly express the 431 // user's intent, and we should honor it. The same logic applies to 432 // an explicit instantiation of a member of such a thing. 433 434 // Fast path: if this is not an explicit instantiation or 435 // specialization, we always want to consider template-related 436 // visibility restrictions. 437 if (!spec->isExplicitInstantiationOrSpecialization()) 438 return true; 439 440 // This is the 'member thereof' check. 441 if (spec->isExplicitSpecialization() && 442 hasExplicitVisibilityAlready(computation)) 443 return false; 444 445 return !hasDirectVisibilityAttribute(spec, computation); 446} 447 448/// Merge in template-related linkage and visibility for the given 449/// class template specialization. 450static void mergeTemplateLV(LinkageInfo &LV, 451 const ClassTemplateSpecializationDecl *spec, 452 LVComputationKind computation) { 453 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 454 455 // Merge information from the template parameters, but ignore 456 // visibility if we're only considering template arguments. 457 458 ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 459 LinkageInfo tempLV = 460 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 461 LV.mergeMaybeWithVisibility(tempLV, 462 considerVisibility && !hasExplicitVisibilityAlready(computation)); 463 464 // Merge information from the template arguments. We ignore 465 // template-argument visibility if we've got an explicit 466 // instantiation with a visibility attribute. 467 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 468 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 469 if (considerVisibility) 470 LV.mergeVisibility(argsLV); 471 LV.mergeExternalVisibility(argsLV); 472} 473 474/// Should we consider visibility associated with the template 475/// arguments and parameters of the given variable template 476/// specialization? As usual, follow class template specialization 477/// logic up to initialization. 478static bool shouldConsiderTemplateVisibility( 479 const VarTemplateSpecializationDecl *spec, 480 LVComputationKind computation) { 481 // Include visibility from the template parameters and arguments 482 // only if this is not an explicit instantiation or specialization 483 // with direct explicit visibility (and note that implicit 484 // instantiations won't have a direct attribute). 485 if (!spec->isExplicitInstantiationOrSpecialization()) 486 return true; 487 488 // An explicit variable specialization is an independent, top-level 489 // declaration. As such, if it has an explicit visibility attribute, 490 // that must directly express the user's intent, and we should honor 491 // it. 492 if (spec->isExplicitSpecialization() && 493 hasExplicitVisibilityAlready(computation)) 494 return false; 495 496 return !hasDirectVisibilityAttribute(spec, computation); 497} 498 499/// Merge in template-related linkage and visibility for the given 500/// variable template specialization. As usual, follow class template 501/// specialization logic up to initialization. 502static void mergeTemplateLV(LinkageInfo &LV, 503 const VarTemplateSpecializationDecl *spec, 504 LVComputationKind computation) { 505 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 506 507 // Merge information from the template parameters, but ignore 508 // visibility if we're only considering template arguments. 509 510 VarTemplateDecl *temp = spec->getSpecializedTemplate(); 511 LinkageInfo tempLV = 512 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 513 LV.mergeMaybeWithVisibility(tempLV, 514 considerVisibility && !hasExplicitVisibilityAlready(computation)); 515 516 // Merge information from the template arguments. We ignore 517 // template-argument visibility if we've got an explicit 518 // instantiation with a visibility attribute. 519 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 520 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 521 if (considerVisibility) 522 LV.mergeVisibility(argsLV); 523 LV.mergeExternalVisibility(argsLV); 524} 525 526static bool useInlineVisibilityHidden(const NamedDecl *D) { 527 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c. 528 const LangOptions &Opts = D->getASTContext().getLangOpts(); 529 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden) 530 return false; 531 532 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 533 if (!FD) 534 return false; 535 536 TemplateSpecializationKind TSK = TSK_Undeclared; 537 if (FunctionTemplateSpecializationInfo *spec 538 = FD->getTemplateSpecializationInfo()) { 539 TSK = spec->getTemplateSpecializationKind(); 540 } else if (MemberSpecializationInfo *MSI = 541 FD->getMemberSpecializationInfo()) { 542 TSK = MSI->getTemplateSpecializationKind(); 543 } 544 545 const FunctionDecl *Def = nullptr; 546 // InlineVisibilityHidden only applies to definitions, and 547 // isInlined() only gives meaningful answers on definitions 548 // anyway. 549 return TSK != TSK_ExplicitInstantiationDeclaration && 550 TSK != TSK_ExplicitInstantiationDefinition && 551 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>(); 552} 553 554template <typename T> static bool isFirstInExternCContext(T *D) { 555 const T *First = D->getFirstDecl(); 556 return First->isInExternCContext(); 557} 558 559static bool isSingleLineLanguageLinkage(const Decl &D) { 560 if (const LinkageSpecDecl *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext())) 561 if (!SD->hasBraces()) 562 return true; 563 return false; 564} 565 566static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D, 567 LVComputationKind computation) { 568 assert(D->getDeclContext()->getRedeclContext()->isFileContext() && 569 "Not a name having namespace scope"); 570 ASTContext &Context = D->getASTContext(); 571 572 // C++ [basic.link]p3: 573 // A name having namespace scope (3.3.6) has internal linkage if it 574 // is the name of 575 // - an object, reference, function or function template that is 576 // explicitly declared static; or, 577 // (This bullet corresponds to C99 6.2.2p3.) 578 if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { 579 // Explicitly declared static. 580 if (Var->getStorageClass() == SC_Static) 581 return LinkageInfo::internal(); 582 583 // - a non-volatile object or reference that is explicitly declared const 584 // or constexpr and neither explicitly declared extern nor previously 585 // declared to have external linkage; or (there is no equivalent in C99) 586 if (Context.getLangOpts().CPlusPlus && 587 Var->getType().isConstQualified() && 588 !Var->getType().isVolatileQualified()) { 589 const VarDecl *PrevVar = Var->getPreviousDecl(); 590 if (PrevVar) 591 return getLVForDecl(PrevVar, computation); 592 593 if (Var->getStorageClass() != SC_Extern && 594 Var->getStorageClass() != SC_PrivateExtern && 595 !isSingleLineLanguageLinkage(*Var)) 596 return LinkageInfo::internal(); 597 } 598 599 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar; 600 PrevVar = PrevVar->getPreviousDecl()) { 601 if (PrevVar->getStorageClass() == SC_PrivateExtern && 602 Var->getStorageClass() == SC_None) 603 return PrevVar->getLinkageAndVisibility(); 604 // Explicitly declared static. 605 if (PrevVar->getStorageClass() == SC_Static) 606 return LinkageInfo::internal(); 607 } 608 } else if (const FunctionDecl *Function = D->getAsFunction()) { 609 // C++ [temp]p4: 610 // A non-member function template can have internal linkage; any 611 // other template name shall have external linkage. 612 613 // Explicitly declared static. 614 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) 615 return LinkageInfo(InternalLinkage, DefaultVisibility, false); 616 } 617 // - a data member of an anonymous union. 618 assert(!isa<IndirectFieldDecl>(D) && "Didn't expect an IndirectFieldDecl!"); 619 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!"); 620 621 if (D->isInAnonymousNamespace()) { 622 const VarDecl *Var = dyn_cast<VarDecl>(D); 623 const FunctionDecl *Func = dyn_cast<FunctionDecl>(D); 624 if ((!Var || !isFirstInExternCContext(Var)) && 625 (!Func || !isFirstInExternCContext(Func))) 626 return LinkageInfo::uniqueExternal(); 627 } 628 629 // Set up the defaults. 630 631 // C99 6.2.2p5: 632 // If the declaration of an identifier for an object has file 633 // scope and no storage-class specifier, its linkage is 634 // external. 635 LinkageInfo LV; 636 637 if (!hasExplicitVisibilityAlready(computation)) { 638 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) { 639 LV.mergeVisibility(*Vis, true); 640 } else { 641 // If we're declared in a namespace with a visibility attribute, 642 // use that namespace's visibility, and it still counts as explicit. 643 for (const DeclContext *DC = D->getDeclContext(); 644 !isa<TranslationUnitDecl>(DC); 645 DC = DC->getParent()) { 646 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC); 647 if (!ND) continue; 648 if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) { 649 LV.mergeVisibility(*Vis, true); 650 break; 651 } 652 } 653 } 654 655 // Add in global settings if the above didn't give us direct visibility. 656 if (!LV.isVisibilityExplicit()) { 657 // Use global type/value visibility as appropriate. 658 Visibility globalVisibility; 659 if (computation == LVForValue) { 660 globalVisibility = Context.getLangOpts().getValueVisibilityMode(); 661 } else { 662 assert(computation == LVForType); 663 globalVisibility = Context.getLangOpts().getTypeVisibilityMode(); 664 } 665 LV.mergeVisibility(globalVisibility, /*explicit*/ false); 666 667 // If we're paying attention to global visibility, apply 668 // -finline-visibility-hidden if this is an inline method. 669 if (useInlineVisibilityHidden(D)) 670 LV.mergeVisibility(HiddenVisibility, true); 671 } 672 } 673 674 // C++ [basic.link]p4: 675 676 // A name having namespace scope has external linkage if it is the 677 // name of 678 // 679 // - an object or reference, unless it has internal linkage; or 680 if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { 681 // GCC applies the following optimization to variables and static 682 // data members, but not to functions: 683 // 684 // Modify the variable's LV by the LV of its type unless this is 685 // C or extern "C". This follows from [basic.link]p9: 686 // A type without linkage shall not be used as the type of a 687 // variable or function with external linkage unless 688 // - the entity has C language linkage, or 689 // - the entity is declared within an unnamed namespace, or 690 // - the entity is not used or is defined in the same 691 // translation unit. 692 // and [basic.link]p10: 693 // ...the types specified by all declarations referring to a 694 // given variable or function shall be identical... 695 // C does not have an equivalent rule. 696 // 697 // Ignore this if we've got an explicit attribute; the user 698 // probably knows what they're doing. 699 // 700 // Note that we don't want to make the variable non-external 701 // because of this, but unique-external linkage suits us. 702 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var)) { 703 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation); 704 if (TypeLV.getLinkage() != ExternalLinkage) 705 return LinkageInfo::uniqueExternal(); 706 if (!LV.isVisibilityExplicit()) 707 LV.mergeVisibility(TypeLV); 708 } 709 710 if (Var->getStorageClass() == SC_PrivateExtern) 711 LV.mergeVisibility(HiddenVisibility, true); 712 713 // Note that Sema::MergeVarDecl already takes care of implementing 714 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have 715 // to do it here. 716 717 // As per function and class template specializations (below), 718 // consider LV for the template and template arguments. We're at file 719 // scope, so we do not need to worry about nested specializations. 720 if (const VarTemplateSpecializationDecl *spec 721 = dyn_cast<VarTemplateSpecializationDecl>(Var)) { 722 mergeTemplateLV(LV, spec, computation); 723 } 724 725 // - a function, unless it has internal linkage; or 726 } else if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 727 // In theory, we can modify the function's LV by the LV of its 728 // type unless it has C linkage (see comment above about variables 729 // for justification). In practice, GCC doesn't do this, so it's 730 // just too painful to make work. 731 732 if (Function->getStorageClass() == SC_PrivateExtern) 733 LV.mergeVisibility(HiddenVisibility, true); 734 735 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 736 // merging storage classes and visibility attributes, so we don't have to 737 // look at previous decls in here. 738 739 // In C++, then if the type of the function uses a type with 740 // unique-external linkage, it's not legally usable from outside 741 // this translation unit. However, we should use the C linkage 742 // rules instead for extern "C" declarations. 743 if (Context.getLangOpts().CPlusPlus && 744 !Function->isInExternCContext()) { 745 // Only look at the type-as-written. If this function has an auto-deduced 746 // return type, we can't compute the linkage of that type because it could 747 // require looking at the linkage of this function, and we don't need this 748 // for correctness because the type is not part of the function's 749 // signature. 750 // FIXME: This is a hack. We should be able to solve this circularity and 751 // the one in getLVForClassMember for Functions some other way. 752 QualType TypeAsWritten = Function->getType(); 753 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo()) 754 TypeAsWritten = TSI->getType(); 755 if (TypeAsWritten->getLinkage() == UniqueExternalLinkage) 756 return LinkageInfo::uniqueExternal(); 757 } 758 759 // Consider LV from the template and the template arguments. 760 // We're at file scope, so we do not need to worry about nested 761 // specializations. 762 if (FunctionTemplateSpecializationInfo *specInfo 763 = Function->getTemplateSpecializationInfo()) { 764 mergeTemplateLV(LV, Function, specInfo, computation); 765 } 766 767 // - a named class (Clause 9), or an unnamed class defined in a 768 // typedef declaration in which the class has the typedef name 769 // for linkage purposes (7.1.3); or 770 // - a named enumeration (7.2), or an unnamed enumeration 771 // defined in a typedef declaration in which the enumeration 772 // has the typedef name for linkage purposes (7.1.3); or 773 } else if (const TagDecl *Tag = dyn_cast<TagDecl>(D)) { 774 // Unnamed tags have no linkage. 775 if (!Tag->hasNameForLinkage()) 776 return LinkageInfo::none(); 777 778 // If this is a class template specialization, consider the 779 // linkage of the template and template arguments. We're at file 780 // scope, so we do not need to worry about nested specializations. 781 if (const ClassTemplateSpecializationDecl *spec 782 = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) { 783 mergeTemplateLV(LV, spec, computation); 784 } 785 786 // - an enumerator belonging to an enumeration with external linkage; 787 } else if (isa<EnumConstantDecl>(D)) { 788 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()), 789 computation); 790 if (!isExternalFormalLinkage(EnumLV.getLinkage())) 791 return LinkageInfo::none(); 792 LV.merge(EnumLV); 793 794 // - a template, unless it is a function template that has 795 // internal linkage (Clause 14); 796 } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) { 797 bool considerVisibility = !hasExplicitVisibilityAlready(computation); 798 LinkageInfo tempLV = 799 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 800 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 801 802 // - a namespace (7.3), unless it is declared within an unnamed 803 // namespace. 804 } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) { 805 return LV; 806 807 // By extension, we assign external linkage to Objective-C 808 // interfaces. 809 } else if (isa<ObjCInterfaceDecl>(D)) { 810 // fallout 811 812 // Everything not covered here has no linkage. 813 } else { 814 return LinkageInfo::none(); 815 } 816 817 // If we ended up with non-external linkage, visibility should 818 // always be default. 819 if (LV.getLinkage() != ExternalLinkage) 820 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false); 821 822 return LV; 823} 824 825static LinkageInfo getLVForClassMember(const NamedDecl *D, 826 LVComputationKind computation) { 827 // Only certain class members have linkage. Note that fields don't 828 // really have linkage, but it's convenient to say they do for the 829 // purposes of calculating linkage of pointer-to-data-member 830 // template arguments. 831 // 832 // Templates also don't officially have linkage, but since we ignore 833 // the C++ standard and look at template arguments when determining 834 // linkage and visibility of a template specialization, we might hit 835 // a template template argument that way. If we do, we need to 836 // consider its linkage. 837 if (!(isa<CXXMethodDecl>(D) || 838 isa<VarDecl>(D) || 839 isa<FieldDecl>(D) || 840 isa<IndirectFieldDecl>(D) || 841 isa<TagDecl>(D) || 842 isa<TemplateDecl>(D))) 843 return LinkageInfo::none(); 844 845 LinkageInfo LV; 846 847 // If we have an explicit visibility attribute, merge that in. 848 if (!hasExplicitVisibilityAlready(computation)) { 849 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) 850 LV.mergeVisibility(*Vis, true); 851 // If we're paying attention to global visibility, apply 852 // -finline-visibility-hidden if this is an inline method. 853 // 854 // Note that we do this before merging information about 855 // the class visibility. 856 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D)) 857 LV.mergeVisibility(HiddenVisibility, true); 858 } 859 860 // If this class member has an explicit visibility attribute, the only 861 // thing that can change its visibility is the template arguments, so 862 // only look for them when processing the class. 863 LVComputationKind classComputation = computation; 864 if (LV.isVisibilityExplicit()) 865 classComputation = withExplicitVisibilityAlready(computation); 866 867 LinkageInfo classLV = 868 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation); 869 // If the class already has unique-external linkage, we can't improve. 870 if (classLV.getLinkage() == UniqueExternalLinkage) 871 return LinkageInfo::uniqueExternal(); 872 873 if (!isExternallyVisible(classLV.getLinkage())) 874 return LinkageInfo::none(); 875 876 877 // Otherwise, don't merge in classLV yet, because in certain cases 878 // we need to completely ignore the visibility from it. 879 880 // Specifically, if this decl exists and has an explicit attribute. 881 const NamedDecl *explicitSpecSuppressor = nullptr; 882 883 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 884 // If the type of the function uses a type with unique-external 885 // linkage, it's not legally usable from outside this translation unit. 886 // But only look at the type-as-written. If this function has an auto-deduced 887 // return type, we can't compute the linkage of that type because it could 888 // require looking at the linkage of this function, and we don't need this 889 // for correctness because the type is not part of the function's 890 // signature. 891 // FIXME: This is a hack. We should be able to solve this circularity and the 892 // one in getLVForNamespaceScopeDecl for Functions some other way. 893 { 894 QualType TypeAsWritten = MD->getType(); 895 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) 896 TypeAsWritten = TSI->getType(); 897 if (TypeAsWritten->getLinkage() == UniqueExternalLinkage) 898 return LinkageInfo::uniqueExternal(); 899 } 900 // If this is a method template specialization, use the linkage for 901 // the template parameters and arguments. 902 if (FunctionTemplateSpecializationInfo *spec 903 = MD->getTemplateSpecializationInfo()) { 904 mergeTemplateLV(LV, MD, spec, computation); 905 if (spec->isExplicitSpecialization()) { 906 explicitSpecSuppressor = MD; 907 } else if (isExplicitMemberSpecialization(spec->getTemplate())) { 908 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl(); 909 } 910 } else if (isExplicitMemberSpecialization(MD)) { 911 explicitSpecSuppressor = MD; 912 } 913 914 } else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { 915 if (const ClassTemplateSpecializationDecl *spec 916 = dyn_cast<ClassTemplateSpecializationDecl>(RD)) { 917 mergeTemplateLV(LV, spec, computation); 918 if (spec->isExplicitSpecialization()) { 919 explicitSpecSuppressor = spec; 920 } else { 921 const ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 922 if (isExplicitMemberSpecialization(temp)) { 923 explicitSpecSuppressor = temp->getTemplatedDecl(); 924 } 925 } 926 } else if (isExplicitMemberSpecialization(RD)) { 927 explicitSpecSuppressor = RD; 928 } 929 930 // Static data members. 931 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 932 if (const VarTemplateSpecializationDecl *spec 933 = dyn_cast<VarTemplateSpecializationDecl>(VD)) 934 mergeTemplateLV(LV, spec, computation); 935 936 // Modify the variable's linkage by its type, but ignore the 937 // type's visibility unless it's a definition. 938 LinkageInfo typeLV = getLVForType(*VD->getType(), computation); 939 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit()) 940 LV.mergeVisibility(typeLV); 941 LV.mergeExternalVisibility(typeLV); 942 943 if (isExplicitMemberSpecialization(VD)) { 944 explicitSpecSuppressor = VD; 945 } 946 947 // Template members. 948 } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) { 949 bool considerVisibility = 950 (!LV.isVisibilityExplicit() && 951 !classLV.isVisibilityExplicit() && 952 !hasExplicitVisibilityAlready(computation)); 953 LinkageInfo tempLV = 954 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 955 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 956 957 if (const RedeclarableTemplateDecl *redeclTemp = 958 dyn_cast<RedeclarableTemplateDecl>(temp)) { 959 if (isExplicitMemberSpecialization(redeclTemp)) { 960 explicitSpecSuppressor = temp->getTemplatedDecl(); 961 } 962 } 963 } 964 965 // We should never be looking for an attribute directly on a template. 966 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor)); 967 968 // If this member is an explicit member specialization, and it has 969 // an explicit attribute, ignore visibility from the parent. 970 bool considerClassVisibility = true; 971 if (explicitSpecSuppressor && 972 // optimization: hasDVA() is true only with explicit visibility. 973 LV.isVisibilityExplicit() && 974 classLV.getVisibility() != DefaultVisibility && 975 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) { 976 considerClassVisibility = false; 977 } 978 979 // Finally, merge in information from the class. 980 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility); 981 return LV; 982} 983 984void NamedDecl::anchor() { } 985 986static LinkageInfo computeLVForDecl(const NamedDecl *D, 987 LVComputationKind computation); 988 989bool NamedDecl::isLinkageValid() const { 990 if (!hasCachedLinkage()) 991 return true; 992 993 return computeLVForDecl(this, LVForLinkageOnly).getLinkage() == 994 getCachedLinkage(); 995} 996 997Linkage NamedDecl::getLinkageInternal() const { 998 // We don't care about visibility here, so ask for the cheapest 999 // possible visibility analysis. 1000 return getLVForDecl(this, LVForLinkageOnly).getLinkage(); 1001} 1002 1003LinkageInfo NamedDecl::getLinkageAndVisibility() const { 1004 LVComputationKind computation = 1005 (usesTypeVisibility(this) ? LVForType : LVForValue); 1006 return getLVForDecl(this, computation); 1007} 1008 1009static Optional<Visibility> 1010getExplicitVisibilityAux(const NamedDecl *ND, 1011 NamedDecl::ExplicitVisibilityKind kind, 1012 bool IsMostRecent) { 1013 assert(!IsMostRecent || ND == ND->getMostRecentDecl()); 1014 1015 // Check the declaration itself first. 1016 if (Optional<Visibility> V = getVisibilityOf(ND, kind)) 1017 return V; 1018 1019 // If this is a member class of a specialization of a class template 1020 // and the corresponding decl has explicit visibility, use that. 1021 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND)) { 1022 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass(); 1023 if (InstantiatedFrom) 1024 return getVisibilityOf(InstantiatedFrom, kind); 1025 } 1026 1027 // If there wasn't explicit visibility there, and this is a 1028 // specialization of a class template, check for visibility 1029 // on the pattern. 1030 if (const ClassTemplateSpecializationDecl *spec 1031 = dyn_cast<ClassTemplateSpecializationDecl>(ND)) 1032 return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(), 1033 kind); 1034 1035 // Use the most recent declaration. 1036 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) { 1037 const NamedDecl *MostRecent = ND->getMostRecentDecl(); 1038 if (MostRecent != ND) 1039 return getExplicitVisibilityAux(MostRecent, kind, true); 1040 } 1041 1042 if (const VarDecl *Var = dyn_cast<VarDecl>(ND)) { 1043 if (Var->isStaticDataMember()) { 1044 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember(); 1045 if (InstantiatedFrom) 1046 return getVisibilityOf(InstantiatedFrom, kind); 1047 } 1048 1049 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var)) 1050 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(), 1051 kind); 1052 1053 return None; 1054 } 1055 // Also handle function template specializations. 1056 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) { 1057 // If the function is a specialization of a template with an 1058 // explicit visibility attribute, use that. 1059 if (FunctionTemplateSpecializationInfo *templateInfo 1060 = fn->getTemplateSpecializationInfo()) 1061 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(), 1062 kind); 1063 1064 // If the function is a member of a specialization of a class template 1065 // and the corresponding decl has explicit visibility, use that. 1066 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction(); 1067 if (InstantiatedFrom) 1068 return getVisibilityOf(InstantiatedFrom, kind); 1069 1070 return None; 1071 } 1072 1073 // The visibility of a template is stored in the templated decl. 1074 if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(ND)) 1075 return getVisibilityOf(TD->getTemplatedDecl(), kind); 1076 1077 return None; 1078} 1079 1080Optional<Visibility> 1081NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const { 1082 return getExplicitVisibilityAux(this, kind, false); 1083} 1084 1085static LinkageInfo getLVForClosure(const DeclContext *DC, Decl *ContextDecl, 1086 LVComputationKind computation) { 1087 // This lambda has its linkage/visibility determined by its owner. 1088 if (ContextDecl) { 1089 if (isa<ParmVarDecl>(ContextDecl)) 1090 DC = ContextDecl->getDeclContext()->getRedeclContext(); 1091 else 1092 return getLVForDecl(cast<NamedDecl>(ContextDecl), computation); 1093 } 1094 1095 if (const NamedDecl *ND = dyn_cast<NamedDecl>(DC)) 1096 return getLVForDecl(ND, computation); 1097 1098 return LinkageInfo::external(); 1099} 1100 1101static LinkageInfo getLVForLocalDecl(const NamedDecl *D, 1102 LVComputationKind computation) { 1103 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 1104 if (Function->isInAnonymousNamespace() && 1105 !Function->isInExternCContext()) 1106 return LinkageInfo::uniqueExternal(); 1107 1108 // This is a "void f();" which got merged with a file static. 1109 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) 1110 return LinkageInfo::internal(); 1111 1112 LinkageInfo LV; 1113 if (!hasExplicitVisibilityAlready(computation)) { 1114 if (Optional<Visibility> Vis = 1115 getExplicitVisibility(Function, computation)) 1116 LV.mergeVisibility(*Vis, true); 1117 } 1118 1119 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 1120 // merging storage classes and visibility attributes, so we don't have to 1121 // look at previous decls in here. 1122 1123 return LV; 1124 } 1125 1126 if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { 1127 if (Var->hasExternalStorage()) { 1128 if (Var->isInAnonymousNamespace() && !Var->isInExternCContext()) 1129 return LinkageInfo::uniqueExternal(); 1130 1131 LinkageInfo LV; 1132 if (Var->getStorageClass() == SC_PrivateExtern) 1133 LV.mergeVisibility(HiddenVisibility, true); 1134 else if (!hasExplicitVisibilityAlready(computation)) { 1135 if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation)) 1136 LV.mergeVisibility(*Vis, true); 1137 } 1138 1139 if (const VarDecl *Prev = Var->getPreviousDecl()) { 1140 LinkageInfo PrevLV = getLVForDecl(Prev, computation); 1141 if (PrevLV.getLinkage()) 1142 LV.setLinkage(PrevLV.getLinkage()); 1143 LV.mergeVisibility(PrevLV); 1144 } 1145 1146 return LV; 1147 } 1148 1149 if (!Var->isStaticLocal()) 1150 return LinkageInfo::none(); 1151 } 1152 1153 ASTContext &Context = D->getASTContext(); 1154 if (!Context.getLangOpts().CPlusPlus) 1155 return LinkageInfo::none(); 1156 1157 const Decl *OuterD = getOutermostFuncOrBlockContext(D); 1158 if (!OuterD) 1159 return LinkageInfo::none(); 1160 1161 LinkageInfo LV; 1162 if (const BlockDecl *BD = dyn_cast<BlockDecl>(OuterD)) { 1163 if (!BD->getBlockManglingNumber()) 1164 return LinkageInfo::none(); 1165 1166 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(), 1167 BD->getBlockManglingContextDecl(), computation); 1168 } else { 1169 const FunctionDecl *FD = cast<FunctionDecl>(OuterD); 1170 if (!FD->isInlined() && 1171 FD->getTemplateSpecializationKind() == TSK_Undeclared) 1172 return LinkageInfo::none(); 1173 1174 LV = getLVForDecl(FD, computation); 1175 } 1176 if (!isExternallyVisible(LV.getLinkage())) 1177 return LinkageInfo::none(); 1178 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(), 1179 LV.isVisibilityExplicit()); 1180} 1181 1182static inline const CXXRecordDecl* 1183getOutermostEnclosingLambda(const CXXRecordDecl *Record) { 1184 const CXXRecordDecl *Ret = Record; 1185 while (Record && Record->isLambda()) { 1186 Ret = Record; 1187 if (!Record->getParent()) break; 1188 // Get the Containing Class of this Lambda Class 1189 Record = dyn_cast_or_null<CXXRecordDecl>( 1190 Record->getParent()->getParent()); 1191 } 1192 return Ret; 1193} 1194 1195static LinkageInfo computeLVForDecl(const NamedDecl *D, 1196 LVComputationKind computation) { 1197 // Objective-C: treat all Objective-C declarations as having external 1198 // linkage. 1199 switch (D->getKind()) { 1200 default: 1201 break; 1202 case Decl::ParmVar: 1203 return LinkageInfo::none(); 1204 case Decl::TemplateTemplateParm: // count these as external 1205 case Decl::NonTypeTemplateParm: 1206 case Decl::ObjCAtDefsField: 1207 case Decl::ObjCCategory: 1208 case Decl::ObjCCategoryImpl: 1209 case Decl::ObjCCompatibleAlias: 1210 case Decl::ObjCImplementation: 1211 case Decl::ObjCMethod: 1212 case Decl::ObjCProperty: 1213 case Decl::ObjCPropertyImpl: 1214 case Decl::ObjCProtocol: 1215 return LinkageInfo::external(); 1216 1217 case Decl::CXXRecord: { 1218 const CXXRecordDecl *Record = cast<CXXRecordDecl>(D); 1219 if (Record->isLambda()) { 1220 if (!Record->getLambdaManglingNumber()) { 1221 // This lambda has no mangling number, so it's internal. 1222 return LinkageInfo::internal(); 1223 } 1224 1225 // This lambda has its linkage/visibility determined: 1226 // - either by the outermost lambda if that lambda has no mangling 1227 // number. 1228 // - or by the parent of the outer most lambda 1229 // This prevents infinite recursion in settings such as nested lambdas 1230 // used in NSDMI's, for e.g. 1231 // struct L { 1232 // int t{}; 1233 // int t2 = ([](int a) { return [](int b) { return b; };})(t)(t); 1234 // }; 1235 const CXXRecordDecl *OuterMostLambda = 1236 getOutermostEnclosingLambda(Record); 1237 if (!OuterMostLambda->getLambdaManglingNumber()) 1238 return LinkageInfo::internal(); 1239 1240 return getLVForClosure( 1241 OuterMostLambda->getDeclContext()->getRedeclContext(), 1242 OuterMostLambda->getLambdaContextDecl(), computation); 1243 } 1244 1245 break; 1246 } 1247 } 1248 1249 // Handle linkage for namespace-scope names. 1250 if (D->getDeclContext()->getRedeclContext()->isFileContext()) 1251 return getLVForNamespaceScopeDecl(D, computation); 1252 1253 // C++ [basic.link]p5: 1254 // In addition, a member function, static data member, a named 1255 // class or enumeration of class scope, or an unnamed class or 1256 // enumeration defined in a class-scope typedef declaration such 1257 // that the class or enumeration has the typedef name for linkage 1258 // purposes (7.1.3), has external linkage if the name of the class 1259 // has external linkage. 1260 if (D->getDeclContext()->isRecord()) 1261 return getLVForClassMember(D, computation); 1262 1263 // C++ [basic.link]p6: 1264 // The name of a function declared in block scope and the name of 1265 // an object declared by a block scope extern declaration have 1266 // linkage. If there is a visible declaration of an entity with 1267 // linkage having the same name and type, ignoring entities 1268 // declared outside the innermost enclosing namespace scope, the 1269 // block scope declaration declares that same entity and receives 1270 // the linkage of the previous declaration. If there is more than 1271 // one such matching entity, the program is ill-formed. Otherwise, 1272 // if no matching entity is found, the block scope entity receives 1273 // external linkage. 1274 if (D->getDeclContext()->isFunctionOrMethod()) 1275 return getLVForLocalDecl(D, computation); 1276 1277 // C++ [basic.link]p6: 1278 // Names not covered by these rules have no linkage. 1279 return LinkageInfo::none(); 1280} 1281 1282namespace clang { 1283class LinkageComputer { 1284public: 1285 static LinkageInfo getLVForDecl(const NamedDecl *D, 1286 LVComputationKind computation) { 1287 if (computation == LVForLinkageOnly && D->hasCachedLinkage()) 1288 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false); 1289 1290 LinkageInfo LV = computeLVForDecl(D, computation); 1291 if (D->hasCachedLinkage()) 1292 assert(D->getCachedLinkage() == LV.getLinkage()); 1293 1294 D->setCachedLinkage(LV.getLinkage()); 1295 1296#ifndef NDEBUG 1297 // In C (because of gnu inline) and in c++ with microsoft extensions an 1298 // static can follow an extern, so we can have two decls with different 1299 // linkages. 1300 const LangOptions &Opts = D->getASTContext().getLangOpts(); 1301 if (!Opts.CPlusPlus || Opts.MicrosoftExt) 1302 return LV; 1303 1304 // We have just computed the linkage for this decl. By induction we know 1305 // that all other computed linkages match, check that the one we just 1306 // computed also does. 1307 NamedDecl *Old = nullptr; 1308 for (auto I : D->redecls()) { 1309 NamedDecl *T = cast<NamedDecl>(I); 1310 if (T == D) 1311 continue; 1312 if (!T->isInvalidDecl() && T->hasCachedLinkage()) { 1313 Old = T; 1314 break; 1315 } 1316 } 1317 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage()); 1318#endif 1319 1320 return LV; 1321 } 1322}; 1323} 1324 1325static LinkageInfo getLVForDecl(const NamedDecl *D, 1326 LVComputationKind computation) { 1327 return clang::LinkageComputer::getLVForDecl(D, computation); 1328} 1329 1330std::string NamedDecl::getQualifiedNameAsString() const { 1331 std::string QualName; 1332 llvm::raw_string_ostream OS(QualName); 1333 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1334 return OS.str(); 1335} 1336 1337void NamedDecl::printQualifiedName(raw_ostream &OS) const { 1338 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1339} 1340 1341void NamedDecl::printQualifiedName(raw_ostream &OS, 1342 const PrintingPolicy &P) const { 1343 const DeclContext *Ctx = getDeclContext(); 1344 1345 if (Ctx->isFunctionOrMethod()) { 1346 printName(OS); 1347 return; 1348 } 1349 1350 typedef SmallVector<const DeclContext *, 8> ContextsTy; 1351 ContextsTy Contexts; 1352 1353 // Collect contexts. 1354 while (Ctx && isa<NamedDecl>(Ctx)) { 1355 Contexts.push_back(Ctx); 1356 Ctx = Ctx->getParent(); 1357 } 1358 1359 for (ContextsTy::reverse_iterator I = Contexts.rbegin(), E = Contexts.rend(); 1360 I != E; ++I) { 1361 if (const ClassTemplateSpecializationDecl *Spec 1362 = dyn_cast<ClassTemplateSpecializationDecl>(*I)) { 1363 OS << Spec->getName(); 1364 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 1365 TemplateSpecializationType::PrintTemplateArgumentList(OS, 1366 TemplateArgs.data(), 1367 TemplateArgs.size(), 1368 P); 1369 } else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(*I)) { 1370 if (P.SuppressUnwrittenScope && 1371 (ND->isAnonymousNamespace() || ND->isInline())) 1372 continue; 1373 if (ND->isAnonymousNamespace()) 1374 OS << "(anonymous namespace)"; 1375 else 1376 OS << *ND; 1377 } else if (const RecordDecl *RD = dyn_cast<RecordDecl>(*I)) { 1378 if (!RD->getIdentifier()) 1379 OS << "(anonymous " << RD->getKindName() << ')'; 1380 else 1381 OS << *RD; 1382 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { 1383 const FunctionProtoType *FT = nullptr; 1384 if (FD->hasWrittenPrototype()) 1385 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>()); 1386 1387 OS << *FD << '('; 1388 if (FT) { 1389 unsigned NumParams = FD->getNumParams(); 1390 for (unsigned i = 0; i < NumParams; ++i) { 1391 if (i) 1392 OS << ", "; 1393 OS << FD->getParamDecl(i)->getType().stream(P); 1394 } 1395 1396 if (FT->isVariadic()) { 1397 if (NumParams > 0) 1398 OS << ", "; 1399 OS << "..."; 1400 } 1401 } 1402 OS << ')'; 1403 } else { 1404 OS << *cast<NamedDecl>(*I); 1405 } 1406 OS << "::"; 1407 } 1408 1409 if (getDeclName()) 1410 OS << *this; 1411 else 1412 OS << "(anonymous)"; 1413} 1414 1415void NamedDecl::getNameForDiagnostic(raw_ostream &OS, 1416 const PrintingPolicy &Policy, 1417 bool Qualified) const { 1418 if (Qualified) 1419 printQualifiedName(OS, Policy); 1420 else 1421 printName(OS); 1422} 1423 1424bool NamedDecl::declarationReplaces(NamedDecl *OldD) const { 1425 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch"); 1426 1427 // UsingDirectiveDecl's are not really NamedDecl's, and all have same name. 1428 // We want to keep it, unless it nominates same namespace. 1429 if (getKind() == Decl::UsingDirective) { 1430 return cast<UsingDirectiveDecl>(this)->getNominatedNamespace() 1431 ->getOriginalNamespace() == 1432 cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace() 1433 ->getOriginalNamespace(); 1434 } 1435 1436 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this)) 1437 // For function declarations, we keep track of redeclarations. 1438 return FD->getPreviousDecl() == OldD; 1439 1440 // For function templates, the underlying function declarations are linked. 1441 if (const FunctionTemplateDecl *FunctionTemplate 1442 = dyn_cast<FunctionTemplateDecl>(this)) 1443 if (const FunctionTemplateDecl *OldFunctionTemplate 1444 = dyn_cast<FunctionTemplateDecl>(OldD)) 1445 return FunctionTemplate->getTemplatedDecl() 1446 ->declarationReplaces(OldFunctionTemplate->getTemplatedDecl()); 1447 1448 // For method declarations, we keep track of redeclarations. 1449 if (isa<ObjCMethodDecl>(this)) 1450 return false; 1451 1452 // FIXME: Is this correct if one of the decls comes from an inline namespace? 1453 if (isa<ObjCInterfaceDecl>(this) && isa<ObjCCompatibleAliasDecl>(OldD)) 1454 return true; 1455 1456 if (isa<UsingShadowDecl>(this) && isa<UsingShadowDecl>(OldD)) 1457 return cast<UsingShadowDecl>(this)->getTargetDecl() == 1458 cast<UsingShadowDecl>(OldD)->getTargetDecl(); 1459 1460 if (isa<UsingDecl>(this) && isa<UsingDecl>(OldD)) { 1461 ASTContext &Context = getASTContext(); 1462 return Context.getCanonicalNestedNameSpecifier( 1463 cast<UsingDecl>(this)->getQualifier()) == 1464 Context.getCanonicalNestedNameSpecifier( 1465 cast<UsingDecl>(OldD)->getQualifier()); 1466 } 1467 1468 if (isa<UnresolvedUsingValueDecl>(this) && 1469 isa<UnresolvedUsingValueDecl>(OldD)) { 1470 ASTContext &Context = getASTContext(); 1471 return Context.getCanonicalNestedNameSpecifier( 1472 cast<UnresolvedUsingValueDecl>(this)->getQualifier()) == 1473 Context.getCanonicalNestedNameSpecifier( 1474 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier()); 1475 } 1476 1477 // A typedef of an Objective-C class type can replace an Objective-C class 1478 // declaration or definition, and vice versa. 1479 // FIXME: Is this correct if one of the decls comes from an inline namespace? 1480 if ((isa<TypedefNameDecl>(this) && isa<ObjCInterfaceDecl>(OldD)) || 1481 (isa<ObjCInterfaceDecl>(this) && isa<TypedefNameDecl>(OldD))) 1482 return true; 1483 1484 // For non-function declarations, if the declarations are of the 1485 // same kind and have the same parent then this must be a redeclaration, 1486 // or semantic analysis would not have given us the new declaration. 1487 // Note that inline namespaces can give us two declarations with the same 1488 // name and kind in the same scope but different contexts. 1489 return this->getKind() == OldD->getKind() && 1490 this->getDeclContext()->getRedeclContext()->Equals( 1491 OldD->getDeclContext()->getRedeclContext()); 1492} 1493 1494bool NamedDecl::hasLinkage() const { 1495 return getFormalLinkage() != NoLinkage; 1496} 1497 1498NamedDecl *NamedDecl::getUnderlyingDeclImpl() { 1499 NamedDecl *ND = this; 1500 while (UsingShadowDecl *UD = dyn_cast<UsingShadowDecl>(ND)) 1501 ND = UD->getTargetDecl(); 1502 1503 if (ObjCCompatibleAliasDecl *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND)) 1504 return AD->getClassInterface(); 1505 1506 return ND; 1507} 1508 1509bool NamedDecl::isCXXInstanceMember() const { 1510 if (!isCXXClassMember()) 1511 return false; 1512 1513 const NamedDecl *D = this; 1514 if (isa<UsingShadowDecl>(D)) 1515 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 1516 1517 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D)) 1518 return true; 1519 if (const CXXMethodDecl *MD = 1520 dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction())) 1521 return MD->isInstance(); 1522 return false; 1523} 1524 1525//===----------------------------------------------------------------------===// 1526// DeclaratorDecl Implementation 1527//===----------------------------------------------------------------------===// 1528 1529template <typename DeclT> 1530static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) { 1531 if (decl->getNumTemplateParameterLists() > 0) 1532 return decl->getTemplateParameterList(0)->getTemplateLoc(); 1533 else 1534 return decl->getInnerLocStart(); 1535} 1536 1537SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const { 1538 TypeSourceInfo *TSI = getTypeSourceInfo(); 1539 if (TSI) return TSI->getTypeLoc().getBeginLoc(); 1540 return SourceLocation(); 1541} 1542 1543void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 1544 if (QualifierLoc) { 1545 // Make sure the extended decl info is allocated. 1546 if (!hasExtInfo()) { 1547 // Save (non-extended) type source info pointer. 1548 TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1549 // Allocate external info struct. 1550 DeclInfo = new (getASTContext()) ExtInfo; 1551 // Restore savedTInfo into (extended) decl info. 1552 getExtInfo()->TInfo = savedTInfo; 1553 } 1554 // Set qualifier info. 1555 getExtInfo()->QualifierLoc = QualifierLoc; 1556 } else { 1557 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 1558 if (hasExtInfo()) { 1559 if (getExtInfo()->NumTemplParamLists == 0) { 1560 // Save type source info pointer. 1561 TypeSourceInfo *savedTInfo = getExtInfo()->TInfo; 1562 // Deallocate the extended decl info. 1563 getASTContext().Deallocate(getExtInfo()); 1564 // Restore savedTInfo into (non-extended) decl info. 1565 DeclInfo = savedTInfo; 1566 } 1567 else 1568 getExtInfo()->QualifierLoc = QualifierLoc; 1569 } 1570 } 1571} 1572 1573void 1574DeclaratorDecl::setTemplateParameterListsInfo(ASTContext &Context, 1575 unsigned NumTPLists, 1576 TemplateParameterList **TPLists) { 1577 assert(NumTPLists > 0); 1578 // Make sure the extended decl info is allocated. 1579 if (!hasExtInfo()) { 1580 // Save (non-extended) type source info pointer. 1581 TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1582 // Allocate external info struct. 1583 DeclInfo = new (getASTContext()) ExtInfo; 1584 // Restore savedTInfo into (extended) decl info. 1585 getExtInfo()->TInfo = savedTInfo; 1586 } 1587 // Set the template parameter lists info. 1588 getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists); 1589} 1590 1591SourceLocation DeclaratorDecl::getOuterLocStart() const { 1592 return getTemplateOrInnerLocStart(this); 1593} 1594 1595namespace { 1596 1597// Helper function: returns true if QT is or contains a type 1598// having a postfix component. 1599bool typeIsPostfix(clang::QualType QT) { 1600 while (true) { 1601 const Type* T = QT.getTypePtr(); 1602 switch (T->getTypeClass()) { 1603 default: 1604 return false; 1605 case Type::Pointer: 1606 QT = cast<PointerType>(T)->getPointeeType(); 1607 break; 1608 case Type::BlockPointer: 1609 QT = cast<BlockPointerType>(T)->getPointeeType(); 1610 break; 1611 case Type::MemberPointer: 1612 QT = cast<MemberPointerType>(T)->getPointeeType(); 1613 break; 1614 case Type::LValueReference: 1615 case Type::RValueReference: 1616 QT = cast<ReferenceType>(T)->getPointeeType(); 1617 break; 1618 case Type::PackExpansion: 1619 QT = cast<PackExpansionType>(T)->getPattern(); 1620 break; 1621 case Type::Paren: 1622 case Type::ConstantArray: 1623 case Type::DependentSizedArray: 1624 case Type::IncompleteArray: 1625 case Type::VariableArray: 1626 case Type::FunctionProto: 1627 case Type::FunctionNoProto: 1628 return true; 1629 } 1630 } 1631} 1632 1633} // namespace 1634 1635SourceRange DeclaratorDecl::getSourceRange() const { 1636 SourceLocation RangeEnd = getLocation(); 1637 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 1638 // If the declaration has no name or the type extends past the name take the 1639 // end location of the type. 1640 if (!getDeclName() || typeIsPostfix(TInfo->getType())) 1641 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 1642 } 1643 return SourceRange(getOuterLocStart(), RangeEnd); 1644} 1645 1646void 1647QualifierInfo::setTemplateParameterListsInfo(ASTContext &Context, 1648 unsigned NumTPLists, 1649 TemplateParameterList **TPLists) { 1650 assert((NumTPLists == 0 || TPLists != nullptr) && 1651 "Empty array of template parameters with positive size!"); 1652 1653 // Free previous template parameters (if any). 1654 if (NumTemplParamLists > 0) { 1655 Context.Deallocate(TemplParamLists); 1656 TemplParamLists = nullptr; 1657 NumTemplParamLists = 0; 1658 } 1659 // Set info on matched template parameter lists (if any). 1660 if (NumTPLists > 0) { 1661 TemplParamLists = new (Context) TemplateParameterList*[NumTPLists]; 1662 NumTemplParamLists = NumTPLists; 1663 for (unsigned i = NumTPLists; i-- > 0; ) 1664 TemplParamLists[i] = TPLists[i]; 1665 } 1666} 1667 1668//===----------------------------------------------------------------------===// 1669// VarDecl Implementation 1670//===----------------------------------------------------------------------===// 1671 1672const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) { 1673 switch (SC) { 1674 case SC_None: break; 1675 case SC_Auto: return "auto"; 1676 case SC_Extern: return "extern"; 1677 case SC_OpenCLWorkGroupLocal: return "<<work-group-local>>"; 1678 case SC_PrivateExtern: return "__private_extern__"; 1679 case SC_Register: return "register"; 1680 case SC_Static: return "static"; 1681 } 1682 1683 llvm_unreachable("Invalid storage class"); 1684} 1685 1686VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC, 1687 SourceLocation StartLoc, SourceLocation IdLoc, 1688 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 1689 StorageClass SC) 1690 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), 1691 redeclarable_base(C), Init() { 1692 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned), 1693 "VarDeclBitfields too large!"); 1694 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned), 1695 "ParmVarDeclBitfields too large!"); 1696 AllBits = 0; 1697 VarDeclBits.SClass = SC; 1698 // Everything else is implicitly initialized to false. 1699} 1700 1701VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, 1702 SourceLocation StartL, SourceLocation IdL, 1703 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 1704 StorageClass S) { 1705 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S); 1706} 1707 1708VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 1709 return new (C, ID) 1710 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr, 1711 QualType(), nullptr, SC_None); 1712} 1713 1714void VarDecl::setStorageClass(StorageClass SC) { 1715 assert(isLegalForVariable(SC)); 1716 VarDeclBits.SClass = SC; 1717} 1718 1719VarDecl::TLSKind VarDecl::getTLSKind() const { 1720 switch (VarDeclBits.TSCSpec) { 1721 case TSCS_unspecified: 1722 if (hasAttr<ThreadAttr>()) 1723 return TLS_Static; 1724 return TLS_None; 1725 case TSCS___thread: // Fall through. 1726 case TSCS__Thread_local: 1727 return TLS_Static; 1728 case TSCS_thread_local: 1729 return TLS_Dynamic; 1730 } 1731 llvm_unreachable("Unknown thread storage class specifier!"); 1732} 1733 1734SourceRange VarDecl::getSourceRange() const { 1735 if (const Expr *Init = getInit()) { 1736 SourceLocation InitEnd = Init->getLocEnd(); 1737 // If Init is implicit, ignore its source range and fallback on 1738 // DeclaratorDecl::getSourceRange() to handle postfix elements. 1739 if (InitEnd.isValid() && InitEnd != getLocation()) 1740 return SourceRange(getOuterLocStart(), InitEnd); 1741 } 1742 return DeclaratorDecl::getSourceRange(); 1743} 1744 1745template<typename T> 1746static LanguageLinkage getDeclLanguageLinkage(const T &D) { 1747 // C++ [dcl.link]p1: All function types, function names with external linkage, 1748 // and variable names with external linkage have a language linkage. 1749 if (!D.hasExternalFormalLinkage()) 1750 return NoLanguageLinkage; 1751 1752 // Language linkage is a C++ concept, but saying that everything else in C has 1753 // C language linkage fits the implementation nicely. 1754 ASTContext &Context = D.getASTContext(); 1755 if (!Context.getLangOpts().CPlusPlus) 1756 return CLanguageLinkage; 1757 1758 // C++ [dcl.link]p4: A C language linkage is ignored in determining the 1759 // language linkage of the names of class members and the function type of 1760 // class member functions. 1761 const DeclContext *DC = D.getDeclContext(); 1762 if (DC->isRecord()) 1763 return CXXLanguageLinkage; 1764 1765 // If the first decl is in an extern "C" context, any other redeclaration 1766 // will have C language linkage. If the first one is not in an extern "C" 1767 // context, we would have reported an error for any other decl being in one. 1768 if (isFirstInExternCContext(&D)) 1769 return CLanguageLinkage; 1770 return CXXLanguageLinkage; 1771} 1772 1773template<typename T> 1774static bool isDeclExternC(const T &D) { 1775 // Since the context is ignored for class members, they can only have C++ 1776 // language linkage or no language linkage. 1777 const DeclContext *DC = D.getDeclContext(); 1778 if (DC->isRecord()) { 1779 assert(D.getASTContext().getLangOpts().CPlusPlus); 1780 return false; 1781 } 1782 1783 return D.getLanguageLinkage() == CLanguageLinkage; 1784} 1785 1786LanguageLinkage VarDecl::getLanguageLinkage() const { 1787 return getDeclLanguageLinkage(*this); 1788} 1789 1790bool VarDecl::isExternC() const { 1791 return isDeclExternC(*this); 1792} 1793 1794bool VarDecl::isInExternCContext() const { 1795 return getLexicalDeclContext()->isExternCContext(); 1796} 1797 1798bool VarDecl::isInExternCXXContext() const { 1799 return getLexicalDeclContext()->isExternCXXContext(); 1800} 1801 1802VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); } 1803 1804VarDecl::DefinitionKind VarDecl::isThisDeclarationADefinition( 1805 ASTContext &C) const 1806{ 1807 // C++ [basic.def]p2: 1808 // A declaration is a definition unless [...] it contains the 'extern' 1809 // specifier or a linkage-specification and neither an initializer [...], 1810 // it declares a static data member in a class declaration [...]. 1811 // C++1y [temp.expl.spec]p15: 1812 // An explicit specialization of a static data member or an explicit 1813 // specialization of a static data member template is a definition if the 1814 // declaration includes an initializer; otherwise, it is a declaration. 1815 // 1816 // FIXME: How do you declare (but not define) a partial specialization of 1817 // a static data member template outside the containing class? 1818 if (isStaticDataMember()) { 1819 if (isOutOfLine() && 1820 (hasInit() || 1821 // If the first declaration is out-of-line, this may be an 1822 // instantiation of an out-of-line partial specialization of a variable 1823 // template for which we have not yet instantiated the initializer. 1824 (getFirstDecl()->isOutOfLine() 1825 ? getTemplateSpecializationKind() == TSK_Undeclared 1826 : getTemplateSpecializationKind() != 1827 TSK_ExplicitSpecialization) || 1828 isa<VarTemplatePartialSpecializationDecl>(this))) 1829 return Definition; 1830 else 1831 return DeclarationOnly; 1832 } 1833 // C99 6.7p5: 1834 // A definition of an identifier is a declaration for that identifier that 1835 // [...] causes storage to be reserved for that object. 1836 // Note: that applies for all non-file-scope objects. 1837 // C99 6.9.2p1: 1838 // If the declaration of an identifier for an object has file scope and an 1839 // initializer, the declaration is an external definition for the identifier 1840 if (hasInit()) 1841 return Definition; 1842 1843 if (hasAttr<AliasAttr>()) 1844 return Definition; 1845 1846 // A variable template specialization (other than a static data member 1847 // template or an explicit specialization) is a declaration until we 1848 // instantiate its initializer. 1849 if (isa<VarTemplateSpecializationDecl>(this) && 1850 getTemplateSpecializationKind() != TSK_ExplicitSpecialization) 1851 return DeclarationOnly; 1852 1853 if (hasExternalStorage()) 1854 return DeclarationOnly; 1855 1856 // [dcl.link] p7: 1857 // A declaration directly contained in a linkage-specification is treated 1858 // as if it contains the extern specifier for the purpose of determining 1859 // the linkage of the declared name and whether it is a definition. 1860 if (isSingleLineLanguageLinkage(*this)) 1861 return DeclarationOnly; 1862 1863 // C99 6.9.2p2: 1864 // A declaration of an object that has file scope without an initializer, 1865 // and without a storage class specifier or the scs 'static', constitutes 1866 // a tentative definition. 1867 // No such thing in C++. 1868 if (!C.getLangOpts().CPlusPlus && isFileVarDecl()) 1869 return TentativeDefinition; 1870 1871 // What's left is (in C, block-scope) declarations without initializers or 1872 // external storage. These are definitions. 1873 return Definition; 1874} 1875 1876VarDecl *VarDecl::getActingDefinition() { 1877 DefinitionKind Kind = isThisDeclarationADefinition(); 1878 if (Kind != TentativeDefinition) 1879 return nullptr; 1880 1881 VarDecl *LastTentative = nullptr; 1882 VarDecl *First = getFirstDecl(); 1883 for (auto I : First->redecls()) { 1884 Kind = I->isThisDeclarationADefinition(); 1885 if (Kind == Definition) 1886 return nullptr; 1887 else if (Kind == TentativeDefinition) 1888 LastTentative = I; 1889 } 1890 return LastTentative; 1891} 1892 1893VarDecl *VarDecl::getDefinition(ASTContext &C) { 1894 VarDecl *First = getFirstDecl(); 1895 for (auto I : First->redecls()) { 1896 if (I->isThisDeclarationADefinition(C) == Definition) 1897 return I; 1898 } 1899 return nullptr; 1900} 1901 1902VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const { 1903 DefinitionKind Kind = DeclarationOnly; 1904 1905 const VarDecl *First = getFirstDecl(); 1906 for (auto I : First->redecls()) { 1907 Kind = std::max(Kind, I->isThisDeclarationADefinition(C)); 1908 if (Kind == Definition) 1909 break; 1910 } 1911 1912 return Kind; 1913} 1914 1915const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const { 1916 for (auto I : redecls()) { 1917 if (auto Expr = I->getInit()) { 1918 D = I; 1919 return Expr; 1920 } 1921 } 1922 return nullptr; 1923} 1924 1925bool VarDecl::isOutOfLine() const { 1926 if (Decl::isOutOfLine()) 1927 return true; 1928 1929 if (!isStaticDataMember()) 1930 return false; 1931 1932 // If this static data member was instantiated from a static data member of 1933 // a class template, check whether that static data member was defined 1934 // out-of-line. 1935 if (VarDecl *VD = getInstantiatedFromStaticDataMember()) 1936 return VD->isOutOfLine(); 1937 1938 return false; 1939} 1940 1941VarDecl *VarDecl::getOutOfLineDefinition() { 1942 if (!isStaticDataMember()) 1943 return nullptr; 1944 1945 for (auto RD : redecls()) { 1946 if (RD->getLexicalDeclContext()->isFileContext()) 1947 return RD; 1948 } 1949 1950 return nullptr; 1951} 1952 1953void VarDecl::setInit(Expr *I) { 1954 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) { 1955 Eval->~EvaluatedStmt(); 1956 getASTContext().Deallocate(Eval); 1957 } 1958 1959 Init = I; 1960} 1961 1962bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const { 1963 const LangOptions &Lang = C.getLangOpts(); 1964 1965 if (!Lang.CPlusPlus) 1966 return false; 1967 1968 // In C++11, any variable of reference type can be used in a constant 1969 // expression if it is initialized by a constant expression. 1970 if (Lang.CPlusPlus11 && getType()->isReferenceType()) 1971 return true; 1972 1973 // Only const objects can be used in constant expressions in C++. C++98 does 1974 // not require the variable to be non-volatile, but we consider this to be a 1975 // defect. 1976 if (!getType().isConstQualified() || getType().isVolatileQualified()) 1977 return false; 1978 1979 // In C++, const, non-volatile variables of integral or enumeration types 1980 // can be used in constant expressions. 1981 if (getType()->isIntegralOrEnumerationType()) 1982 return true; 1983 1984 // Additionally, in C++11, non-volatile constexpr variables can be used in 1985 // constant expressions. 1986 return Lang.CPlusPlus11 && isConstexpr(); 1987} 1988 1989/// Convert the initializer for this declaration to the elaborated EvaluatedStmt 1990/// form, which contains extra information on the evaluated value of the 1991/// initializer. 1992EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const { 1993 EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>(); 1994 if (!Eval) { 1995 Stmt *S = Init.get<Stmt *>(); 1996 // Note: EvaluatedStmt contains an APValue, which usually holds 1997 // resources not allocated from the ASTContext. We need to do some 1998 // work to avoid leaking those, but we do so in VarDecl::evaluateValue 1999 // where we can detect whether there's anything to clean up or not. 2000 Eval = new (getASTContext()) EvaluatedStmt; 2001 Eval->Value = S; 2002 Init = Eval; 2003 } 2004 return Eval; 2005} 2006 2007APValue *VarDecl::evaluateValue() const { 2008 SmallVector<PartialDiagnosticAt, 8> Notes; 2009 return evaluateValue(Notes); 2010} 2011 2012namespace { 2013// Destroy an APValue that was allocated in an ASTContext. 2014void DestroyAPValue(void* UntypedValue) { 2015 static_cast<APValue*>(UntypedValue)->~APValue(); 2016} 2017} // namespace 2018 2019APValue *VarDecl::evaluateValue( 2020 SmallVectorImpl<PartialDiagnosticAt> &Notes) const { 2021 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2022 2023 // We only produce notes indicating why an initializer is non-constant the 2024 // first time it is evaluated. FIXME: The notes won't always be emitted the 2025 // first time we try evaluation, so might not be produced at all. 2026 if (Eval->WasEvaluated) 2027 return Eval->Evaluated.isUninit() ? nullptr : &Eval->Evaluated; 2028 2029 const Expr *Init = cast<Expr>(Eval->Value); 2030 assert(!Init->isValueDependent()); 2031 2032 if (Eval->IsEvaluating) { 2033 // FIXME: Produce a diagnostic for self-initialization. 2034 Eval->CheckedICE = true; 2035 Eval->IsICE = false; 2036 return nullptr; 2037 } 2038 2039 Eval->IsEvaluating = true; 2040 2041 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(), 2042 this, Notes); 2043 2044 // Ensure the computed APValue is cleaned up later if evaluation succeeded, 2045 // or that it's empty (so that there's nothing to clean up) if evaluation 2046 // failed. 2047 if (!Result) 2048 Eval->Evaluated = APValue(); 2049 else if (Eval->Evaluated.needsCleanup()) 2050 getASTContext().AddDeallocation(DestroyAPValue, &Eval->Evaluated); 2051 2052 Eval->IsEvaluating = false; 2053 Eval->WasEvaluated = true; 2054 2055 // In C++11, we have determined whether the initializer was a constant 2056 // expression as a side-effect. 2057 if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) { 2058 Eval->CheckedICE = true; 2059 Eval->IsICE = Result && Notes.empty(); 2060 } 2061 2062 return Result ? &Eval->Evaluated : nullptr; 2063} 2064 2065bool VarDecl::checkInitIsICE() const { 2066 // Initializers of weak variables are never ICEs. 2067 if (isWeak()) 2068 return false; 2069 2070 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2071 if (Eval->CheckedICE) 2072 // We have already checked whether this subexpression is an 2073 // integral constant expression. 2074 return Eval->IsICE; 2075 2076 const Expr *Init = cast<Expr>(Eval->Value); 2077 assert(!Init->isValueDependent()); 2078 2079 // In C++11, evaluate the initializer to check whether it's a constant 2080 // expression. 2081 if (getASTContext().getLangOpts().CPlusPlus11) { 2082 SmallVector<PartialDiagnosticAt, 8> Notes; 2083 evaluateValue(Notes); 2084 return Eval->IsICE; 2085 } 2086 2087 // It's an ICE whether or not the definition we found is 2088 // out-of-line. See DR 721 and the discussion in Clang PR 2089 // 6206 for details. 2090 2091 if (Eval->CheckingICE) 2092 return false; 2093 Eval->CheckingICE = true; 2094 2095 Eval->IsICE = Init->isIntegerConstantExpr(getASTContext()); 2096 Eval->CheckingICE = false; 2097 Eval->CheckedICE = true; 2098 return Eval->IsICE; 2099} 2100 2101VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const { 2102 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2103 return cast<VarDecl>(MSI->getInstantiatedFrom()); 2104 2105 return nullptr; 2106} 2107 2108TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const { 2109 if (const VarTemplateSpecializationDecl *Spec = 2110 dyn_cast<VarTemplateSpecializationDecl>(this)) 2111 return Spec->getSpecializationKind(); 2112 2113 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2114 return MSI->getTemplateSpecializationKind(); 2115 2116 return TSK_Undeclared; 2117} 2118 2119SourceLocation VarDecl::getPointOfInstantiation() const { 2120 if (const VarTemplateSpecializationDecl *Spec = 2121 dyn_cast<VarTemplateSpecializationDecl>(this)) 2122 return Spec->getPointOfInstantiation(); 2123 2124 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2125 return MSI->getPointOfInstantiation(); 2126 2127 return SourceLocation(); 2128} 2129 2130VarTemplateDecl *VarDecl::getDescribedVarTemplate() const { 2131 return getASTContext().getTemplateOrSpecializationInfo(this) 2132 .dyn_cast<VarTemplateDecl *>(); 2133} 2134 2135void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) { 2136 getASTContext().setTemplateOrSpecializationInfo(this, Template); 2137} 2138 2139MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const { 2140 if (isStaticDataMember()) 2141 // FIXME: Remove ? 2142 // return getASTContext().getInstantiatedFromStaticDataMember(this); 2143 return getASTContext().getTemplateOrSpecializationInfo(this) 2144 .dyn_cast<MemberSpecializationInfo *>(); 2145 return nullptr; 2146} 2147 2148void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 2149 SourceLocation PointOfInstantiation) { 2150 assert((isa<VarTemplateSpecializationDecl>(this) || 2151 getMemberSpecializationInfo()) && 2152 "not a variable or static data member template specialization"); 2153 2154 if (VarTemplateSpecializationDecl *Spec = 2155 dyn_cast<VarTemplateSpecializationDecl>(this)) { 2156 Spec->setSpecializationKind(TSK); 2157 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && 2158 Spec->getPointOfInstantiation().isInvalid()) 2159 Spec->setPointOfInstantiation(PointOfInstantiation); 2160 } 2161 2162 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) { 2163 MSI->setTemplateSpecializationKind(TSK); 2164 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && 2165 MSI->getPointOfInstantiation().isInvalid()) 2166 MSI->setPointOfInstantiation(PointOfInstantiation); 2167 } 2168} 2169 2170void 2171VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD, 2172 TemplateSpecializationKind TSK) { 2173 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() && 2174 "Previous template or instantiation?"); 2175 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK); 2176} 2177 2178//===----------------------------------------------------------------------===// 2179// ParmVarDecl Implementation 2180//===----------------------------------------------------------------------===// 2181 2182ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC, 2183 SourceLocation StartLoc, 2184 SourceLocation IdLoc, IdentifierInfo *Id, 2185 QualType T, TypeSourceInfo *TInfo, 2186 StorageClass S, Expr *DefArg) { 2187 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo, 2188 S, DefArg); 2189} 2190 2191QualType ParmVarDecl::getOriginalType() const { 2192 TypeSourceInfo *TSI = getTypeSourceInfo(); 2193 QualType T = TSI ? TSI->getType() : getType(); 2194 if (const DecayedType *DT = dyn_cast<DecayedType>(T)) 2195 return DT->getOriginalType(); 2196 return T; 2197} 2198 2199ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2200 return new (C, ID) 2201 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(), 2202 nullptr, QualType(), nullptr, SC_None, nullptr); 2203} 2204 2205SourceRange ParmVarDecl::getSourceRange() const { 2206 if (!hasInheritedDefaultArg()) { 2207 SourceRange ArgRange = getDefaultArgRange(); 2208 if (ArgRange.isValid()) 2209 return SourceRange(getOuterLocStart(), ArgRange.getEnd()); 2210 } 2211 2212 // DeclaratorDecl considers the range of postfix types as overlapping with the 2213 // declaration name, but this is not the case with parameters in ObjC methods. 2214 if (isa<ObjCMethodDecl>(getDeclContext())) 2215 return SourceRange(DeclaratorDecl::getLocStart(), getLocation()); 2216 2217 return DeclaratorDecl::getSourceRange(); 2218} 2219 2220Expr *ParmVarDecl::getDefaultArg() { 2221 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!"); 2222 assert(!hasUninstantiatedDefaultArg() && 2223 "Default argument is not yet instantiated!"); 2224 2225 Expr *Arg = getInit(); 2226 if (ExprWithCleanups *E = dyn_cast_or_null<ExprWithCleanups>(Arg)) 2227 return E->getSubExpr(); 2228 2229 return Arg; 2230} 2231 2232SourceRange ParmVarDecl::getDefaultArgRange() const { 2233 if (const Expr *E = getInit()) 2234 return E->getSourceRange(); 2235 2236 if (hasUninstantiatedDefaultArg()) 2237 return getUninstantiatedDefaultArg()->getSourceRange(); 2238 2239 return SourceRange(); 2240} 2241 2242bool ParmVarDecl::isParameterPack() const { 2243 return isa<PackExpansionType>(getType()); 2244} 2245 2246void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) { 2247 getASTContext().setParameterIndex(this, parameterIndex); 2248 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel; 2249} 2250 2251unsigned ParmVarDecl::getParameterIndexLarge() const { 2252 return getASTContext().getParameterIndex(this); 2253} 2254 2255//===----------------------------------------------------------------------===// 2256// FunctionDecl Implementation 2257//===----------------------------------------------------------------------===// 2258 2259void FunctionDecl::getNameForDiagnostic( 2260 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const { 2261 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified); 2262 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs(); 2263 if (TemplateArgs) 2264 TemplateSpecializationType::PrintTemplateArgumentList( 2265 OS, TemplateArgs->data(), TemplateArgs->size(), Policy); 2266} 2267 2268bool FunctionDecl::isVariadic() const { 2269 if (const FunctionProtoType *FT = getType()->getAs<FunctionProtoType>()) 2270 return FT->isVariadic(); 2271 return false; 2272} 2273 2274bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const { 2275 for (auto I : redecls()) { 2276 if (I->Body || I->IsLateTemplateParsed) { 2277 Definition = I; 2278 return true; 2279 } 2280 } 2281 2282 return false; 2283} 2284 2285bool FunctionDecl::hasTrivialBody() const 2286{ 2287 Stmt *S = getBody(); 2288 if (!S) { 2289 // Since we don't have a body for this function, we don't know if it's 2290 // trivial or not. 2291 return false; 2292 } 2293 2294 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty()) 2295 return true; 2296 return false; 2297} 2298 2299bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const { 2300 for (auto I : redecls()) { 2301 if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed || 2302 I->hasAttr<AliasAttr>()) { 2303 Definition = I->IsDeleted ? I->getCanonicalDecl() : I; 2304 return true; 2305 } 2306 } 2307 2308 return false; 2309} 2310 2311Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const { 2312 if (!hasBody(Definition)) 2313 return nullptr; 2314 2315 if (Definition->Body) 2316 return Definition->Body.get(getASTContext().getExternalSource()); 2317 2318 return nullptr; 2319} 2320 2321void FunctionDecl::setBody(Stmt *B) { 2322 Body = B; 2323 if (B) 2324 EndRangeLoc = B->getLocEnd(); 2325} 2326 2327void FunctionDecl::setPure(bool P) { 2328 IsPure = P; 2329 if (P) 2330 if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(getDeclContext())) 2331 Parent->markedVirtualFunctionPure(); 2332} 2333 2334template<std::size_t Len> 2335static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) { 2336 IdentifierInfo *II = ND->getIdentifier(); 2337 return II && II->isStr(Str); 2338} 2339 2340bool FunctionDecl::isMain() const { 2341 const TranslationUnitDecl *tunit = 2342 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 2343 return tunit && 2344 !tunit->getASTContext().getLangOpts().Freestanding && 2345 isNamed(this, "main"); 2346} 2347 2348bool FunctionDecl::isMSVCRTEntryPoint() const { 2349 const TranslationUnitDecl *TUnit = 2350 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 2351 if (!TUnit) 2352 return false; 2353 2354 // Even though we aren't really targeting MSVCRT if we are freestanding, 2355 // semantic analysis for these functions remains the same. 2356 2357 // MSVCRT entry points only exist on MSVCRT targets. 2358 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT()) 2359 return false; 2360 2361 // Nameless functions like constructors cannot be entry points. 2362 if (!getIdentifier()) 2363 return false; 2364 2365 return llvm::StringSwitch<bool>(getName()) 2366 .Cases("main", // an ANSI console app 2367 "wmain", // a Unicode console App 2368 "WinMain", // an ANSI GUI app 2369 "wWinMain", // a Unicode GUI app 2370 "DllMain", // a DLL 2371 true) 2372 .Default(false); 2373} 2374 2375bool FunctionDecl::isReservedGlobalPlacementOperator() const { 2376 assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName); 2377 assert(getDeclName().getCXXOverloadedOperator() == OO_New || 2378 getDeclName().getCXXOverloadedOperator() == OO_Delete || 2379 getDeclName().getCXXOverloadedOperator() == OO_Array_New || 2380 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete); 2381 2382 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 2383 return false; 2384 2385 const FunctionProtoType *proto = getType()->castAs<FunctionProtoType>(); 2386 if (proto->getNumParams() != 2 || proto->isVariadic()) 2387 return false; 2388 2389 ASTContext &Context = 2390 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()) 2391 ->getASTContext(); 2392 2393 // The result type and first argument type are constant across all 2394 // these operators. The second argument must be exactly void*. 2395 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy); 2396} 2397 2398bool FunctionDecl::isReplaceableGlobalAllocationFunction() const { 2399 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName) 2400 return false; 2401 if (getDeclName().getCXXOverloadedOperator() != OO_New && 2402 getDeclName().getCXXOverloadedOperator() != OO_Delete && 2403 getDeclName().getCXXOverloadedOperator() != OO_Array_New && 2404 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) 2405 return false; 2406 2407 if (isa<CXXRecordDecl>(getDeclContext())) 2408 return false; 2409 2410 // This can only fail for an invalid 'operator new' declaration. 2411 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 2412 return false; 2413 2414 const FunctionProtoType *FPT = getType()->castAs<FunctionProtoType>(); 2415 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 2 || FPT->isVariadic()) 2416 return false; 2417 2418 // If this is a single-parameter function, it must be a replaceable global 2419 // allocation or deallocation function. 2420 if (FPT->getNumParams() == 1) 2421 return true; 2422 2423 // Otherwise, we're looking for a second parameter whose type is 2424 // 'const std::nothrow_t &', or, in C++1y, 'std::size_t'. 2425 QualType Ty = FPT->getParamType(1); 2426 ASTContext &Ctx = getASTContext(); 2427 if (Ctx.getLangOpts().SizedDeallocation && 2428 Ctx.hasSameType(Ty, Ctx.getSizeType())) 2429 return true; 2430 if (!Ty->isReferenceType()) 2431 return false; 2432 Ty = Ty->getPointeeType(); 2433 if (Ty.getCVRQualifiers() != Qualifiers::Const) 2434 return false; 2435 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 2436 return RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace(); 2437} 2438 2439FunctionDecl * 2440FunctionDecl::getCorrespondingUnsizedGlobalDeallocationFunction() const { 2441 ASTContext &Ctx = getASTContext(); 2442 if (!Ctx.getLangOpts().SizedDeallocation) 2443 return nullptr; 2444 2445 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName) 2446 return nullptr; 2447 if (getDeclName().getCXXOverloadedOperator() != OO_Delete && 2448 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) 2449 return nullptr; 2450 if (isa<CXXRecordDecl>(getDeclContext())) 2451 return nullptr; 2452 2453 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 2454 return nullptr; 2455 2456 if (getNumParams() != 2 || isVariadic() || 2457 !Ctx.hasSameType(getType()->castAs<FunctionProtoType>()->getParamType(1), 2458 Ctx.getSizeType())) 2459 return nullptr; 2460 2461 // This is a sized deallocation function. Find the corresponding unsized 2462 // deallocation function. 2463 lookup_const_result R = getDeclContext()->lookup(getDeclName()); 2464 for (lookup_const_result::iterator RI = R.begin(), RE = R.end(); RI != RE; 2465 ++RI) 2466 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*RI)) 2467 if (FD->getNumParams() == 1 && !FD->isVariadic()) 2468 return FD; 2469 return nullptr; 2470} 2471 2472LanguageLinkage FunctionDecl::getLanguageLinkage() const { 2473 return getDeclLanguageLinkage(*this); 2474} 2475 2476bool FunctionDecl::isExternC() const { 2477 return isDeclExternC(*this); 2478} 2479 2480bool FunctionDecl::isInExternCContext() const { 2481 return getLexicalDeclContext()->isExternCContext(); 2482} 2483 2484bool FunctionDecl::isInExternCXXContext() const { 2485 return getLexicalDeclContext()->isExternCXXContext(); 2486} 2487 2488bool FunctionDecl::isGlobal() const { 2489 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(this)) 2490 return Method->isStatic(); 2491 2492 if (getCanonicalDecl()->getStorageClass() == SC_Static) 2493 return false; 2494 2495 for (const DeclContext *DC = getDeclContext(); 2496 DC->isNamespace(); 2497 DC = DC->getParent()) { 2498 if (const NamespaceDecl *Namespace = cast<NamespaceDecl>(DC)) { 2499 if (!Namespace->getDeclName()) 2500 return false; 2501 break; 2502 } 2503 } 2504 2505 return true; 2506} 2507 2508bool FunctionDecl::isNoReturn() const { 2509 return hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() || 2510 hasAttr<C11NoReturnAttr>() || 2511 getType()->getAs<FunctionType>()->getNoReturnAttr(); 2512} 2513 2514void 2515FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) { 2516 redeclarable_base::setPreviousDecl(PrevDecl); 2517 2518 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) { 2519 FunctionTemplateDecl *PrevFunTmpl 2520 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr; 2521 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch"); 2522 FunTmpl->setPreviousDecl(PrevFunTmpl); 2523 } 2524 2525 if (PrevDecl && PrevDecl->IsInline) 2526 IsInline = true; 2527} 2528 2529const FunctionDecl *FunctionDecl::getCanonicalDecl() const { 2530 return getFirstDecl(); 2531} 2532 2533FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); } 2534 2535/// \brief Returns a value indicating whether this function 2536/// corresponds to a builtin function. 2537/// 2538/// The function corresponds to a built-in function if it is 2539/// declared at translation scope or within an extern "C" block and 2540/// its name matches with the name of a builtin. The returned value 2541/// will be 0 for functions that do not correspond to a builtin, a 2542/// value of type \c Builtin::ID if in the target-independent range 2543/// \c [1,Builtin::First), or a target-specific builtin value. 2544unsigned FunctionDecl::getBuiltinID() const { 2545 if (!getIdentifier()) 2546 return 0; 2547 2548 unsigned BuiltinID = getIdentifier()->getBuiltinID(); 2549 if (!BuiltinID) 2550 return 0; 2551 2552 ASTContext &Context = getASTContext(); 2553 if (Context.getLangOpts().CPlusPlus) { 2554 const LinkageSpecDecl *LinkageDecl = dyn_cast<LinkageSpecDecl>( 2555 getFirstDecl()->getDeclContext()); 2556 // In C++, the first declaration of a builtin is always inside an implicit 2557 // extern "C". 2558 // FIXME: A recognised library function may not be directly in an extern "C" 2559 // declaration, for instance "extern "C" { namespace std { decl } }". 2560 if (!LinkageDecl || LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c) 2561 return 0; 2562 } 2563 2564 // If the function is marked "overloadable", it has a different mangled name 2565 // and is not the C library function. 2566 if (hasAttr<OverloadableAttr>()) 2567 return 0; 2568 2569 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 2570 return BuiltinID; 2571 2572 // This function has the name of a known C library 2573 // function. Determine whether it actually refers to the C library 2574 // function or whether it just has the same name. 2575 2576 // If this is a static function, it's not a builtin. 2577 if (getStorageClass() == SC_Static) 2578 return 0; 2579 2580 return BuiltinID; 2581} 2582 2583 2584/// getNumParams - Return the number of parameters this function must have 2585/// based on its FunctionType. This is the length of the ParamInfo array 2586/// after it has been created. 2587unsigned FunctionDecl::getNumParams() const { 2588 const FunctionProtoType *FPT = getType()->getAs<FunctionProtoType>(); 2589 return FPT ? FPT->getNumParams() : 0; 2590} 2591 2592void FunctionDecl::setParams(ASTContext &C, 2593 ArrayRef<ParmVarDecl *> NewParamInfo) { 2594 assert(!ParamInfo && "Already has param info!"); 2595 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!"); 2596 2597 // Zero params -> null pointer. 2598 if (!NewParamInfo.empty()) { 2599 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()]; 2600 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 2601 } 2602} 2603 2604void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) { 2605 assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!"); 2606 2607 if (!NewDecls.empty()) { 2608 NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()]; 2609 std::copy(NewDecls.begin(), NewDecls.end(), A); 2610 DeclsInPrototypeScope = ArrayRef<NamedDecl *>(A, NewDecls.size()); 2611 // Move declarations introduced in prototype to the function context. 2612 for (auto I : NewDecls) { 2613 DeclContext *DC = I->getDeclContext(); 2614 // Forward-declared reference to an enumeration is not added to 2615 // declaration scope, so skip declaration that is absent from its 2616 // declaration contexts. 2617 if (DC->containsDecl(I)) { 2618 DC->removeDecl(I); 2619 I->setDeclContext(this); 2620 addDecl(I); 2621 } 2622 } 2623 } 2624} 2625 2626/// getMinRequiredArguments - Returns the minimum number of arguments 2627/// needed to call this function. This may be fewer than the number of 2628/// function parameters, if some of the parameters have default 2629/// arguments (in C++) or are parameter packs (C++11). 2630unsigned FunctionDecl::getMinRequiredArguments() const { 2631 if (!getASTContext().getLangOpts().CPlusPlus) 2632 return getNumParams(); 2633 2634 unsigned NumRequiredArgs = 0; 2635 for (auto *Param : params()) 2636 if (!Param->isParameterPack() && !Param->hasDefaultArg()) 2637 ++NumRequiredArgs; 2638 return NumRequiredArgs; 2639} 2640 2641/// \brief The combination of the extern and inline keywords under MSVC forces 2642/// the function to be required. 2643/// 2644/// Note: This function assumes that we will only get called when isInlined() 2645/// would return true for this FunctionDecl. 2646bool FunctionDecl::isMSExternInline() const { 2647 assert(isInlined() && "expected to get called on an inlined function!"); 2648 2649 const ASTContext &Context = getASTContext(); 2650 if (!Context.getLangOpts().MSVCCompat && !hasAttr<DLLExportAttr>()) 2651 return false; 2652 2653 for (const FunctionDecl *FD = this; FD; FD = FD->getPreviousDecl()) 2654 if (FD->getStorageClass() == SC_Extern) 2655 return true; 2656 2657 return false; 2658} 2659 2660static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) { 2661 if (Redecl->getStorageClass() != SC_Extern) 2662 return false; 2663 2664 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD; 2665 FD = FD->getPreviousDecl()) 2666 if (FD->getStorageClass() == SC_Extern) 2667 return false; 2668 2669 return true; 2670} 2671 2672static bool RedeclForcesDefC99(const FunctionDecl *Redecl) { 2673 // Only consider file-scope declarations in this test. 2674 if (!Redecl->getLexicalDeclContext()->isTranslationUnit()) 2675 return false; 2676 2677 // Only consider explicit declarations; the presence of a builtin for a 2678 // libcall shouldn't affect whether a definition is externally visible. 2679 if (Redecl->isImplicit()) 2680 return false; 2681 2682 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern) 2683 return true; // Not an inline definition 2684 2685 return false; 2686} 2687 2688/// \brief For a function declaration in C or C++, determine whether this 2689/// declaration causes the definition to be externally visible. 2690/// 2691/// For instance, this determines if adding the current declaration to the set 2692/// of redeclarations of the given functions causes 2693/// isInlineDefinitionExternallyVisible to change from false to true. 2694bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const { 2695 assert(!doesThisDeclarationHaveABody() && 2696 "Must have a declaration without a body."); 2697 2698 ASTContext &Context = getASTContext(); 2699 2700 if (Context.getLangOpts().MSVCCompat) { 2701 const FunctionDecl *Definition; 2702 if (hasBody(Definition) && Definition->isInlined() && 2703 redeclForcesDefMSVC(this)) 2704 return true; 2705 } 2706 2707 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 2708 // With GNU inlining, a declaration with 'inline' but not 'extern', forces 2709 // an externally visible definition. 2710 // 2711 // FIXME: What happens if gnu_inline gets added on after the first 2712 // declaration? 2713 if (!isInlineSpecified() || getStorageClass() == SC_Extern) 2714 return false; 2715 2716 const FunctionDecl *Prev = this; 2717 bool FoundBody = false; 2718 while ((Prev = Prev->getPreviousDecl())) { 2719 FoundBody |= Prev->Body.isValid(); 2720 2721 if (Prev->Body) { 2722 // If it's not the case that both 'inline' and 'extern' are 2723 // specified on the definition, then it is always externally visible. 2724 if (!Prev->isInlineSpecified() || 2725 Prev->getStorageClass() != SC_Extern) 2726 return false; 2727 } else if (Prev->isInlineSpecified() && 2728 Prev->getStorageClass() != SC_Extern) { 2729 return false; 2730 } 2731 } 2732 return FoundBody; 2733 } 2734 2735 if (Context.getLangOpts().CPlusPlus) 2736 return false; 2737 2738 // C99 6.7.4p6: 2739 // [...] If all of the file scope declarations for a function in a 2740 // translation unit include the inline function specifier without extern, 2741 // then the definition in that translation unit is an inline definition. 2742 if (isInlineSpecified() && getStorageClass() != SC_Extern) 2743 return false; 2744 const FunctionDecl *Prev = this; 2745 bool FoundBody = false; 2746 while ((Prev = Prev->getPreviousDecl())) { 2747 FoundBody |= Prev->Body.isValid(); 2748 if (RedeclForcesDefC99(Prev)) 2749 return false; 2750 } 2751 return FoundBody; 2752} 2753 2754SourceRange FunctionDecl::getReturnTypeSourceRange() const { 2755 const TypeSourceInfo *TSI = getTypeSourceInfo(); 2756 if (!TSI) 2757 return SourceRange(); 2758 FunctionTypeLoc FTL = 2759 TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>(); 2760 if (!FTL) 2761 return SourceRange(); 2762 2763 // Skip self-referential return types. 2764 const SourceManager &SM = getASTContext().getSourceManager(); 2765 SourceRange RTRange = FTL.getReturnLoc().getSourceRange(); 2766 SourceLocation Boundary = getNameInfo().getLocStart(); 2767 if (RTRange.isInvalid() || Boundary.isInvalid() || 2768 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary)) 2769 return SourceRange(); 2770 2771 return RTRange; 2772} 2773 2774/// \brief For an inline function definition in C, or for a gnu_inline function 2775/// in C++, determine whether the definition will be externally visible. 2776/// 2777/// Inline function definitions are always available for inlining optimizations. 2778/// However, depending on the language dialect, declaration specifiers, and 2779/// attributes, the definition of an inline function may or may not be 2780/// "externally" visible to other translation units in the program. 2781/// 2782/// In C99, inline definitions are not externally visible by default. However, 2783/// if even one of the global-scope declarations is marked "extern inline", the 2784/// inline definition becomes externally visible (C99 6.7.4p6). 2785/// 2786/// In GNU89 mode, or if the gnu_inline attribute is attached to the function 2787/// definition, we use the GNU semantics for inline, which are nearly the 2788/// opposite of C99 semantics. In particular, "inline" by itself will create 2789/// an externally visible symbol, but "extern inline" will not create an 2790/// externally visible symbol. 2791bool FunctionDecl::isInlineDefinitionExternallyVisible() const { 2792 assert(doesThisDeclarationHaveABody() && "Must have the function definition"); 2793 assert(isInlined() && "Function must be inline"); 2794 ASTContext &Context = getASTContext(); 2795 2796 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 2797 // Note: If you change the logic here, please change 2798 // doesDeclarationForceExternallyVisibleDefinition as well. 2799 // 2800 // If it's not the case that both 'inline' and 'extern' are 2801 // specified on the definition, then this inline definition is 2802 // externally visible. 2803 if (!(isInlineSpecified() && getStorageClass() == SC_Extern)) 2804 return true; 2805 2806 // If any declaration is 'inline' but not 'extern', then this definition 2807 // is externally visible. 2808 for (auto Redecl : redecls()) { 2809 if (Redecl->isInlineSpecified() && 2810 Redecl->getStorageClass() != SC_Extern) 2811 return true; 2812 } 2813 2814 return false; 2815 } 2816 2817 // The rest of this function is C-only. 2818 assert(!Context.getLangOpts().CPlusPlus && 2819 "should not use C inline rules in C++"); 2820 2821 // C99 6.7.4p6: 2822 // [...] If all of the file scope declarations for a function in a 2823 // translation unit include the inline function specifier without extern, 2824 // then the definition in that translation unit is an inline definition. 2825 for (auto Redecl : redecls()) { 2826 if (RedeclForcesDefC99(Redecl)) 2827 return true; 2828 } 2829 2830 // C99 6.7.4p6: 2831 // An inline definition does not provide an external definition for the 2832 // function, and does not forbid an external definition in another 2833 // translation unit. 2834 return false; 2835} 2836 2837/// getOverloadedOperator - Which C++ overloaded operator this 2838/// function represents, if any. 2839OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const { 2840 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName) 2841 return getDeclName().getCXXOverloadedOperator(); 2842 else 2843 return OO_None; 2844} 2845 2846/// getLiteralIdentifier - The literal suffix identifier this function 2847/// represents, if any. 2848const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const { 2849 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName) 2850 return getDeclName().getCXXLiteralIdentifier(); 2851 else 2852 return nullptr; 2853} 2854 2855FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const { 2856 if (TemplateOrSpecialization.isNull()) 2857 return TK_NonTemplate; 2858 if (TemplateOrSpecialization.is<FunctionTemplateDecl *>()) 2859 return TK_FunctionTemplate; 2860 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>()) 2861 return TK_MemberSpecialization; 2862 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>()) 2863 return TK_FunctionTemplateSpecialization; 2864 if (TemplateOrSpecialization.is 2865 <DependentFunctionTemplateSpecializationInfo*>()) 2866 return TK_DependentFunctionTemplateSpecialization; 2867 2868 llvm_unreachable("Did we miss a TemplateOrSpecialization type?"); 2869} 2870 2871FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const { 2872 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) 2873 return cast<FunctionDecl>(Info->getInstantiatedFrom()); 2874 2875 return nullptr; 2876} 2877 2878void 2879FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C, 2880 FunctionDecl *FD, 2881 TemplateSpecializationKind TSK) { 2882 assert(TemplateOrSpecialization.isNull() && 2883 "Member function is already a specialization"); 2884 MemberSpecializationInfo *Info 2885 = new (C) MemberSpecializationInfo(FD, TSK); 2886 TemplateOrSpecialization = Info; 2887} 2888 2889bool FunctionDecl::isImplicitlyInstantiable() const { 2890 // If the function is invalid, it can't be implicitly instantiated. 2891 if (isInvalidDecl()) 2892 return false; 2893 2894 switch (getTemplateSpecializationKind()) { 2895 case TSK_Undeclared: 2896 case TSK_ExplicitInstantiationDefinition: 2897 return false; 2898 2899 case TSK_ImplicitInstantiation: 2900 return true; 2901 2902 // It is possible to instantiate TSK_ExplicitSpecialization kind 2903 // if the FunctionDecl has a class scope specialization pattern. 2904 case TSK_ExplicitSpecialization: 2905 return getClassScopeSpecializationPattern() != nullptr; 2906 2907 case TSK_ExplicitInstantiationDeclaration: 2908 // Handled below. 2909 break; 2910 } 2911 2912 // Find the actual template from which we will instantiate. 2913 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern(); 2914 bool HasPattern = false; 2915 if (PatternDecl) 2916 HasPattern = PatternDecl->hasBody(PatternDecl); 2917 2918 // C++0x [temp.explicit]p9: 2919 // Except for inline functions, other explicit instantiation declarations 2920 // have the effect of suppressing the implicit instantiation of the entity 2921 // to which they refer. 2922 if (!HasPattern || !PatternDecl) 2923 return true; 2924 2925 return PatternDecl->isInlined(); 2926} 2927 2928bool FunctionDecl::isTemplateInstantiation() const { 2929 switch (getTemplateSpecializationKind()) { 2930 case TSK_Undeclared: 2931 case TSK_ExplicitSpecialization: 2932 return false; 2933 case TSK_ImplicitInstantiation: 2934 case TSK_ExplicitInstantiationDeclaration: 2935 case TSK_ExplicitInstantiationDefinition: 2936 return true; 2937 } 2938 llvm_unreachable("All TSK values handled."); 2939} 2940 2941FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const { 2942 // Handle class scope explicit specialization special case. 2943 if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 2944 return getClassScopeSpecializationPattern(); 2945 2946 // If this is a generic lambda call operator specialization, its 2947 // instantiation pattern is always its primary template's pattern 2948 // even if its primary template was instantiated from another 2949 // member template (which happens with nested generic lambdas). 2950 // Since a lambda's call operator's body is transformed eagerly, 2951 // we don't have to go hunting for a prototype definition template 2952 // (i.e. instantiated-from-member-template) to use as an instantiation 2953 // pattern. 2954 2955 if (isGenericLambdaCallOperatorSpecialization( 2956 dyn_cast<CXXMethodDecl>(this))) { 2957 assert(getPrimaryTemplate() && "A generic lambda specialization must be " 2958 "generated from a primary call operator " 2959 "template"); 2960 assert(getPrimaryTemplate()->getTemplatedDecl()->getBody() && 2961 "A generic lambda call operator template must always have a body - " 2962 "even if instantiated from a prototype (i.e. as written) member " 2963 "template"); 2964 return getPrimaryTemplate()->getTemplatedDecl(); 2965 } 2966 2967 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) { 2968 while (Primary->getInstantiatedFromMemberTemplate()) { 2969 // If we have hit a point where the user provided a specialization of 2970 // this template, we're done looking. 2971 if (Primary->isMemberSpecialization()) 2972 break; 2973 Primary = Primary->getInstantiatedFromMemberTemplate(); 2974 } 2975 2976 return Primary->getTemplatedDecl(); 2977 } 2978 2979 return getInstantiatedFromMemberFunction(); 2980} 2981 2982FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const { 2983 if (FunctionTemplateSpecializationInfo *Info 2984 = TemplateOrSpecialization 2985 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 2986 return Info->Template.getPointer(); 2987 } 2988 return nullptr; 2989} 2990 2991FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const { 2992 return getASTContext().getClassScopeSpecializationPattern(this); 2993} 2994 2995const TemplateArgumentList * 2996FunctionDecl::getTemplateSpecializationArgs() const { 2997 if (FunctionTemplateSpecializationInfo *Info 2998 = TemplateOrSpecialization 2999 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3000 return Info->TemplateArguments; 3001 } 3002 return nullptr; 3003} 3004 3005const ASTTemplateArgumentListInfo * 3006FunctionDecl::getTemplateSpecializationArgsAsWritten() const { 3007 if (FunctionTemplateSpecializationInfo *Info 3008 = TemplateOrSpecialization 3009 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3010 return Info->TemplateArgumentsAsWritten; 3011 } 3012 return nullptr; 3013} 3014 3015void 3016FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C, 3017 FunctionTemplateDecl *Template, 3018 const TemplateArgumentList *TemplateArgs, 3019 void *InsertPos, 3020 TemplateSpecializationKind TSK, 3021 const TemplateArgumentListInfo *TemplateArgsAsWritten, 3022 SourceLocation PointOfInstantiation) { 3023 assert(TSK != TSK_Undeclared && 3024 "Must specify the type of function template specialization"); 3025 FunctionTemplateSpecializationInfo *Info 3026 = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>(); 3027 if (!Info) 3028 Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK, 3029 TemplateArgs, 3030 TemplateArgsAsWritten, 3031 PointOfInstantiation); 3032 TemplateOrSpecialization = Info; 3033 Template->addSpecialization(Info, InsertPos); 3034} 3035 3036void 3037FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context, 3038 const UnresolvedSetImpl &Templates, 3039 const TemplateArgumentListInfo &TemplateArgs) { 3040 assert(TemplateOrSpecialization.isNull()); 3041 size_t Size = sizeof(DependentFunctionTemplateSpecializationInfo); 3042 Size += Templates.size() * sizeof(FunctionTemplateDecl*); 3043 Size += TemplateArgs.size() * sizeof(TemplateArgumentLoc); 3044 void *Buffer = Context.Allocate(Size); 3045 DependentFunctionTemplateSpecializationInfo *Info = 3046 new (Buffer) DependentFunctionTemplateSpecializationInfo(Templates, 3047 TemplateArgs); 3048 TemplateOrSpecialization = Info; 3049} 3050 3051DependentFunctionTemplateSpecializationInfo:: 3052DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts, 3053 const TemplateArgumentListInfo &TArgs) 3054 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) { 3055 3056 d.NumTemplates = Ts.size(); 3057 d.NumArgs = TArgs.size(); 3058 3059 FunctionTemplateDecl **TsArray = 3060 const_cast<FunctionTemplateDecl**>(getTemplates()); 3061 for (unsigned I = 0, E = Ts.size(); I != E; ++I) 3062 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl()); 3063 3064 TemplateArgumentLoc *ArgsArray = 3065 const_cast<TemplateArgumentLoc*>(getTemplateArgs()); 3066 for (unsigned I = 0, E = TArgs.size(); I != E; ++I) 3067 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]); 3068} 3069 3070TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const { 3071 // For a function template specialization, query the specialization 3072 // information object. 3073 FunctionTemplateSpecializationInfo *FTSInfo 3074 = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>(); 3075 if (FTSInfo) 3076 return FTSInfo->getTemplateSpecializationKind(); 3077 3078 MemberSpecializationInfo *MSInfo 3079 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>(); 3080 if (MSInfo) 3081 return MSInfo->getTemplateSpecializationKind(); 3082 3083 return TSK_Undeclared; 3084} 3085 3086void 3087FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 3088 SourceLocation PointOfInstantiation) { 3089 if (FunctionTemplateSpecializationInfo *FTSInfo 3090 = TemplateOrSpecialization.dyn_cast< 3091 FunctionTemplateSpecializationInfo*>()) { 3092 FTSInfo->setTemplateSpecializationKind(TSK); 3093 if (TSK != TSK_ExplicitSpecialization && 3094 PointOfInstantiation.isValid() && 3095 FTSInfo->getPointOfInstantiation().isInvalid()) 3096 FTSInfo->setPointOfInstantiation(PointOfInstantiation); 3097 } else if (MemberSpecializationInfo *MSInfo 3098 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) { 3099 MSInfo->setTemplateSpecializationKind(TSK); 3100 if (TSK != TSK_ExplicitSpecialization && 3101 PointOfInstantiation.isValid() && 3102 MSInfo->getPointOfInstantiation().isInvalid()) 3103 MSInfo->setPointOfInstantiation(PointOfInstantiation); 3104 } else 3105 llvm_unreachable("Function cannot have a template specialization kind"); 3106} 3107 3108SourceLocation FunctionDecl::getPointOfInstantiation() const { 3109 if (FunctionTemplateSpecializationInfo *FTSInfo 3110 = TemplateOrSpecialization.dyn_cast< 3111 FunctionTemplateSpecializationInfo*>()) 3112 return FTSInfo->getPointOfInstantiation(); 3113 else if (MemberSpecializationInfo *MSInfo 3114 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) 3115 return MSInfo->getPointOfInstantiation(); 3116 3117 return SourceLocation(); 3118} 3119 3120bool FunctionDecl::isOutOfLine() const { 3121 if (Decl::isOutOfLine()) 3122 return true; 3123 3124 // If this function was instantiated from a member function of a 3125 // class template, check whether that member function was defined out-of-line. 3126 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) { 3127 const FunctionDecl *Definition; 3128 if (FD->hasBody(Definition)) 3129 return Definition->isOutOfLine(); 3130 } 3131 3132 // If this function was instantiated from a function template, 3133 // check whether that function template was defined out-of-line. 3134 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) { 3135 const FunctionDecl *Definition; 3136 if (FunTmpl->getTemplatedDecl()->hasBody(Definition)) 3137 return Definition->isOutOfLine(); 3138 } 3139 3140 return false; 3141} 3142 3143SourceRange FunctionDecl::getSourceRange() const { 3144 return SourceRange(getOuterLocStart(), EndRangeLoc); 3145} 3146 3147unsigned FunctionDecl::getMemoryFunctionKind() const { 3148 IdentifierInfo *FnInfo = getIdentifier(); 3149 3150 if (!FnInfo) 3151 return 0; 3152 3153 // Builtin handling. 3154 switch (getBuiltinID()) { 3155 case Builtin::BI__builtin_memset: 3156 case Builtin::BI__builtin___memset_chk: 3157 case Builtin::BImemset: 3158 return Builtin::BImemset; 3159 3160 case Builtin::BI__builtin_memcpy: 3161 case Builtin::BI__builtin___memcpy_chk: 3162 case Builtin::BImemcpy: 3163 return Builtin::BImemcpy; 3164 3165 case Builtin::BI__builtin_memmove: 3166 case Builtin::BI__builtin___memmove_chk: 3167 case Builtin::BImemmove: 3168 return Builtin::BImemmove; 3169 3170 case Builtin::BIstrlcpy: 3171 return Builtin::BIstrlcpy; 3172 case Builtin::BIstrlcat: 3173 return Builtin::BIstrlcat; 3174 3175 case Builtin::BI__builtin_memcmp: 3176 case Builtin::BImemcmp: 3177 return Builtin::BImemcmp; 3178 3179 case Builtin::BI__builtin_strncpy: 3180 case Builtin::BI__builtin___strncpy_chk: 3181 case Builtin::BIstrncpy: 3182 return Builtin::BIstrncpy; 3183 3184 case Builtin::BI__builtin_strncmp: 3185 case Builtin::BIstrncmp: 3186 return Builtin::BIstrncmp; 3187 3188 case Builtin::BI__builtin_strncasecmp: 3189 case Builtin::BIstrncasecmp: 3190 return Builtin::BIstrncasecmp; 3191 3192 case Builtin::BI__builtin_strncat: 3193 case Builtin::BI__builtin___strncat_chk: 3194 case Builtin::BIstrncat: 3195 return Builtin::BIstrncat; 3196 3197 case Builtin::BI__builtin_strndup: 3198 case Builtin::BIstrndup: 3199 return Builtin::BIstrndup; 3200 3201 case Builtin::BI__builtin_strlen: 3202 case Builtin::BIstrlen: 3203 return Builtin::BIstrlen; 3204 3205 default: 3206 if (isExternC()) { 3207 if (FnInfo->isStr("memset")) 3208 return Builtin::BImemset; 3209 else if (FnInfo->isStr("memcpy")) 3210 return Builtin::BImemcpy; 3211 else if (FnInfo->isStr("memmove")) 3212 return Builtin::BImemmove; 3213 else if (FnInfo->isStr("memcmp")) 3214 return Builtin::BImemcmp; 3215 else if (FnInfo->isStr("strncpy")) 3216 return Builtin::BIstrncpy; 3217 else if (FnInfo->isStr("strncmp")) 3218 return Builtin::BIstrncmp; 3219 else if (FnInfo->isStr("strncasecmp")) 3220 return Builtin::BIstrncasecmp; 3221 else if (FnInfo->isStr("strncat")) 3222 return Builtin::BIstrncat; 3223 else if (FnInfo->isStr("strndup")) 3224 return Builtin::BIstrndup; 3225 else if (FnInfo->isStr("strlen")) 3226 return Builtin::BIstrlen; 3227 } 3228 break; 3229 } 3230 return 0; 3231} 3232 3233//===----------------------------------------------------------------------===// 3234// FieldDecl Implementation 3235//===----------------------------------------------------------------------===// 3236 3237FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC, 3238 SourceLocation StartLoc, SourceLocation IdLoc, 3239 IdentifierInfo *Id, QualType T, 3240 TypeSourceInfo *TInfo, Expr *BW, bool Mutable, 3241 InClassInitStyle InitStyle) { 3242 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo, 3243 BW, Mutable, InitStyle); 3244} 3245 3246FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3247 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(), 3248 SourceLocation(), nullptr, QualType(), nullptr, 3249 nullptr, false, ICIS_NoInit); 3250} 3251 3252bool FieldDecl::isAnonymousStructOrUnion() const { 3253 if (!isImplicit() || getDeclName()) 3254 return false; 3255 3256 if (const RecordType *Record = getType()->getAs<RecordType>()) 3257 return Record->getDecl()->isAnonymousStructOrUnion(); 3258 3259 return false; 3260} 3261 3262unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const { 3263 assert(isBitField() && "not a bitfield"); 3264 Expr *BitWidth = InitializerOrBitWidth.getPointer(); 3265 return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue(); 3266} 3267 3268unsigned FieldDecl::getFieldIndex() const { 3269 const FieldDecl *Canonical = getCanonicalDecl(); 3270 if (Canonical != this) 3271 return Canonical->getFieldIndex(); 3272 3273 if (CachedFieldIndex) return CachedFieldIndex - 1; 3274 3275 unsigned Index = 0; 3276 const RecordDecl *RD = getParent(); 3277 3278 for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); 3279 I != E; ++I, ++Index) 3280 I->getCanonicalDecl()->CachedFieldIndex = Index + 1; 3281 3282 assert(CachedFieldIndex && "failed to find field in parent"); 3283 return CachedFieldIndex - 1; 3284} 3285 3286SourceRange FieldDecl::getSourceRange() const { 3287 if (const Expr *E = InitializerOrBitWidth.getPointer()) 3288 return SourceRange(getInnerLocStart(), E->getLocEnd()); 3289 return DeclaratorDecl::getSourceRange(); 3290} 3291 3292void FieldDecl::setBitWidth(Expr *Width) { 3293 assert(!InitializerOrBitWidth.getPointer() && !hasInClassInitializer() && 3294 "bit width or initializer already set"); 3295 InitializerOrBitWidth.setPointer(Width); 3296} 3297 3298void FieldDecl::setInClassInitializer(Expr *Init) { 3299 assert(!InitializerOrBitWidth.getPointer() && hasInClassInitializer() && 3300 "bit width or initializer already set"); 3301 InitializerOrBitWidth.setPointer(Init); 3302} 3303 3304//===----------------------------------------------------------------------===// 3305// TagDecl Implementation 3306//===----------------------------------------------------------------------===// 3307 3308SourceLocation TagDecl::getOuterLocStart() const { 3309 return getTemplateOrInnerLocStart(this); 3310} 3311 3312SourceRange TagDecl::getSourceRange() const { 3313 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation(); 3314 return SourceRange(getOuterLocStart(), E); 3315} 3316 3317TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); } 3318 3319void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) { 3320 NamedDeclOrQualifier = TDD; 3321 if (const Type *T = getTypeForDecl()) { 3322 (void)T; 3323 assert(T->isLinkageValid()); 3324 } 3325 assert(isLinkageValid()); 3326} 3327 3328void TagDecl::startDefinition() { 3329 IsBeingDefined = true; 3330 3331 if (CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(this)) { 3332 struct CXXRecordDecl::DefinitionData *Data = 3333 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D); 3334 for (auto I : redecls()) 3335 cast<CXXRecordDecl>(I)->DefinitionData = Data; 3336 } 3337} 3338 3339void TagDecl::completeDefinition() { 3340 assert((!isa<CXXRecordDecl>(this) || 3341 cast<CXXRecordDecl>(this)->hasDefinition()) && 3342 "definition completed but not started"); 3343 3344 IsCompleteDefinition = true; 3345 IsBeingDefined = false; 3346 3347 if (ASTMutationListener *L = getASTMutationListener()) 3348 L->CompletedTagDefinition(this); 3349} 3350 3351TagDecl *TagDecl::getDefinition() const { 3352 if (isCompleteDefinition()) 3353 return const_cast<TagDecl *>(this); 3354 3355 // If it's possible for us to have an out-of-date definition, check now. 3356 if (MayHaveOutOfDateDef) { 3357 if (IdentifierInfo *II = getIdentifier()) { 3358 if (II->isOutOfDate()) { 3359 updateOutOfDate(*II); 3360 } 3361 } 3362 } 3363 3364 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this)) 3365 return CXXRD->getDefinition(); 3366 3367 for (auto R : redecls()) 3368 if (R->isCompleteDefinition()) 3369 return R; 3370 3371 return nullptr; 3372} 3373 3374void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 3375 if (QualifierLoc) { 3376 // Make sure the extended qualifier info is allocated. 3377 if (!hasExtInfo()) 3378 NamedDeclOrQualifier = new (getASTContext()) ExtInfo; 3379 // Set qualifier info. 3380 getExtInfo()->QualifierLoc = QualifierLoc; 3381 } else { 3382 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 3383 if (hasExtInfo()) { 3384 if (getExtInfo()->NumTemplParamLists == 0) { 3385 getASTContext().Deallocate(getExtInfo()); 3386 NamedDeclOrQualifier = (TypedefNameDecl*)nullptr; 3387 } 3388 else 3389 getExtInfo()->QualifierLoc = QualifierLoc; 3390 } 3391 } 3392} 3393 3394void TagDecl::setTemplateParameterListsInfo(ASTContext &Context, 3395 unsigned NumTPLists, 3396 TemplateParameterList **TPLists) { 3397 assert(NumTPLists > 0); 3398 // Make sure the extended decl info is allocated. 3399 if (!hasExtInfo()) 3400 // Allocate external info struct. 3401 NamedDeclOrQualifier = new (getASTContext()) ExtInfo; 3402 // Set the template parameter lists info. 3403 getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists); 3404} 3405 3406//===----------------------------------------------------------------------===// 3407// EnumDecl Implementation 3408//===----------------------------------------------------------------------===// 3409 3410void EnumDecl::anchor() { } 3411 3412EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC, 3413 SourceLocation StartLoc, SourceLocation IdLoc, 3414 IdentifierInfo *Id, 3415 EnumDecl *PrevDecl, bool IsScoped, 3416 bool IsScopedUsingClassTag, bool IsFixed) { 3417 EnumDecl *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl, 3418 IsScoped, IsScopedUsingClassTag, 3419 IsFixed); 3420 Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules; 3421 C.getTypeDeclType(Enum, PrevDecl); 3422 return Enum; 3423} 3424 3425EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3426 EnumDecl *Enum = 3427 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(), 3428 nullptr, nullptr, false, false, false); 3429 Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules; 3430 return Enum; 3431} 3432 3433SourceRange EnumDecl::getIntegerTypeRange() const { 3434 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo()) 3435 return TI->getTypeLoc().getSourceRange(); 3436 return SourceRange(); 3437} 3438 3439void EnumDecl::completeDefinition(QualType NewType, 3440 QualType NewPromotionType, 3441 unsigned NumPositiveBits, 3442 unsigned NumNegativeBits) { 3443 assert(!isCompleteDefinition() && "Cannot redefine enums!"); 3444 if (!IntegerType) 3445 IntegerType = NewType.getTypePtr(); 3446 PromotionType = NewPromotionType; 3447 setNumPositiveBits(NumPositiveBits); 3448 setNumNegativeBits(NumNegativeBits); 3449 TagDecl::completeDefinition(); 3450} 3451 3452TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const { 3453 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 3454 return MSI->getTemplateSpecializationKind(); 3455 3456 return TSK_Undeclared; 3457} 3458 3459void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 3460 SourceLocation PointOfInstantiation) { 3461 MemberSpecializationInfo *MSI = getMemberSpecializationInfo(); 3462 assert(MSI && "Not an instantiated member enumeration?"); 3463 MSI->setTemplateSpecializationKind(TSK); 3464 if (TSK != TSK_ExplicitSpecialization && 3465 PointOfInstantiation.isValid() && 3466 MSI->getPointOfInstantiation().isInvalid()) 3467 MSI->setPointOfInstantiation(PointOfInstantiation); 3468} 3469 3470EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const { 3471 if (SpecializationInfo) 3472 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom()); 3473 3474 return nullptr; 3475} 3476 3477void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED, 3478 TemplateSpecializationKind TSK) { 3479 assert(!SpecializationInfo && "Member enum is already a specialization"); 3480 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK); 3481} 3482 3483//===----------------------------------------------------------------------===// 3484// RecordDecl Implementation 3485//===----------------------------------------------------------------------===// 3486 3487RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C, 3488 DeclContext *DC, SourceLocation StartLoc, 3489 SourceLocation IdLoc, IdentifierInfo *Id, 3490 RecordDecl *PrevDecl) 3491 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) { 3492 HasFlexibleArrayMember = false; 3493 AnonymousStructOrUnion = false; 3494 HasObjectMember = false; 3495 HasVolatileMember = false; 3496 LoadedFieldsFromExternalStorage = false; 3497 assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!"); 3498} 3499 3500RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC, 3501 SourceLocation StartLoc, SourceLocation IdLoc, 3502 IdentifierInfo *Id, RecordDecl* PrevDecl) { 3503 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC, 3504 StartLoc, IdLoc, Id, PrevDecl); 3505 R->MayHaveOutOfDateDef = C.getLangOpts().Modules; 3506 3507 C.getTypeDeclType(R, PrevDecl); 3508 return R; 3509} 3510 3511RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { 3512 RecordDecl *R = 3513 new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(), 3514 SourceLocation(), nullptr, nullptr); 3515 R->MayHaveOutOfDateDef = C.getLangOpts().Modules; 3516 return R; 3517} 3518 3519bool RecordDecl::isInjectedClassName() const { 3520 return isImplicit() && getDeclName() && getDeclContext()->isRecord() && 3521 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName(); 3522} 3523 3524RecordDecl::field_iterator RecordDecl::field_begin() const { 3525 if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage) 3526 LoadFieldsFromExternalStorage(); 3527 3528 return field_iterator(decl_iterator(FirstDecl)); 3529} 3530 3531/// completeDefinition - Notes that the definition of this type is now 3532/// complete. 3533void RecordDecl::completeDefinition() { 3534 assert(!isCompleteDefinition() && "Cannot redefine record!"); 3535 TagDecl::completeDefinition(); 3536} 3537 3538/// isMsStruct - Get whether or not this record uses ms_struct layout. 3539/// This which can be turned on with an attribute, pragma, or the 3540/// -mms-bitfields command-line option. 3541bool RecordDecl::isMsStruct(const ASTContext &C) const { 3542 return hasAttr<MsStructAttr>() || C.getLangOpts().MSBitfields == 1; 3543} 3544 3545static bool isFieldOrIndirectField(Decl::Kind K) { 3546 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K); 3547} 3548 3549void RecordDecl::LoadFieldsFromExternalStorage() const { 3550 ExternalASTSource *Source = getASTContext().getExternalSource(); 3551 assert(hasExternalLexicalStorage() && Source && "No external storage?"); 3552 3553 // Notify that we have a RecordDecl doing some initialization. 3554 ExternalASTSource::Deserializing TheFields(Source); 3555 3556 SmallVector<Decl*, 64> Decls; 3557 LoadedFieldsFromExternalStorage = true; 3558 switch (Source->FindExternalLexicalDecls(this, isFieldOrIndirectField, 3559 Decls)) { 3560 case ELR_Success: 3561 break; 3562 3563 case ELR_AlreadyLoaded: 3564 case ELR_Failure: 3565 return; 3566 } 3567 3568#ifndef NDEBUG 3569 // Check that all decls we got were FieldDecls. 3570 for (unsigned i=0, e=Decls.size(); i != e; ++i) 3571 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i])); 3572#endif 3573 3574 if (Decls.empty()) 3575 return; 3576 3577 std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls, 3578 /*FieldsAlreadyLoaded=*/false); 3579} 3580 3581//===----------------------------------------------------------------------===// 3582// BlockDecl Implementation 3583//===----------------------------------------------------------------------===// 3584 3585void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) { 3586 assert(!ParamInfo && "Already has param info!"); 3587 3588 // Zero params -> null pointer. 3589 if (!NewParamInfo.empty()) { 3590 NumParams = NewParamInfo.size(); 3591 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()]; 3592 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 3593 } 3594} 3595 3596void BlockDecl::setCaptures(ASTContext &Context, 3597 const Capture *begin, 3598 const Capture *end, 3599 bool capturesCXXThis) { 3600 CapturesCXXThis = capturesCXXThis; 3601 3602 if (begin == end) { 3603 NumCaptures = 0; 3604 Captures = nullptr; 3605 return; 3606 } 3607 3608 NumCaptures = end - begin; 3609 3610 // Avoid new Capture[] because we don't want to provide a default 3611 // constructor. 3612 size_t allocationSize = NumCaptures * sizeof(Capture); 3613 void *buffer = Context.Allocate(allocationSize, /*alignment*/sizeof(void*)); 3614 memcpy(buffer, begin, allocationSize); 3615 Captures = static_cast<Capture*>(buffer); 3616} 3617 3618bool BlockDecl::capturesVariable(const VarDecl *variable) const { 3619 for (const auto &I : captures()) 3620 // Only auto vars can be captured, so no redeclaration worries. 3621 if (I.getVariable() == variable) 3622 return true; 3623 3624 return false; 3625} 3626 3627SourceRange BlockDecl::getSourceRange() const { 3628 return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation()); 3629} 3630 3631//===----------------------------------------------------------------------===// 3632// Other Decl Allocation/Deallocation Method Implementations 3633//===----------------------------------------------------------------------===// 3634 3635void TranslationUnitDecl::anchor() { } 3636 3637TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) { 3638 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C); 3639} 3640 3641void LabelDecl::anchor() { } 3642 3643LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 3644 SourceLocation IdentL, IdentifierInfo *II) { 3645 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL); 3646} 3647 3648LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 3649 SourceLocation IdentL, IdentifierInfo *II, 3650 SourceLocation GnuLabelL) { 3651 assert(GnuLabelL != IdentL && "Use this only for GNU local labels"); 3652 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL); 3653} 3654 3655LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3656 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr, 3657 SourceLocation()); 3658} 3659 3660void ValueDecl::anchor() { } 3661 3662bool ValueDecl::isWeak() const { 3663 for (const auto *I : attrs()) 3664 if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I)) 3665 return true; 3666 3667 return isWeakImported(); 3668} 3669 3670void ImplicitParamDecl::anchor() { } 3671 3672ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC, 3673 SourceLocation IdLoc, 3674 IdentifierInfo *Id, 3675 QualType Type) { 3676 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type); 3677} 3678 3679ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C, 3680 unsigned ID) { 3681 return new (C, ID) ImplicitParamDecl(C, nullptr, SourceLocation(), nullptr, 3682 QualType()); 3683} 3684 3685FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC, 3686 SourceLocation StartLoc, 3687 const DeclarationNameInfo &NameInfo, 3688 QualType T, TypeSourceInfo *TInfo, 3689 StorageClass SC, 3690 bool isInlineSpecified, 3691 bool hasWrittenPrototype, 3692 bool isConstexprSpecified) { 3693 FunctionDecl *New = 3694 new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo, 3695 SC, isInlineSpecified, isConstexprSpecified); 3696 New->HasWrittenPrototype = hasWrittenPrototype; 3697 return New; 3698} 3699 3700FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3701 return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(), 3702 DeclarationNameInfo(), QualType(), nullptr, 3703 SC_None, false, false); 3704} 3705 3706BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 3707 return new (C, DC) BlockDecl(DC, L); 3708} 3709 3710BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3711 return new (C, ID) BlockDecl(nullptr, SourceLocation()); 3712} 3713 3714CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC, 3715 unsigned NumParams) { 3716 return new (C, DC, NumParams * sizeof(ImplicitParamDecl *)) 3717 CapturedDecl(DC, NumParams); 3718} 3719 3720CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID, 3721 unsigned NumParams) { 3722 return new (C, ID, NumParams * sizeof(ImplicitParamDecl *)) 3723 CapturedDecl(nullptr, NumParams); 3724} 3725 3726EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD, 3727 SourceLocation L, 3728 IdentifierInfo *Id, QualType T, 3729 Expr *E, const llvm::APSInt &V) { 3730 return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V); 3731} 3732 3733EnumConstantDecl * 3734EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3735 return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr, 3736 QualType(), nullptr, llvm::APSInt()); 3737} 3738 3739void IndirectFieldDecl::anchor() { } 3740 3741IndirectFieldDecl * 3742IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, 3743 IdentifierInfo *Id, QualType T, NamedDecl **CH, 3744 unsigned CHS) { 3745 return new (C, DC) IndirectFieldDecl(DC, L, Id, T, CH, CHS); 3746} 3747 3748IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C, 3749 unsigned ID) { 3750 return new (C, ID) IndirectFieldDecl(nullptr, SourceLocation(), 3751 DeclarationName(), QualType(), nullptr, 3752 0); 3753} 3754 3755SourceRange EnumConstantDecl::getSourceRange() const { 3756 SourceLocation End = getLocation(); 3757 if (Init) 3758 End = Init->getLocEnd(); 3759 return SourceRange(getLocation(), End); 3760} 3761 3762void TypeDecl::anchor() { } 3763 3764TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC, 3765 SourceLocation StartLoc, SourceLocation IdLoc, 3766 IdentifierInfo *Id, TypeSourceInfo *TInfo) { 3767 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 3768} 3769 3770void TypedefNameDecl::anchor() { } 3771 3772TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3773 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(), 3774 nullptr, nullptr); 3775} 3776 3777TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC, 3778 SourceLocation StartLoc, 3779 SourceLocation IdLoc, IdentifierInfo *Id, 3780 TypeSourceInfo *TInfo) { 3781 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 3782} 3783 3784TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3785 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(), 3786 SourceLocation(), nullptr, nullptr); 3787} 3788 3789SourceRange TypedefDecl::getSourceRange() const { 3790 SourceLocation RangeEnd = getLocation(); 3791 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 3792 if (typeIsPostfix(TInfo->getType())) 3793 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 3794 } 3795 return SourceRange(getLocStart(), RangeEnd); 3796} 3797 3798SourceRange TypeAliasDecl::getSourceRange() const { 3799 SourceLocation RangeEnd = getLocStart(); 3800 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) 3801 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 3802 return SourceRange(getLocStart(), RangeEnd); 3803} 3804 3805void FileScopeAsmDecl::anchor() { } 3806 3807FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC, 3808 StringLiteral *Str, 3809 SourceLocation AsmLoc, 3810 SourceLocation RParenLoc) { 3811 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc); 3812} 3813 3814FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C, 3815 unsigned ID) { 3816 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(), 3817 SourceLocation()); 3818} 3819 3820void EmptyDecl::anchor() {} 3821 3822EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 3823 return new (C, DC) EmptyDecl(DC, L); 3824} 3825 3826EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3827 return new (C, ID) EmptyDecl(nullptr, SourceLocation()); 3828} 3829 3830//===----------------------------------------------------------------------===// 3831// ImportDecl Implementation 3832//===----------------------------------------------------------------------===// 3833 3834/// \brief Retrieve the number of module identifiers needed to name the given 3835/// module. 3836static unsigned getNumModuleIdentifiers(Module *Mod) { 3837 unsigned Result = 1; 3838 while (Mod->Parent) { 3839 Mod = Mod->Parent; 3840 ++Result; 3841 } 3842 return Result; 3843} 3844 3845ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 3846 Module *Imported, 3847 ArrayRef<SourceLocation> IdentifierLocs) 3848 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true), 3849 NextLocalImport() 3850{ 3851 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size()); 3852 SourceLocation *StoredLocs = reinterpret_cast<SourceLocation *>(this + 1); 3853 memcpy(StoredLocs, IdentifierLocs.data(), 3854 IdentifierLocs.size() * sizeof(SourceLocation)); 3855} 3856 3857ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 3858 Module *Imported, SourceLocation EndLoc) 3859 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false), 3860 NextLocalImport() 3861{ 3862 *reinterpret_cast<SourceLocation *>(this + 1) = EndLoc; 3863} 3864 3865ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC, 3866 SourceLocation StartLoc, Module *Imported, 3867 ArrayRef<SourceLocation> IdentifierLocs) { 3868 return new (C, DC, IdentifierLocs.size() * sizeof(SourceLocation)) 3869 ImportDecl(DC, StartLoc, Imported, IdentifierLocs); 3870} 3871 3872ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC, 3873 SourceLocation StartLoc, 3874 Module *Imported, 3875 SourceLocation EndLoc) { 3876 ImportDecl *Import = 3877 new (C, DC, sizeof(SourceLocation)) ImportDecl(DC, StartLoc, 3878 Imported, EndLoc); 3879 Import->setImplicit(); 3880 return Import; 3881} 3882 3883ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID, 3884 unsigned NumLocations) { 3885 return new (C, ID, NumLocations * sizeof(SourceLocation)) 3886 ImportDecl(EmptyShell()); 3887} 3888 3889ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const { 3890 if (!ImportedAndComplete.getInt()) 3891 return None; 3892 3893 const SourceLocation *StoredLocs 3894 = reinterpret_cast<const SourceLocation *>(this + 1); 3895 return ArrayRef<SourceLocation>(StoredLocs, 3896 getNumModuleIdentifiers(getImportedModule())); 3897} 3898 3899SourceRange ImportDecl::getSourceRange() const { 3900 if (!ImportedAndComplete.getInt()) 3901 return SourceRange(getLocation(), 3902 *reinterpret_cast<const SourceLocation *>(this + 1)); 3903 3904 return SourceRange(getLocation(), getIdentifierLocs().back()); 3905} 3906