1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/APValue.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Attr.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/Mangle.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/CharInfo.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Lexer.h"
31#include "clang/Lex/LiteralSupport.h"
32#include "clang/Sema/SemaDiagnostic.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35#include <algorithm>
36#include <cstring>
37using namespace clang;
38
39const CXXRecordDecl *Expr::getBestDynamicClassType() const {
40  const Expr *E = ignoreParenBaseCasts();
41
42  QualType DerivedType = E->getType();
43  if (const PointerType *PTy = DerivedType->getAs<PointerType>())
44    DerivedType = PTy->getPointeeType();
45
46  if (DerivedType->isDependentType())
47    return nullptr;
48
49  const RecordType *Ty = DerivedType->castAs<RecordType>();
50  Decl *D = Ty->getDecl();
51  return cast<CXXRecordDecl>(D);
52}
53
54const Expr *Expr::skipRValueSubobjectAdjustments(
55    SmallVectorImpl<const Expr *> &CommaLHSs,
56    SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
57  const Expr *E = this;
58  while (true) {
59    E = E->IgnoreParens();
60
61    if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
62      if ((CE->getCastKind() == CK_DerivedToBase ||
63           CE->getCastKind() == CK_UncheckedDerivedToBase) &&
64          E->getType()->isRecordType()) {
65        E = CE->getSubExpr();
66        CXXRecordDecl *Derived
67          = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
68        Adjustments.push_back(SubobjectAdjustment(CE, Derived));
69        continue;
70      }
71
72      if (CE->getCastKind() == CK_NoOp) {
73        E = CE->getSubExpr();
74        continue;
75      }
76    } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
77      if (!ME->isArrow()) {
78        assert(ME->getBase()->getType()->isRecordType());
79        if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
80          if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
81            E = ME->getBase();
82            Adjustments.push_back(SubobjectAdjustment(Field));
83            continue;
84          }
85        }
86      }
87    } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
88      if (BO->isPtrMemOp()) {
89        assert(BO->getRHS()->isRValue());
90        E = BO->getLHS();
91        const MemberPointerType *MPT =
92          BO->getRHS()->getType()->getAs<MemberPointerType>();
93        Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
94        continue;
95      } else if (BO->getOpcode() == BO_Comma) {
96        CommaLHSs.push_back(BO->getLHS());
97        E = BO->getRHS();
98        continue;
99      }
100    }
101
102    // Nothing changed.
103    break;
104  }
105  return E;
106}
107
108/// isKnownToHaveBooleanValue - Return true if this is an integer expression
109/// that is known to return 0 or 1.  This happens for _Bool/bool expressions
110/// but also int expressions which are produced by things like comparisons in
111/// C.
112bool Expr::isKnownToHaveBooleanValue() const {
113  const Expr *E = IgnoreParens();
114
115  // If this value has _Bool type, it is obvious 0/1.
116  if (E->getType()->isBooleanType()) return true;
117  // If this is a non-scalar-integer type, we don't care enough to try.
118  if (!E->getType()->isIntegralOrEnumerationType()) return false;
119
120  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
121    switch (UO->getOpcode()) {
122    case UO_Plus:
123      return UO->getSubExpr()->isKnownToHaveBooleanValue();
124    case UO_LNot:
125      return true;
126    default:
127      return false;
128    }
129  }
130
131  // Only look through implicit casts.  If the user writes
132  // '(int) (a && b)' treat it as an arbitrary int.
133  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
134    return CE->getSubExpr()->isKnownToHaveBooleanValue();
135
136  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
137    switch (BO->getOpcode()) {
138    default: return false;
139    case BO_LT:   // Relational operators.
140    case BO_GT:
141    case BO_LE:
142    case BO_GE:
143    case BO_EQ:   // Equality operators.
144    case BO_NE:
145    case BO_LAnd: // AND operator.
146    case BO_LOr:  // Logical OR operator.
147      return true;
148
149    case BO_And:  // Bitwise AND operator.
150    case BO_Xor:  // Bitwise XOR operator.
151    case BO_Or:   // Bitwise OR operator.
152      // Handle things like (x==2)|(y==12).
153      return BO->getLHS()->isKnownToHaveBooleanValue() &&
154             BO->getRHS()->isKnownToHaveBooleanValue();
155
156    case BO_Comma:
157    case BO_Assign:
158      return BO->getRHS()->isKnownToHaveBooleanValue();
159    }
160  }
161
162  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
163    return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
164           CO->getFalseExpr()->isKnownToHaveBooleanValue();
165
166  return false;
167}
168
169// Amusing macro metaprogramming hack: check whether a class provides
170// a more specific implementation of getExprLoc().
171//
172// See also Stmt.cpp:{getLocStart(),getLocEnd()}.
173namespace {
174  /// This implementation is used when a class provides a custom
175  /// implementation of getExprLoc.
176  template <class E, class T>
177  SourceLocation getExprLocImpl(const Expr *expr,
178                                SourceLocation (T::*v)() const) {
179    return static_cast<const E*>(expr)->getExprLoc();
180  }
181
182  /// This implementation is used when a class doesn't provide
183  /// a custom implementation of getExprLoc.  Overload resolution
184  /// should pick it over the implementation above because it's
185  /// more specialized according to function template partial ordering.
186  template <class E>
187  SourceLocation getExprLocImpl(const Expr *expr,
188                                SourceLocation (Expr::*v)() const) {
189    return static_cast<const E*>(expr)->getLocStart();
190  }
191}
192
193SourceLocation Expr::getExprLoc() const {
194  switch (getStmtClass()) {
195  case Stmt::NoStmtClass: llvm_unreachable("statement without class");
196#define ABSTRACT_STMT(type)
197#define STMT(type, base) \
198  case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
199#define EXPR(type, base) \
200  case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
201#include "clang/AST/StmtNodes.inc"
202  }
203  llvm_unreachable("unknown statement kind");
204}
205
206//===----------------------------------------------------------------------===//
207// Primary Expressions.
208//===----------------------------------------------------------------------===//
209
210/// \brief Compute the type-, value-, and instantiation-dependence of a
211/// declaration reference
212/// based on the declaration being referenced.
213static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
214                                     QualType T, bool &TypeDependent,
215                                     bool &ValueDependent,
216                                     bool &InstantiationDependent) {
217  TypeDependent = false;
218  ValueDependent = false;
219  InstantiationDependent = false;
220
221  // (TD) C++ [temp.dep.expr]p3:
222  //   An id-expression is type-dependent if it contains:
223  //
224  // and
225  //
226  // (VD) C++ [temp.dep.constexpr]p2:
227  //  An identifier is value-dependent if it is:
228
229  //  (TD)  - an identifier that was declared with dependent type
230  //  (VD)  - a name declared with a dependent type,
231  if (T->isDependentType()) {
232    TypeDependent = true;
233    ValueDependent = true;
234    InstantiationDependent = true;
235    return;
236  } else if (T->isInstantiationDependentType()) {
237    InstantiationDependent = true;
238  }
239
240  //  (TD)  - a conversion-function-id that specifies a dependent type
241  if (D->getDeclName().getNameKind()
242                                == DeclarationName::CXXConversionFunctionName) {
243    QualType T = D->getDeclName().getCXXNameType();
244    if (T->isDependentType()) {
245      TypeDependent = true;
246      ValueDependent = true;
247      InstantiationDependent = true;
248      return;
249    }
250
251    if (T->isInstantiationDependentType())
252      InstantiationDependent = true;
253  }
254
255  //  (VD)  - the name of a non-type template parameter,
256  if (isa<NonTypeTemplateParmDecl>(D)) {
257    ValueDependent = true;
258    InstantiationDependent = true;
259    return;
260  }
261
262  //  (VD) - a constant with integral or enumeration type and is
263  //         initialized with an expression that is value-dependent.
264  //  (VD) - a constant with literal type and is initialized with an
265  //         expression that is value-dependent [C++11].
266  //  (VD) - FIXME: Missing from the standard:
267  //       -  an entity with reference type and is initialized with an
268  //          expression that is value-dependent [C++11]
269  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
270    if ((Ctx.getLangOpts().CPlusPlus11 ?
271           Var->getType()->isLiteralType(Ctx) :
272           Var->getType()->isIntegralOrEnumerationType()) &&
273        (Var->getType().isConstQualified() ||
274         Var->getType()->isReferenceType())) {
275      if (const Expr *Init = Var->getAnyInitializer())
276        if (Init->isValueDependent()) {
277          ValueDependent = true;
278          InstantiationDependent = true;
279        }
280    }
281
282    // (VD) - FIXME: Missing from the standard:
283    //      -  a member function or a static data member of the current
284    //         instantiation
285    if (Var->isStaticDataMember() &&
286        Var->getDeclContext()->isDependentContext()) {
287      ValueDependent = true;
288      InstantiationDependent = true;
289      TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
290      if (TInfo->getType()->isIncompleteArrayType())
291        TypeDependent = true;
292    }
293
294    return;
295  }
296
297  // (VD) - FIXME: Missing from the standard:
298  //      -  a member function or a static data member of the current
299  //         instantiation
300  if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
301    ValueDependent = true;
302    InstantiationDependent = true;
303  }
304}
305
306void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
307  bool TypeDependent = false;
308  bool ValueDependent = false;
309  bool InstantiationDependent = false;
310  computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
311                           ValueDependent, InstantiationDependent);
312
313  // (TD) C++ [temp.dep.expr]p3:
314  //   An id-expression is type-dependent if it contains:
315  //
316  // and
317  //
318  // (VD) C++ [temp.dep.constexpr]p2:
319  //  An identifier is value-dependent if it is:
320  if (!TypeDependent && !ValueDependent &&
321      hasExplicitTemplateArgs() &&
322      TemplateSpecializationType::anyDependentTemplateArguments(
323                                                            getTemplateArgs(),
324                                                       getNumTemplateArgs(),
325                                                      InstantiationDependent)) {
326    TypeDependent = true;
327    ValueDependent = true;
328    InstantiationDependent = true;
329  }
330
331  ExprBits.TypeDependent = TypeDependent;
332  ExprBits.ValueDependent = ValueDependent;
333  ExprBits.InstantiationDependent = InstantiationDependent;
334
335  // Is the declaration a parameter pack?
336  if (getDecl()->isParameterPack())
337    ExprBits.ContainsUnexpandedParameterPack = true;
338}
339
340DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
341                         NestedNameSpecifierLoc QualifierLoc,
342                         SourceLocation TemplateKWLoc,
343                         ValueDecl *D, bool RefersToEnclosingLocal,
344                         const DeclarationNameInfo &NameInfo,
345                         NamedDecl *FoundD,
346                         const TemplateArgumentListInfo *TemplateArgs,
347                         QualType T, ExprValueKind VK)
348  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
349    D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
350  DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
351  if (QualifierLoc)
352    getInternalQualifierLoc() = QualifierLoc;
353  DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
354  if (FoundD)
355    getInternalFoundDecl() = FoundD;
356  DeclRefExprBits.HasTemplateKWAndArgsInfo
357    = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
358  DeclRefExprBits.RefersToEnclosingLocal = RefersToEnclosingLocal;
359  if (TemplateArgs) {
360    bool Dependent = false;
361    bool InstantiationDependent = false;
362    bool ContainsUnexpandedParameterPack = false;
363    getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
364                                               Dependent,
365                                               InstantiationDependent,
366                                               ContainsUnexpandedParameterPack);
367    if (InstantiationDependent)
368      setInstantiationDependent(true);
369  } else if (TemplateKWLoc.isValid()) {
370    getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
371  }
372  DeclRefExprBits.HadMultipleCandidates = 0;
373
374  computeDependence(Ctx);
375}
376
377DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
378                                 NestedNameSpecifierLoc QualifierLoc,
379                                 SourceLocation TemplateKWLoc,
380                                 ValueDecl *D,
381                                 bool RefersToEnclosingLocal,
382                                 SourceLocation NameLoc,
383                                 QualType T,
384                                 ExprValueKind VK,
385                                 NamedDecl *FoundD,
386                                 const TemplateArgumentListInfo *TemplateArgs) {
387  return Create(Context, QualifierLoc, TemplateKWLoc, D,
388                RefersToEnclosingLocal,
389                DeclarationNameInfo(D->getDeclName(), NameLoc),
390                T, VK, FoundD, TemplateArgs);
391}
392
393DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
394                                 NestedNameSpecifierLoc QualifierLoc,
395                                 SourceLocation TemplateKWLoc,
396                                 ValueDecl *D,
397                                 bool RefersToEnclosingLocal,
398                                 const DeclarationNameInfo &NameInfo,
399                                 QualType T,
400                                 ExprValueKind VK,
401                                 NamedDecl *FoundD,
402                                 const TemplateArgumentListInfo *TemplateArgs) {
403  // Filter out cases where the found Decl is the same as the value refenenced.
404  if (D == FoundD)
405    FoundD = nullptr;
406
407  std::size_t Size = sizeof(DeclRefExpr);
408  if (QualifierLoc)
409    Size += sizeof(NestedNameSpecifierLoc);
410  if (FoundD)
411    Size += sizeof(NamedDecl *);
412  if (TemplateArgs)
413    Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
414  else if (TemplateKWLoc.isValid())
415    Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
416
417  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
418  return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
419                               RefersToEnclosingLocal,
420                               NameInfo, FoundD, TemplateArgs, T, VK);
421}
422
423DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
424                                      bool HasQualifier,
425                                      bool HasFoundDecl,
426                                      bool HasTemplateKWAndArgsInfo,
427                                      unsigned NumTemplateArgs) {
428  std::size_t Size = sizeof(DeclRefExpr);
429  if (HasQualifier)
430    Size += sizeof(NestedNameSpecifierLoc);
431  if (HasFoundDecl)
432    Size += sizeof(NamedDecl *);
433  if (HasTemplateKWAndArgsInfo)
434    Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
435
436  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
437  return new (Mem) DeclRefExpr(EmptyShell());
438}
439
440SourceLocation DeclRefExpr::getLocStart() const {
441  if (hasQualifier())
442    return getQualifierLoc().getBeginLoc();
443  return getNameInfo().getLocStart();
444}
445SourceLocation DeclRefExpr::getLocEnd() const {
446  if (hasExplicitTemplateArgs())
447    return getRAngleLoc();
448  return getNameInfo().getLocEnd();
449}
450
451// FIXME: Maybe this should use DeclPrinter with a special "print predefined
452// expr" policy instead.
453std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
454  ASTContext &Context = CurrentDecl->getASTContext();
455
456  if (IT == PredefinedExpr::FuncDName) {
457    if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
458      std::unique_ptr<MangleContext> MC;
459      MC.reset(Context.createMangleContext());
460
461      if (MC->shouldMangleDeclName(ND)) {
462        SmallString<256> Buffer;
463        llvm::raw_svector_ostream Out(Buffer);
464        if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
465          MC->mangleCXXCtor(CD, Ctor_Base, Out);
466        else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
467          MC->mangleCXXDtor(DD, Dtor_Base, Out);
468        else
469          MC->mangleName(ND, Out);
470
471        Out.flush();
472        if (!Buffer.empty() && Buffer.front() == '\01')
473          return Buffer.substr(1);
474        return Buffer.str();
475      } else
476        return ND->getIdentifier()->getName();
477    }
478    return "";
479  }
480  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
481    if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual && IT != FuncSig)
482      return FD->getNameAsString();
483
484    SmallString<256> Name;
485    llvm::raw_svector_ostream Out(Name);
486
487    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
488      if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
489        Out << "virtual ";
490      if (MD->isStatic())
491        Out << "static ";
492    }
493
494    PrintingPolicy Policy(Context.getLangOpts());
495    std::string Proto;
496    llvm::raw_string_ostream POut(Proto);
497
498    const FunctionDecl *Decl = FD;
499    if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
500      Decl = Pattern;
501    const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
502    const FunctionProtoType *FT = nullptr;
503    if (FD->hasWrittenPrototype())
504      FT = dyn_cast<FunctionProtoType>(AFT);
505
506    if (IT == FuncSig) {
507      switch (FT->getCallConv()) {
508      case CC_C: POut << "__cdecl "; break;
509      case CC_X86StdCall: POut << "__stdcall "; break;
510      case CC_X86FastCall: POut << "__fastcall "; break;
511      case CC_X86ThisCall: POut << "__thiscall "; break;
512      // Only bother printing the conventions that MSVC knows about.
513      default: break;
514      }
515    }
516
517    FD->printQualifiedName(POut, Policy);
518
519    POut << "(";
520    if (FT) {
521      for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
522        if (i) POut << ", ";
523        POut << Decl->getParamDecl(i)->getType().stream(Policy);
524      }
525
526      if (FT->isVariadic()) {
527        if (FD->getNumParams()) POut << ", ";
528        POut << "...";
529      }
530    }
531    POut << ")";
532
533    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
534      const FunctionType *FT = MD->getType()->castAs<FunctionType>();
535      if (FT->isConst())
536        POut << " const";
537      if (FT->isVolatile())
538        POut << " volatile";
539      RefQualifierKind Ref = MD->getRefQualifier();
540      if (Ref == RQ_LValue)
541        POut << " &";
542      else if (Ref == RQ_RValue)
543        POut << " &&";
544    }
545
546    typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
547    SpecsTy Specs;
548    const DeclContext *Ctx = FD->getDeclContext();
549    while (Ctx && isa<NamedDecl>(Ctx)) {
550      const ClassTemplateSpecializationDecl *Spec
551                               = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
552      if (Spec && !Spec->isExplicitSpecialization())
553        Specs.push_back(Spec);
554      Ctx = Ctx->getParent();
555    }
556
557    std::string TemplateParams;
558    llvm::raw_string_ostream TOut(TemplateParams);
559    for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
560         I != E; ++I) {
561      const TemplateParameterList *Params
562                  = (*I)->getSpecializedTemplate()->getTemplateParameters();
563      const TemplateArgumentList &Args = (*I)->getTemplateArgs();
564      assert(Params->size() == Args.size());
565      for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
566        StringRef Param = Params->getParam(i)->getName();
567        if (Param.empty()) continue;
568        TOut << Param << " = ";
569        Args.get(i).print(Policy, TOut);
570        TOut << ", ";
571      }
572    }
573
574    FunctionTemplateSpecializationInfo *FSI
575                                          = FD->getTemplateSpecializationInfo();
576    if (FSI && !FSI->isExplicitSpecialization()) {
577      const TemplateParameterList* Params
578                                  = FSI->getTemplate()->getTemplateParameters();
579      const TemplateArgumentList* Args = FSI->TemplateArguments;
580      assert(Params->size() == Args->size());
581      for (unsigned i = 0, e = Params->size(); i != e; ++i) {
582        StringRef Param = Params->getParam(i)->getName();
583        if (Param.empty()) continue;
584        TOut << Param << " = ";
585        Args->get(i).print(Policy, TOut);
586        TOut << ", ";
587      }
588    }
589
590    TOut.flush();
591    if (!TemplateParams.empty()) {
592      // remove the trailing comma and space
593      TemplateParams.resize(TemplateParams.size() - 2);
594      POut << " [" << TemplateParams << "]";
595    }
596
597    POut.flush();
598
599    // Print "auto" for all deduced return types. This includes C++1y return
600    // type deduction and lambdas. For trailing return types resolve the
601    // decltype expression. Otherwise print the real type when this is
602    // not a constructor or destructor.
603    if ((isa<CXXMethodDecl>(FD) &&
604         cast<CXXMethodDecl>(FD)->getParent()->isLambda()) ||
605        (FT && FT->getReturnType()->getAs<AutoType>()))
606      Proto = "auto " + Proto;
607    else if (FT && FT->getReturnType()->getAs<DecltypeType>())
608      FT->getReturnType()
609          ->getAs<DecltypeType>()
610          ->getUnderlyingType()
611          .getAsStringInternal(Proto, Policy);
612    else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
613      AFT->getReturnType().getAsStringInternal(Proto, Policy);
614
615    Out << Proto;
616
617    Out.flush();
618    return Name.str().str();
619  }
620  if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
621    for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
622      // Skip to its enclosing function or method, but not its enclosing
623      // CapturedDecl.
624      if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
625        const Decl *D = Decl::castFromDeclContext(DC);
626        return ComputeName(IT, D);
627      }
628    llvm_unreachable("CapturedDecl not inside a function or method");
629  }
630  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
631    SmallString<256> Name;
632    llvm::raw_svector_ostream Out(Name);
633    Out << (MD->isInstanceMethod() ? '-' : '+');
634    Out << '[';
635
636    // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
637    // a null check to avoid a crash.
638    if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
639      Out << *ID;
640
641    if (const ObjCCategoryImplDecl *CID =
642        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
643      Out << '(' << *CID << ')';
644
645    Out <<  ' ';
646    MD->getSelector().print(Out);
647    Out <<  ']';
648
649    Out.flush();
650    return Name.str().str();
651  }
652  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
653    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
654    return "top level";
655  }
656  return "";
657}
658
659void APNumericStorage::setIntValue(const ASTContext &C,
660                                   const llvm::APInt &Val) {
661  if (hasAllocation())
662    C.Deallocate(pVal);
663
664  BitWidth = Val.getBitWidth();
665  unsigned NumWords = Val.getNumWords();
666  const uint64_t* Words = Val.getRawData();
667  if (NumWords > 1) {
668    pVal = new (C) uint64_t[NumWords];
669    std::copy(Words, Words + NumWords, pVal);
670  } else if (NumWords == 1)
671    VAL = Words[0];
672  else
673    VAL = 0;
674}
675
676IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
677                               QualType type, SourceLocation l)
678  : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
679         false, false),
680    Loc(l) {
681  assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
682  assert(V.getBitWidth() == C.getIntWidth(type) &&
683         "Integer type is not the correct size for constant.");
684  setValue(C, V);
685}
686
687IntegerLiteral *
688IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
689                       QualType type, SourceLocation l) {
690  return new (C) IntegerLiteral(C, V, type, l);
691}
692
693IntegerLiteral *
694IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
695  return new (C) IntegerLiteral(Empty);
696}
697
698FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
699                                 bool isexact, QualType Type, SourceLocation L)
700  : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
701         false, false), Loc(L) {
702  setSemantics(V.getSemantics());
703  FloatingLiteralBits.IsExact = isexact;
704  setValue(C, V);
705}
706
707FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
708  : Expr(FloatingLiteralClass, Empty) {
709  setRawSemantics(IEEEhalf);
710  FloatingLiteralBits.IsExact = false;
711}
712
713FloatingLiteral *
714FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
715                        bool isexact, QualType Type, SourceLocation L) {
716  return new (C) FloatingLiteral(C, V, isexact, Type, L);
717}
718
719FloatingLiteral *
720FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
721  return new (C) FloatingLiteral(C, Empty);
722}
723
724const llvm::fltSemantics &FloatingLiteral::getSemantics() const {
725  switch(FloatingLiteralBits.Semantics) {
726  case IEEEhalf:
727    return llvm::APFloat::IEEEhalf;
728  case IEEEsingle:
729    return llvm::APFloat::IEEEsingle;
730  case IEEEdouble:
731    return llvm::APFloat::IEEEdouble;
732  case x87DoubleExtended:
733    return llvm::APFloat::x87DoubleExtended;
734  case IEEEquad:
735    return llvm::APFloat::IEEEquad;
736  case PPCDoubleDouble:
737    return llvm::APFloat::PPCDoubleDouble;
738  }
739  llvm_unreachable("Unrecognised floating semantics");
740}
741
742void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) {
743  if (&Sem == &llvm::APFloat::IEEEhalf)
744    FloatingLiteralBits.Semantics = IEEEhalf;
745  else if (&Sem == &llvm::APFloat::IEEEsingle)
746    FloatingLiteralBits.Semantics = IEEEsingle;
747  else if (&Sem == &llvm::APFloat::IEEEdouble)
748    FloatingLiteralBits.Semantics = IEEEdouble;
749  else if (&Sem == &llvm::APFloat::x87DoubleExtended)
750    FloatingLiteralBits.Semantics = x87DoubleExtended;
751  else if (&Sem == &llvm::APFloat::IEEEquad)
752    FloatingLiteralBits.Semantics = IEEEquad;
753  else if (&Sem == &llvm::APFloat::PPCDoubleDouble)
754    FloatingLiteralBits.Semantics = PPCDoubleDouble;
755  else
756    llvm_unreachable("Unknown floating semantics");
757}
758
759/// getValueAsApproximateDouble - This returns the value as an inaccurate
760/// double.  Note that this may cause loss of precision, but is useful for
761/// debugging dumps, etc.
762double FloatingLiteral::getValueAsApproximateDouble() const {
763  llvm::APFloat V = getValue();
764  bool ignored;
765  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
766            &ignored);
767  return V.convertToDouble();
768}
769
770int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
771  int CharByteWidth = 0;
772  switch(k) {
773    case Ascii:
774    case UTF8:
775      CharByteWidth = target.getCharWidth();
776      break;
777    case Wide:
778      CharByteWidth = target.getWCharWidth();
779      break;
780    case UTF16:
781      CharByteWidth = target.getChar16Width();
782      break;
783    case UTF32:
784      CharByteWidth = target.getChar32Width();
785      break;
786  }
787  assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
788  CharByteWidth /= 8;
789  assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
790         && "character byte widths supported are 1, 2, and 4 only");
791  return CharByteWidth;
792}
793
794StringLiteral *StringLiteral::Create(const ASTContext &C, StringRef Str,
795                                     StringKind Kind, bool Pascal, QualType Ty,
796                                     const SourceLocation *Loc,
797                                     unsigned NumStrs) {
798  assert(C.getAsConstantArrayType(Ty) &&
799         "StringLiteral must be of constant array type!");
800
801  // Allocate enough space for the StringLiteral plus an array of locations for
802  // any concatenated string tokens.
803  void *Mem = C.Allocate(sizeof(StringLiteral)+
804                         sizeof(SourceLocation)*(NumStrs-1),
805                         llvm::alignOf<StringLiteral>());
806  StringLiteral *SL = new (Mem) StringLiteral(Ty);
807
808  // OPTIMIZE: could allocate this appended to the StringLiteral.
809  SL->setString(C,Str,Kind,Pascal);
810
811  SL->TokLocs[0] = Loc[0];
812  SL->NumConcatenated = NumStrs;
813
814  if (NumStrs != 1)
815    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
816  return SL;
817}
818
819StringLiteral *StringLiteral::CreateEmpty(const ASTContext &C,
820                                          unsigned NumStrs) {
821  void *Mem = C.Allocate(sizeof(StringLiteral)+
822                         sizeof(SourceLocation)*(NumStrs-1),
823                         llvm::alignOf<StringLiteral>());
824  StringLiteral *SL = new (Mem) StringLiteral(QualType());
825  SL->CharByteWidth = 0;
826  SL->Length = 0;
827  SL->NumConcatenated = NumStrs;
828  return SL;
829}
830
831void StringLiteral::outputString(raw_ostream &OS) const {
832  switch (getKind()) {
833  case Ascii: break; // no prefix.
834  case Wide:  OS << 'L'; break;
835  case UTF8:  OS << "u8"; break;
836  case UTF16: OS << 'u'; break;
837  case UTF32: OS << 'U'; break;
838  }
839  OS << '"';
840  static const char Hex[] = "0123456789ABCDEF";
841
842  unsigned LastSlashX = getLength();
843  for (unsigned I = 0, N = getLength(); I != N; ++I) {
844    switch (uint32_t Char = getCodeUnit(I)) {
845    default:
846      // FIXME: Convert UTF-8 back to codepoints before rendering.
847
848      // Convert UTF-16 surrogate pairs back to codepoints before rendering.
849      // Leave invalid surrogates alone; we'll use \x for those.
850      if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
851          Char <= 0xdbff) {
852        uint32_t Trail = getCodeUnit(I + 1);
853        if (Trail >= 0xdc00 && Trail <= 0xdfff) {
854          Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
855          ++I;
856        }
857      }
858
859      if (Char > 0xff) {
860        // If this is a wide string, output characters over 0xff using \x
861        // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
862        // codepoint: use \x escapes for invalid codepoints.
863        if (getKind() == Wide ||
864            (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
865          // FIXME: Is this the best way to print wchar_t?
866          OS << "\\x";
867          int Shift = 28;
868          while ((Char >> Shift) == 0)
869            Shift -= 4;
870          for (/**/; Shift >= 0; Shift -= 4)
871            OS << Hex[(Char >> Shift) & 15];
872          LastSlashX = I;
873          break;
874        }
875
876        if (Char > 0xffff)
877          OS << "\\U00"
878             << Hex[(Char >> 20) & 15]
879             << Hex[(Char >> 16) & 15];
880        else
881          OS << "\\u";
882        OS << Hex[(Char >> 12) & 15]
883           << Hex[(Char >>  8) & 15]
884           << Hex[(Char >>  4) & 15]
885           << Hex[(Char >>  0) & 15];
886        break;
887      }
888
889      // If we used \x... for the previous character, and this character is a
890      // hexadecimal digit, prevent it being slurped as part of the \x.
891      if (LastSlashX + 1 == I) {
892        switch (Char) {
893          case '0': case '1': case '2': case '3': case '4':
894          case '5': case '6': case '7': case '8': case '9':
895          case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
896          case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
897            OS << "\"\"";
898        }
899      }
900
901      assert(Char <= 0xff &&
902             "Characters above 0xff should already have been handled.");
903
904      if (isPrintable(Char))
905        OS << (char)Char;
906      else  // Output anything hard as an octal escape.
907        OS << '\\'
908           << (char)('0' + ((Char >> 6) & 7))
909           << (char)('0' + ((Char >> 3) & 7))
910           << (char)('0' + ((Char >> 0) & 7));
911      break;
912    // Handle some common non-printable cases to make dumps prettier.
913    case '\\': OS << "\\\\"; break;
914    case '"': OS << "\\\""; break;
915    case '\n': OS << "\\n"; break;
916    case '\t': OS << "\\t"; break;
917    case '\a': OS << "\\a"; break;
918    case '\b': OS << "\\b"; break;
919    }
920  }
921  OS << '"';
922}
923
924void StringLiteral::setString(const ASTContext &C, StringRef Str,
925                              StringKind Kind, bool IsPascal) {
926  //FIXME: we assume that the string data comes from a target that uses the same
927  // code unit size and endianess for the type of string.
928  this->Kind = Kind;
929  this->IsPascal = IsPascal;
930
931  CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
932  assert((Str.size()%CharByteWidth == 0)
933         && "size of data must be multiple of CharByteWidth");
934  Length = Str.size()/CharByteWidth;
935
936  switch(CharByteWidth) {
937    case 1: {
938      char *AStrData = new (C) char[Length];
939      std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
940      StrData.asChar = AStrData;
941      break;
942    }
943    case 2: {
944      uint16_t *AStrData = new (C) uint16_t[Length];
945      std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
946      StrData.asUInt16 = AStrData;
947      break;
948    }
949    case 4: {
950      uint32_t *AStrData = new (C) uint32_t[Length];
951      std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
952      StrData.asUInt32 = AStrData;
953      break;
954    }
955    default:
956      assert(false && "unsupported CharByteWidth");
957  }
958}
959
960/// getLocationOfByte - Return a source location that points to the specified
961/// byte of this string literal.
962///
963/// Strings are amazingly complex.  They can be formed from multiple tokens and
964/// can have escape sequences in them in addition to the usual trigraph and
965/// escaped newline business.  This routine handles this complexity.
966///
967SourceLocation StringLiteral::
968getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
969                  const LangOptions &Features, const TargetInfo &Target) const {
970  assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
971         "Only narrow string literals are currently supported");
972
973  // Loop over all of the tokens in this string until we find the one that
974  // contains the byte we're looking for.
975  unsigned TokNo = 0;
976  while (1) {
977    assert(TokNo < getNumConcatenated() && "Invalid byte number!");
978    SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
979
980    // Get the spelling of the string so that we can get the data that makes up
981    // the string literal, not the identifier for the macro it is potentially
982    // expanded through.
983    SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
984
985    // Re-lex the token to get its length and original spelling.
986    std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
987    bool Invalid = false;
988    StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
989    if (Invalid)
990      return StrTokSpellingLoc;
991
992    const char *StrData = Buffer.data()+LocInfo.second;
993
994    // Create a lexer starting at the beginning of this token.
995    Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
996                   Buffer.begin(), StrData, Buffer.end());
997    Token TheTok;
998    TheLexer.LexFromRawLexer(TheTok);
999
1000    // Use the StringLiteralParser to compute the length of the string in bytes.
1001    StringLiteralParser SLP(TheTok, SM, Features, Target);
1002    unsigned TokNumBytes = SLP.GetStringLength();
1003
1004    // If the byte is in this token, return the location of the byte.
1005    if (ByteNo < TokNumBytes ||
1006        (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1007      unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1008
1009      // Now that we know the offset of the token in the spelling, use the
1010      // preprocessor to get the offset in the original source.
1011      return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1012    }
1013
1014    // Move to the next string token.
1015    ++TokNo;
1016    ByteNo -= TokNumBytes;
1017  }
1018}
1019
1020
1021
1022/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1023/// corresponds to, e.g. "sizeof" or "[pre]++".
1024StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
1025  switch (Op) {
1026  case UO_PostInc: return "++";
1027  case UO_PostDec: return "--";
1028  case UO_PreInc:  return "++";
1029  case UO_PreDec:  return "--";
1030  case UO_AddrOf:  return "&";
1031  case UO_Deref:   return "*";
1032  case UO_Plus:    return "+";
1033  case UO_Minus:   return "-";
1034  case UO_Not:     return "~";
1035  case UO_LNot:    return "!";
1036  case UO_Real:    return "__real";
1037  case UO_Imag:    return "__imag";
1038  case UO_Extension: return "__extension__";
1039  }
1040  llvm_unreachable("Unknown unary operator");
1041}
1042
1043UnaryOperatorKind
1044UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1045  switch (OO) {
1046  default: llvm_unreachable("No unary operator for overloaded function");
1047  case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
1048  case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1049  case OO_Amp:        return UO_AddrOf;
1050  case OO_Star:       return UO_Deref;
1051  case OO_Plus:       return UO_Plus;
1052  case OO_Minus:      return UO_Minus;
1053  case OO_Tilde:      return UO_Not;
1054  case OO_Exclaim:    return UO_LNot;
1055  }
1056}
1057
1058OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1059  switch (Opc) {
1060  case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1061  case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1062  case UO_AddrOf: return OO_Amp;
1063  case UO_Deref: return OO_Star;
1064  case UO_Plus: return OO_Plus;
1065  case UO_Minus: return OO_Minus;
1066  case UO_Not: return OO_Tilde;
1067  case UO_LNot: return OO_Exclaim;
1068  default: return OO_None;
1069  }
1070}
1071
1072
1073//===----------------------------------------------------------------------===//
1074// Postfix Operators.
1075//===----------------------------------------------------------------------===//
1076
1077CallExpr::CallExpr(const ASTContext& C, StmtClass SC, Expr *fn,
1078                   unsigned NumPreArgs, ArrayRef<Expr*> args, QualType t,
1079                   ExprValueKind VK, SourceLocation rparenloc)
1080  : Expr(SC, t, VK, OK_Ordinary,
1081         fn->isTypeDependent(),
1082         fn->isValueDependent(),
1083         fn->isInstantiationDependent(),
1084         fn->containsUnexpandedParameterPack()),
1085    NumArgs(args.size()) {
1086
1087  SubExprs = new (C) Stmt*[args.size()+PREARGS_START+NumPreArgs];
1088  SubExprs[FN] = fn;
1089  for (unsigned i = 0; i != args.size(); ++i) {
1090    if (args[i]->isTypeDependent())
1091      ExprBits.TypeDependent = true;
1092    if (args[i]->isValueDependent())
1093      ExprBits.ValueDependent = true;
1094    if (args[i]->isInstantiationDependent())
1095      ExprBits.InstantiationDependent = true;
1096    if (args[i]->containsUnexpandedParameterPack())
1097      ExprBits.ContainsUnexpandedParameterPack = true;
1098
1099    SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
1100  }
1101
1102  CallExprBits.NumPreArgs = NumPreArgs;
1103  RParenLoc = rparenloc;
1104}
1105
1106CallExpr::CallExpr(const ASTContext& C, Expr *fn, ArrayRef<Expr*> args,
1107                   QualType t, ExprValueKind VK, SourceLocation rparenloc)
1108  : Expr(CallExprClass, t, VK, OK_Ordinary,
1109         fn->isTypeDependent(),
1110         fn->isValueDependent(),
1111         fn->isInstantiationDependent(),
1112         fn->containsUnexpandedParameterPack()),
1113    NumArgs(args.size()) {
1114
1115  SubExprs = new (C) Stmt*[args.size()+PREARGS_START];
1116  SubExprs[FN] = fn;
1117  for (unsigned i = 0; i != args.size(); ++i) {
1118    if (args[i]->isTypeDependent())
1119      ExprBits.TypeDependent = true;
1120    if (args[i]->isValueDependent())
1121      ExprBits.ValueDependent = true;
1122    if (args[i]->isInstantiationDependent())
1123      ExprBits.InstantiationDependent = true;
1124    if (args[i]->containsUnexpandedParameterPack())
1125      ExprBits.ContainsUnexpandedParameterPack = true;
1126
1127    SubExprs[i+PREARGS_START] = args[i];
1128  }
1129
1130  CallExprBits.NumPreArgs = 0;
1131  RParenLoc = rparenloc;
1132}
1133
1134CallExpr::CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty)
1135  : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) {
1136  // FIXME: Why do we allocate this?
1137  SubExprs = new (C) Stmt*[PREARGS_START];
1138  CallExprBits.NumPreArgs = 0;
1139}
1140
1141CallExpr::CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
1142                   EmptyShell Empty)
1143  : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) {
1144  // FIXME: Why do we allocate this?
1145  SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
1146  CallExprBits.NumPreArgs = NumPreArgs;
1147}
1148
1149Decl *CallExpr::getCalleeDecl() {
1150  Expr *CEE = getCallee()->IgnoreParenImpCasts();
1151
1152  while (SubstNonTypeTemplateParmExpr *NTTP
1153                                = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1154    CEE = NTTP->getReplacement()->IgnoreParenCasts();
1155  }
1156
1157  // If we're calling a dereference, look at the pointer instead.
1158  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1159    if (BO->isPtrMemOp())
1160      CEE = BO->getRHS()->IgnoreParenCasts();
1161  } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1162    if (UO->getOpcode() == UO_Deref)
1163      CEE = UO->getSubExpr()->IgnoreParenCasts();
1164  }
1165  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1166    return DRE->getDecl();
1167  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1168    return ME->getMemberDecl();
1169
1170  return nullptr;
1171}
1172
1173FunctionDecl *CallExpr::getDirectCallee() {
1174  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
1175}
1176
1177/// setNumArgs - This changes the number of arguments present in this call.
1178/// Any orphaned expressions are deleted by this, and any new operands are set
1179/// to null.
1180void CallExpr::setNumArgs(const ASTContext& C, unsigned NumArgs) {
1181  // No change, just return.
1182  if (NumArgs == getNumArgs()) return;
1183
1184  // If shrinking # arguments, just delete the extras and forgot them.
1185  if (NumArgs < getNumArgs()) {
1186    this->NumArgs = NumArgs;
1187    return;
1188  }
1189
1190  // Otherwise, we are growing the # arguments.  New an bigger argument array.
1191  unsigned NumPreArgs = getNumPreArgs();
1192  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
1193  // Copy over args.
1194  for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
1195    NewSubExprs[i] = SubExprs[i];
1196  // Null out new args.
1197  for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
1198       i != NumArgs+PREARGS_START+NumPreArgs; ++i)
1199    NewSubExprs[i] = nullptr;
1200
1201  if (SubExprs) C.Deallocate(SubExprs);
1202  SubExprs = NewSubExprs;
1203  this->NumArgs = NumArgs;
1204}
1205
1206/// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If
1207/// not, return 0.
1208unsigned CallExpr::getBuiltinCallee() const {
1209  // All simple function calls (e.g. func()) are implicitly cast to pointer to
1210  // function. As a result, we try and obtain the DeclRefExpr from the
1211  // ImplicitCastExpr.
1212  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
1213  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
1214    return 0;
1215
1216  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
1217  if (!DRE)
1218    return 0;
1219
1220  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
1221  if (!FDecl)
1222    return 0;
1223
1224  if (!FDecl->getIdentifier())
1225    return 0;
1226
1227  return FDecl->getBuiltinID();
1228}
1229
1230bool CallExpr::isUnevaluatedBuiltinCall(ASTContext &Ctx) const {
1231  if (unsigned BI = getBuiltinCallee())
1232    return Ctx.BuiltinInfo.isUnevaluated(BI);
1233  return false;
1234}
1235
1236QualType CallExpr::getCallReturnType() const {
1237  QualType CalleeType = getCallee()->getType();
1238  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
1239    CalleeType = FnTypePtr->getPointeeType();
1240  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
1241    CalleeType = BPT->getPointeeType();
1242  else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember))
1243    // This should never be overloaded and so should never return null.
1244    CalleeType = Expr::findBoundMemberType(getCallee());
1245
1246  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1247  return FnType->getReturnType();
1248}
1249
1250SourceLocation CallExpr::getLocStart() const {
1251  if (isa<CXXOperatorCallExpr>(this))
1252    return cast<CXXOperatorCallExpr>(this)->getLocStart();
1253
1254  SourceLocation begin = getCallee()->getLocStart();
1255  if (begin.isInvalid() && getNumArgs() > 0)
1256    begin = getArg(0)->getLocStart();
1257  return begin;
1258}
1259SourceLocation CallExpr::getLocEnd() const {
1260  if (isa<CXXOperatorCallExpr>(this))
1261    return cast<CXXOperatorCallExpr>(this)->getLocEnd();
1262
1263  SourceLocation end = getRParenLoc();
1264  if (end.isInvalid() && getNumArgs() > 0)
1265    end = getArg(getNumArgs() - 1)->getLocEnd();
1266  return end;
1267}
1268
1269OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
1270                                   SourceLocation OperatorLoc,
1271                                   TypeSourceInfo *tsi,
1272                                   ArrayRef<OffsetOfNode> comps,
1273                                   ArrayRef<Expr*> exprs,
1274                                   SourceLocation RParenLoc) {
1275  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1276                         sizeof(OffsetOfNode) * comps.size() +
1277                         sizeof(Expr*) * exprs.size());
1278
1279  return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1280                                RParenLoc);
1281}
1282
1283OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
1284                                        unsigned numComps, unsigned numExprs) {
1285  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1286                         sizeof(OffsetOfNode) * numComps +
1287                         sizeof(Expr*) * numExprs);
1288  return new (Mem) OffsetOfExpr(numComps, numExprs);
1289}
1290
1291OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1292                           SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1293                           ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1294                           SourceLocation RParenLoc)
1295  : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
1296         /*TypeDependent=*/false,
1297         /*ValueDependent=*/tsi->getType()->isDependentType(),
1298         tsi->getType()->isInstantiationDependentType(),
1299         tsi->getType()->containsUnexpandedParameterPack()),
1300    OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1301    NumComps(comps.size()), NumExprs(exprs.size())
1302{
1303  for (unsigned i = 0; i != comps.size(); ++i) {
1304    setComponent(i, comps[i]);
1305  }
1306
1307  for (unsigned i = 0; i != exprs.size(); ++i) {
1308    if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
1309      ExprBits.ValueDependent = true;
1310    if (exprs[i]->containsUnexpandedParameterPack())
1311      ExprBits.ContainsUnexpandedParameterPack = true;
1312
1313    setIndexExpr(i, exprs[i]);
1314  }
1315}
1316
1317IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
1318  assert(getKind() == Field || getKind() == Identifier);
1319  if (getKind() == Field)
1320    return getField()->getIdentifier();
1321
1322  return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1323}
1324
1325MemberExpr *MemberExpr::Create(const ASTContext &C, Expr *base, bool isarrow,
1326                               NestedNameSpecifierLoc QualifierLoc,
1327                               SourceLocation TemplateKWLoc,
1328                               ValueDecl *memberdecl,
1329                               DeclAccessPair founddecl,
1330                               DeclarationNameInfo nameinfo,
1331                               const TemplateArgumentListInfo *targs,
1332                               QualType ty,
1333                               ExprValueKind vk,
1334                               ExprObjectKind ok) {
1335  std::size_t Size = sizeof(MemberExpr);
1336
1337  bool hasQualOrFound = (QualifierLoc ||
1338                         founddecl.getDecl() != memberdecl ||
1339                         founddecl.getAccess() != memberdecl->getAccess());
1340  if (hasQualOrFound)
1341    Size += sizeof(MemberNameQualifier);
1342
1343  if (targs)
1344    Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
1345  else if (TemplateKWLoc.isValid())
1346    Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
1347
1348  void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
1349  MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
1350                                       ty, vk, ok);
1351
1352  if (hasQualOrFound) {
1353    // FIXME: Wrong. We should be looking at the member declaration we found.
1354    if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1355      E->setValueDependent(true);
1356      E->setTypeDependent(true);
1357      E->setInstantiationDependent(true);
1358    }
1359    else if (QualifierLoc &&
1360             QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1361      E->setInstantiationDependent(true);
1362
1363    E->HasQualifierOrFoundDecl = true;
1364
1365    MemberNameQualifier *NQ = E->getMemberQualifier();
1366    NQ->QualifierLoc = QualifierLoc;
1367    NQ->FoundDecl = founddecl;
1368  }
1369
1370  E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
1371
1372  if (targs) {
1373    bool Dependent = false;
1374    bool InstantiationDependent = false;
1375    bool ContainsUnexpandedParameterPack = false;
1376    E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
1377                                                  Dependent,
1378                                                  InstantiationDependent,
1379                                             ContainsUnexpandedParameterPack);
1380    if (InstantiationDependent)
1381      E->setInstantiationDependent(true);
1382  } else if (TemplateKWLoc.isValid()) {
1383    E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
1384  }
1385
1386  return E;
1387}
1388
1389SourceLocation MemberExpr::getLocStart() const {
1390  if (isImplicitAccess()) {
1391    if (hasQualifier())
1392      return getQualifierLoc().getBeginLoc();
1393    return MemberLoc;
1394  }
1395
1396  // FIXME: We don't want this to happen. Rather, we should be able to
1397  // detect all kinds of implicit accesses more cleanly.
1398  SourceLocation BaseStartLoc = getBase()->getLocStart();
1399  if (BaseStartLoc.isValid())
1400    return BaseStartLoc;
1401  return MemberLoc;
1402}
1403SourceLocation MemberExpr::getLocEnd() const {
1404  SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1405  if (hasExplicitTemplateArgs())
1406    EndLoc = getRAngleLoc();
1407  else if (EndLoc.isInvalid())
1408    EndLoc = getBase()->getLocEnd();
1409  return EndLoc;
1410}
1411
1412bool CastExpr::CastConsistency() const {
1413  switch (getCastKind()) {
1414  case CK_DerivedToBase:
1415  case CK_UncheckedDerivedToBase:
1416  case CK_DerivedToBaseMemberPointer:
1417  case CK_BaseToDerived:
1418  case CK_BaseToDerivedMemberPointer:
1419    assert(!path_empty() && "Cast kind should have a base path!");
1420    break;
1421
1422  case CK_CPointerToObjCPointerCast:
1423    assert(getType()->isObjCObjectPointerType());
1424    assert(getSubExpr()->getType()->isPointerType());
1425    goto CheckNoBasePath;
1426
1427  case CK_BlockPointerToObjCPointerCast:
1428    assert(getType()->isObjCObjectPointerType());
1429    assert(getSubExpr()->getType()->isBlockPointerType());
1430    goto CheckNoBasePath;
1431
1432  case CK_ReinterpretMemberPointer:
1433    assert(getType()->isMemberPointerType());
1434    assert(getSubExpr()->getType()->isMemberPointerType());
1435    goto CheckNoBasePath;
1436
1437  case CK_BitCast:
1438    // Arbitrary casts to C pointer types count as bitcasts.
1439    // Otherwise, we should only have block and ObjC pointer casts
1440    // here if they stay within the type kind.
1441    if (!getType()->isPointerType()) {
1442      assert(getType()->isObjCObjectPointerType() ==
1443             getSubExpr()->getType()->isObjCObjectPointerType());
1444      assert(getType()->isBlockPointerType() ==
1445             getSubExpr()->getType()->isBlockPointerType());
1446    }
1447    goto CheckNoBasePath;
1448
1449  case CK_AnyPointerToBlockPointerCast:
1450    assert(getType()->isBlockPointerType());
1451    assert(getSubExpr()->getType()->isAnyPointerType() &&
1452           !getSubExpr()->getType()->isBlockPointerType());
1453    goto CheckNoBasePath;
1454
1455  case CK_CopyAndAutoreleaseBlockObject:
1456    assert(getType()->isBlockPointerType());
1457    assert(getSubExpr()->getType()->isBlockPointerType());
1458    goto CheckNoBasePath;
1459
1460  case CK_FunctionToPointerDecay:
1461    assert(getType()->isPointerType());
1462    assert(getSubExpr()->getType()->isFunctionType());
1463    goto CheckNoBasePath;
1464
1465  case CK_AddressSpaceConversion:
1466    assert(getType()->isPointerType());
1467    assert(getSubExpr()->getType()->isPointerType());
1468    assert(getType()->getPointeeType().getAddressSpace() !=
1469           getSubExpr()->getType()->getPointeeType().getAddressSpace());
1470  // These should not have an inheritance path.
1471  case CK_Dynamic:
1472  case CK_ToUnion:
1473  case CK_ArrayToPointerDecay:
1474  case CK_NullToMemberPointer:
1475  case CK_NullToPointer:
1476  case CK_ConstructorConversion:
1477  case CK_IntegralToPointer:
1478  case CK_PointerToIntegral:
1479  case CK_ToVoid:
1480  case CK_VectorSplat:
1481  case CK_IntegralCast:
1482  case CK_IntegralToFloating:
1483  case CK_FloatingToIntegral:
1484  case CK_FloatingCast:
1485  case CK_ObjCObjectLValueCast:
1486  case CK_FloatingRealToComplex:
1487  case CK_FloatingComplexToReal:
1488  case CK_FloatingComplexCast:
1489  case CK_FloatingComplexToIntegralComplex:
1490  case CK_IntegralRealToComplex:
1491  case CK_IntegralComplexToReal:
1492  case CK_IntegralComplexCast:
1493  case CK_IntegralComplexToFloatingComplex:
1494  case CK_ARCProduceObject:
1495  case CK_ARCConsumeObject:
1496  case CK_ARCReclaimReturnedObject:
1497  case CK_ARCExtendBlockObject:
1498  case CK_ZeroToOCLEvent:
1499    assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1500    goto CheckNoBasePath;
1501
1502  case CK_Dependent:
1503  case CK_LValueToRValue:
1504  case CK_NoOp:
1505  case CK_AtomicToNonAtomic:
1506  case CK_NonAtomicToAtomic:
1507  case CK_PointerToBoolean:
1508  case CK_IntegralToBoolean:
1509  case CK_FloatingToBoolean:
1510  case CK_MemberPointerToBoolean:
1511  case CK_FloatingComplexToBoolean:
1512  case CK_IntegralComplexToBoolean:
1513  case CK_LValueBitCast:            // -> bool&
1514  case CK_UserDefinedConversion:    // operator bool()
1515  case CK_BuiltinFnToFnPtr:
1516  CheckNoBasePath:
1517    assert(path_empty() && "Cast kind should not have a base path!");
1518    break;
1519  }
1520  return true;
1521}
1522
1523const char *CastExpr::getCastKindName() const {
1524  switch (getCastKind()) {
1525  case CK_Dependent:
1526    return "Dependent";
1527  case CK_BitCast:
1528    return "BitCast";
1529  case CK_LValueBitCast:
1530    return "LValueBitCast";
1531  case CK_LValueToRValue:
1532    return "LValueToRValue";
1533  case CK_NoOp:
1534    return "NoOp";
1535  case CK_BaseToDerived:
1536    return "BaseToDerived";
1537  case CK_DerivedToBase:
1538    return "DerivedToBase";
1539  case CK_UncheckedDerivedToBase:
1540    return "UncheckedDerivedToBase";
1541  case CK_Dynamic:
1542    return "Dynamic";
1543  case CK_ToUnion:
1544    return "ToUnion";
1545  case CK_ArrayToPointerDecay:
1546    return "ArrayToPointerDecay";
1547  case CK_FunctionToPointerDecay:
1548    return "FunctionToPointerDecay";
1549  case CK_NullToMemberPointer:
1550    return "NullToMemberPointer";
1551  case CK_NullToPointer:
1552    return "NullToPointer";
1553  case CK_BaseToDerivedMemberPointer:
1554    return "BaseToDerivedMemberPointer";
1555  case CK_DerivedToBaseMemberPointer:
1556    return "DerivedToBaseMemberPointer";
1557  case CK_ReinterpretMemberPointer:
1558    return "ReinterpretMemberPointer";
1559  case CK_UserDefinedConversion:
1560    return "UserDefinedConversion";
1561  case CK_ConstructorConversion:
1562    return "ConstructorConversion";
1563  case CK_IntegralToPointer:
1564    return "IntegralToPointer";
1565  case CK_PointerToIntegral:
1566    return "PointerToIntegral";
1567  case CK_PointerToBoolean:
1568    return "PointerToBoolean";
1569  case CK_ToVoid:
1570    return "ToVoid";
1571  case CK_VectorSplat:
1572    return "VectorSplat";
1573  case CK_IntegralCast:
1574    return "IntegralCast";
1575  case CK_IntegralToBoolean:
1576    return "IntegralToBoolean";
1577  case CK_IntegralToFloating:
1578    return "IntegralToFloating";
1579  case CK_FloatingToIntegral:
1580    return "FloatingToIntegral";
1581  case CK_FloatingCast:
1582    return "FloatingCast";
1583  case CK_FloatingToBoolean:
1584    return "FloatingToBoolean";
1585  case CK_MemberPointerToBoolean:
1586    return "MemberPointerToBoolean";
1587  case CK_CPointerToObjCPointerCast:
1588    return "CPointerToObjCPointerCast";
1589  case CK_BlockPointerToObjCPointerCast:
1590    return "BlockPointerToObjCPointerCast";
1591  case CK_AnyPointerToBlockPointerCast:
1592    return "AnyPointerToBlockPointerCast";
1593  case CK_ObjCObjectLValueCast:
1594    return "ObjCObjectLValueCast";
1595  case CK_FloatingRealToComplex:
1596    return "FloatingRealToComplex";
1597  case CK_FloatingComplexToReal:
1598    return "FloatingComplexToReal";
1599  case CK_FloatingComplexToBoolean:
1600    return "FloatingComplexToBoolean";
1601  case CK_FloatingComplexCast:
1602    return "FloatingComplexCast";
1603  case CK_FloatingComplexToIntegralComplex:
1604    return "FloatingComplexToIntegralComplex";
1605  case CK_IntegralRealToComplex:
1606    return "IntegralRealToComplex";
1607  case CK_IntegralComplexToReal:
1608    return "IntegralComplexToReal";
1609  case CK_IntegralComplexToBoolean:
1610    return "IntegralComplexToBoolean";
1611  case CK_IntegralComplexCast:
1612    return "IntegralComplexCast";
1613  case CK_IntegralComplexToFloatingComplex:
1614    return "IntegralComplexToFloatingComplex";
1615  case CK_ARCConsumeObject:
1616    return "ARCConsumeObject";
1617  case CK_ARCProduceObject:
1618    return "ARCProduceObject";
1619  case CK_ARCReclaimReturnedObject:
1620    return "ARCReclaimReturnedObject";
1621  case CK_ARCExtendBlockObject:
1622    return "ARCExtendBlockObject";
1623  case CK_AtomicToNonAtomic:
1624    return "AtomicToNonAtomic";
1625  case CK_NonAtomicToAtomic:
1626    return "NonAtomicToAtomic";
1627  case CK_CopyAndAutoreleaseBlockObject:
1628    return "CopyAndAutoreleaseBlockObject";
1629  case CK_BuiltinFnToFnPtr:
1630    return "BuiltinFnToFnPtr";
1631  case CK_ZeroToOCLEvent:
1632    return "ZeroToOCLEvent";
1633  case CK_AddressSpaceConversion:
1634    return "AddressSpaceConversion";
1635  }
1636
1637  llvm_unreachable("Unhandled cast kind!");
1638}
1639
1640Expr *CastExpr::getSubExprAsWritten() {
1641  Expr *SubExpr = nullptr;
1642  CastExpr *E = this;
1643  do {
1644    SubExpr = E->getSubExpr();
1645
1646    // Skip through reference binding to temporary.
1647    if (MaterializeTemporaryExpr *Materialize
1648                                  = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
1649      SubExpr = Materialize->GetTemporaryExpr();
1650
1651    // Skip any temporary bindings; they're implicit.
1652    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
1653      SubExpr = Binder->getSubExpr();
1654
1655    // Conversions by constructor and conversion functions have a
1656    // subexpression describing the call; strip it off.
1657    if (E->getCastKind() == CK_ConstructorConversion)
1658      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
1659    else if (E->getCastKind() == CK_UserDefinedConversion)
1660      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
1661
1662    // If the subexpression we're left with is an implicit cast, look
1663    // through that, too.
1664  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1665
1666  return SubExpr;
1667}
1668
1669CXXBaseSpecifier **CastExpr::path_buffer() {
1670  switch (getStmtClass()) {
1671#define ABSTRACT_STMT(x)
1672#define CASTEXPR(Type, Base) \
1673  case Stmt::Type##Class: \
1674    return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
1675#define STMT(Type, Base)
1676#include "clang/AST/StmtNodes.inc"
1677  default:
1678    llvm_unreachable("non-cast expressions not possible here");
1679  }
1680}
1681
1682void CastExpr::setCastPath(const CXXCastPath &Path) {
1683  assert(Path.size() == path_size());
1684  memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
1685}
1686
1687ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
1688                                           CastKind Kind, Expr *Operand,
1689                                           const CXXCastPath *BasePath,
1690                                           ExprValueKind VK) {
1691  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1692  void *Buffer =
1693    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1694  ImplicitCastExpr *E =
1695    new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1696  if (PathSize) E->setCastPath(*BasePath);
1697  return E;
1698}
1699
1700ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
1701                                                unsigned PathSize) {
1702  void *Buffer =
1703    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1704  return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1705}
1706
1707
1708CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
1709                                       ExprValueKind VK, CastKind K, Expr *Op,
1710                                       const CXXCastPath *BasePath,
1711                                       TypeSourceInfo *WrittenTy,
1712                                       SourceLocation L, SourceLocation R) {
1713  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1714  void *Buffer =
1715    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1716  CStyleCastExpr *E =
1717    new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1718  if (PathSize) E->setCastPath(*BasePath);
1719  return E;
1720}
1721
1722CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
1723                                            unsigned PathSize) {
1724  void *Buffer =
1725    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1726  return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1727}
1728
1729/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1730/// corresponds to, e.g. "<<=".
1731StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
1732  switch (Op) {
1733  case BO_PtrMemD:   return ".*";
1734  case BO_PtrMemI:   return "->*";
1735  case BO_Mul:       return "*";
1736  case BO_Div:       return "/";
1737  case BO_Rem:       return "%";
1738  case BO_Add:       return "+";
1739  case BO_Sub:       return "-";
1740  case BO_Shl:       return "<<";
1741  case BO_Shr:       return ">>";
1742  case BO_LT:        return "<";
1743  case BO_GT:        return ">";
1744  case BO_LE:        return "<=";
1745  case BO_GE:        return ">=";
1746  case BO_EQ:        return "==";
1747  case BO_NE:        return "!=";
1748  case BO_And:       return "&";
1749  case BO_Xor:       return "^";
1750  case BO_Or:        return "|";
1751  case BO_LAnd:      return "&&";
1752  case BO_LOr:       return "||";
1753  case BO_Assign:    return "=";
1754  case BO_MulAssign: return "*=";
1755  case BO_DivAssign: return "/=";
1756  case BO_RemAssign: return "%=";
1757  case BO_AddAssign: return "+=";
1758  case BO_SubAssign: return "-=";
1759  case BO_ShlAssign: return "<<=";
1760  case BO_ShrAssign: return ">>=";
1761  case BO_AndAssign: return "&=";
1762  case BO_XorAssign: return "^=";
1763  case BO_OrAssign:  return "|=";
1764  case BO_Comma:     return ",";
1765  }
1766
1767  llvm_unreachable("Invalid OpCode!");
1768}
1769
1770BinaryOperatorKind
1771BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1772  switch (OO) {
1773  default: llvm_unreachable("Not an overloadable binary operator");
1774  case OO_Plus: return BO_Add;
1775  case OO_Minus: return BO_Sub;
1776  case OO_Star: return BO_Mul;
1777  case OO_Slash: return BO_Div;
1778  case OO_Percent: return BO_Rem;
1779  case OO_Caret: return BO_Xor;
1780  case OO_Amp: return BO_And;
1781  case OO_Pipe: return BO_Or;
1782  case OO_Equal: return BO_Assign;
1783  case OO_Less: return BO_LT;
1784  case OO_Greater: return BO_GT;
1785  case OO_PlusEqual: return BO_AddAssign;
1786  case OO_MinusEqual: return BO_SubAssign;
1787  case OO_StarEqual: return BO_MulAssign;
1788  case OO_SlashEqual: return BO_DivAssign;
1789  case OO_PercentEqual: return BO_RemAssign;
1790  case OO_CaretEqual: return BO_XorAssign;
1791  case OO_AmpEqual: return BO_AndAssign;
1792  case OO_PipeEqual: return BO_OrAssign;
1793  case OO_LessLess: return BO_Shl;
1794  case OO_GreaterGreater: return BO_Shr;
1795  case OO_LessLessEqual: return BO_ShlAssign;
1796  case OO_GreaterGreaterEqual: return BO_ShrAssign;
1797  case OO_EqualEqual: return BO_EQ;
1798  case OO_ExclaimEqual: return BO_NE;
1799  case OO_LessEqual: return BO_LE;
1800  case OO_GreaterEqual: return BO_GE;
1801  case OO_AmpAmp: return BO_LAnd;
1802  case OO_PipePipe: return BO_LOr;
1803  case OO_Comma: return BO_Comma;
1804  case OO_ArrowStar: return BO_PtrMemI;
1805  }
1806}
1807
1808OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1809  static const OverloadedOperatorKind OverOps[] = {
1810    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1811    OO_Star, OO_Slash, OO_Percent,
1812    OO_Plus, OO_Minus,
1813    OO_LessLess, OO_GreaterGreater,
1814    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1815    OO_EqualEqual, OO_ExclaimEqual,
1816    OO_Amp,
1817    OO_Caret,
1818    OO_Pipe,
1819    OO_AmpAmp,
1820    OO_PipePipe,
1821    OO_Equal, OO_StarEqual,
1822    OO_SlashEqual, OO_PercentEqual,
1823    OO_PlusEqual, OO_MinusEqual,
1824    OO_LessLessEqual, OO_GreaterGreaterEqual,
1825    OO_AmpEqual, OO_CaretEqual,
1826    OO_PipeEqual,
1827    OO_Comma
1828  };
1829  return OverOps[Opc];
1830}
1831
1832InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
1833                           ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
1834  : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1835         false, false),
1836    InitExprs(C, initExprs.size()),
1837    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true)
1838{
1839  sawArrayRangeDesignator(false);
1840  for (unsigned I = 0; I != initExprs.size(); ++I) {
1841    if (initExprs[I]->isTypeDependent())
1842      ExprBits.TypeDependent = true;
1843    if (initExprs[I]->isValueDependent())
1844      ExprBits.ValueDependent = true;
1845    if (initExprs[I]->isInstantiationDependent())
1846      ExprBits.InstantiationDependent = true;
1847    if (initExprs[I]->containsUnexpandedParameterPack())
1848      ExprBits.ContainsUnexpandedParameterPack = true;
1849  }
1850
1851  InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
1852}
1853
1854void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
1855  if (NumInits > InitExprs.size())
1856    InitExprs.reserve(C, NumInits);
1857}
1858
1859void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
1860  InitExprs.resize(C, NumInits, nullptr);
1861}
1862
1863Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
1864  if (Init >= InitExprs.size()) {
1865    InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
1866    setInit(Init, expr);
1867    return nullptr;
1868  }
1869
1870  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1871  setInit(Init, expr);
1872  return Result;
1873}
1874
1875void InitListExpr::setArrayFiller(Expr *filler) {
1876  assert(!hasArrayFiller() && "Filler already set!");
1877  ArrayFillerOrUnionFieldInit = filler;
1878  // Fill out any "holes" in the array due to designated initializers.
1879  Expr **inits = getInits();
1880  for (unsigned i = 0, e = getNumInits(); i != e; ++i)
1881    if (inits[i] == nullptr)
1882      inits[i] = filler;
1883}
1884
1885bool InitListExpr::isStringLiteralInit() const {
1886  if (getNumInits() != 1)
1887    return false;
1888  const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
1889  if (!AT || !AT->getElementType()->isIntegerType())
1890    return false;
1891  // It is possible for getInit() to return null.
1892  const Expr *Init = getInit(0);
1893  if (!Init)
1894    return false;
1895  Init = Init->IgnoreParens();
1896  return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
1897}
1898
1899SourceLocation InitListExpr::getLocStart() const {
1900  if (InitListExpr *SyntacticForm = getSyntacticForm())
1901    return SyntacticForm->getLocStart();
1902  SourceLocation Beg = LBraceLoc;
1903  if (Beg.isInvalid()) {
1904    // Find the first non-null initializer.
1905    for (InitExprsTy::const_iterator I = InitExprs.begin(),
1906                                     E = InitExprs.end();
1907      I != E; ++I) {
1908      if (Stmt *S = *I) {
1909        Beg = S->getLocStart();
1910        break;
1911      }
1912    }
1913  }
1914  return Beg;
1915}
1916
1917SourceLocation InitListExpr::getLocEnd() const {
1918  if (InitListExpr *SyntacticForm = getSyntacticForm())
1919    return SyntacticForm->getLocEnd();
1920  SourceLocation End = RBraceLoc;
1921  if (End.isInvalid()) {
1922    // Find the first non-null initializer from the end.
1923    for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1924         E = InitExprs.rend();
1925         I != E; ++I) {
1926      if (Stmt *S = *I) {
1927        End = S->getLocEnd();
1928        break;
1929      }
1930    }
1931  }
1932  return End;
1933}
1934
1935/// getFunctionType - Return the underlying function type for this block.
1936///
1937const FunctionProtoType *BlockExpr::getFunctionType() const {
1938  // The block pointer is never sugared, but the function type might be.
1939  return cast<BlockPointerType>(getType())
1940           ->getPointeeType()->castAs<FunctionProtoType>();
1941}
1942
1943SourceLocation BlockExpr::getCaretLocation() const {
1944  return TheBlock->getCaretLocation();
1945}
1946const Stmt *BlockExpr::getBody() const {
1947  return TheBlock->getBody();
1948}
1949Stmt *BlockExpr::getBody() {
1950  return TheBlock->getBody();
1951}
1952
1953
1954//===----------------------------------------------------------------------===//
1955// Generic Expression Routines
1956//===----------------------------------------------------------------------===//
1957
1958/// isUnusedResultAWarning - Return true if this immediate expression should
1959/// be warned about if the result is unused.  If so, fill in Loc and Ranges
1960/// with location to warn on and the source range[s] to report with the
1961/// warning.
1962bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
1963                                  SourceRange &R1, SourceRange &R2,
1964                                  ASTContext &Ctx) const {
1965  // Don't warn if the expr is type dependent. The type could end up
1966  // instantiating to void.
1967  if (isTypeDependent())
1968    return false;
1969
1970  switch (getStmtClass()) {
1971  default:
1972    if (getType()->isVoidType())
1973      return false;
1974    WarnE = this;
1975    Loc = getExprLoc();
1976    R1 = getSourceRange();
1977    return true;
1978  case ParenExprClass:
1979    return cast<ParenExpr>(this)->getSubExpr()->
1980      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1981  case GenericSelectionExprClass:
1982    return cast<GenericSelectionExpr>(this)->getResultExpr()->
1983      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1984  case ChooseExprClass:
1985    return cast<ChooseExpr>(this)->getChosenSubExpr()->
1986      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1987  case UnaryOperatorClass: {
1988    const UnaryOperator *UO = cast<UnaryOperator>(this);
1989
1990    switch (UO->getOpcode()) {
1991    case UO_Plus:
1992    case UO_Minus:
1993    case UO_AddrOf:
1994    case UO_Not:
1995    case UO_LNot:
1996    case UO_Deref:
1997      break;
1998    case UO_PostInc:
1999    case UO_PostDec:
2000    case UO_PreInc:
2001    case UO_PreDec:                 // ++/--
2002      return false;  // Not a warning.
2003    case UO_Real:
2004    case UO_Imag:
2005      // accessing a piece of a volatile complex is a side-effect.
2006      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2007          .isVolatileQualified())
2008        return false;
2009      break;
2010    case UO_Extension:
2011      return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2012    }
2013    WarnE = this;
2014    Loc = UO->getOperatorLoc();
2015    R1 = UO->getSubExpr()->getSourceRange();
2016    return true;
2017  }
2018  case BinaryOperatorClass: {
2019    const BinaryOperator *BO = cast<BinaryOperator>(this);
2020    switch (BO->getOpcode()) {
2021      default:
2022        break;
2023      // Consider the RHS of comma for side effects. LHS was checked by
2024      // Sema::CheckCommaOperands.
2025      case BO_Comma:
2026        // ((foo = <blah>), 0) is an idiom for hiding the result (and
2027        // lvalue-ness) of an assignment written in a macro.
2028        if (IntegerLiteral *IE =
2029              dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2030          if (IE->getValue() == 0)
2031            return false;
2032        return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2033      // Consider '||', '&&' to have side effects if the LHS or RHS does.
2034      case BO_LAnd:
2035      case BO_LOr:
2036        if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2037            !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2038          return false;
2039        break;
2040    }
2041    if (BO->isAssignmentOp())
2042      return false;
2043    WarnE = this;
2044    Loc = BO->getOperatorLoc();
2045    R1 = BO->getLHS()->getSourceRange();
2046    R2 = BO->getRHS()->getSourceRange();
2047    return true;
2048  }
2049  case CompoundAssignOperatorClass:
2050  case VAArgExprClass:
2051  case AtomicExprClass:
2052    return false;
2053
2054  case ConditionalOperatorClass: {
2055    // If only one of the LHS or RHS is a warning, the operator might
2056    // be being used for control flow. Only warn if both the LHS and
2057    // RHS are warnings.
2058    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
2059    if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2060      return false;
2061    if (!Exp->getLHS())
2062      return true;
2063    return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2064  }
2065
2066  case MemberExprClass:
2067    WarnE = this;
2068    Loc = cast<MemberExpr>(this)->getMemberLoc();
2069    R1 = SourceRange(Loc, Loc);
2070    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2071    return true;
2072
2073  case ArraySubscriptExprClass:
2074    WarnE = this;
2075    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2076    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2077    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2078    return true;
2079
2080  case CXXOperatorCallExprClass: {
2081    // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2082    // overloads as there is no reasonable way to define these such that they
2083    // have non-trivial, desirable side-effects. See the -Wunused-comparison
2084    // warning: operators == and != are commonly typo'ed, and so warning on them
2085    // provides additional value as well. If this list is updated,
2086    // DiagnoseUnusedComparison should be as well.
2087    const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2088    switch (Op->getOperator()) {
2089    default:
2090      break;
2091    case OO_EqualEqual:
2092    case OO_ExclaimEqual:
2093    case OO_Less:
2094    case OO_Greater:
2095    case OO_GreaterEqual:
2096    case OO_LessEqual:
2097      if (Op->getCallReturnType()->isReferenceType() ||
2098          Op->getCallReturnType()->isVoidType())
2099        break;
2100      WarnE = this;
2101      Loc = Op->getOperatorLoc();
2102      R1 = Op->getSourceRange();
2103      return true;
2104    }
2105
2106    // Fallthrough for generic call handling.
2107  }
2108  case CallExprClass:
2109  case CXXMemberCallExprClass:
2110  case UserDefinedLiteralClass: {
2111    // If this is a direct call, get the callee.
2112    const CallExpr *CE = cast<CallExpr>(this);
2113    if (const Decl *FD = CE->getCalleeDecl()) {
2114      // If the callee has attribute pure, const, or warn_unused_result, warn
2115      // about it. void foo() { strlen("bar"); } should warn.
2116      //
2117      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2118      // updated to match for QoI.
2119      if (FD->hasAttr<WarnUnusedResultAttr>() ||
2120          FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2121        WarnE = this;
2122        Loc = CE->getCallee()->getLocStart();
2123        R1 = CE->getCallee()->getSourceRange();
2124
2125        if (unsigned NumArgs = CE->getNumArgs())
2126          R2 = SourceRange(CE->getArg(0)->getLocStart(),
2127                           CE->getArg(NumArgs-1)->getLocEnd());
2128        return true;
2129      }
2130    }
2131    return false;
2132  }
2133
2134  // If we don't know precisely what we're looking at, let's not warn.
2135  case UnresolvedLookupExprClass:
2136  case CXXUnresolvedConstructExprClass:
2137    return false;
2138
2139  case CXXTemporaryObjectExprClass:
2140  case CXXConstructExprClass: {
2141    if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2142      if (Type->hasAttr<WarnUnusedAttr>()) {
2143        WarnE = this;
2144        Loc = getLocStart();
2145        R1 = getSourceRange();
2146        return true;
2147      }
2148    }
2149    return false;
2150  }
2151
2152  case ObjCMessageExprClass: {
2153    const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2154    if (Ctx.getLangOpts().ObjCAutoRefCount &&
2155        ME->isInstanceMessage() &&
2156        !ME->getType()->isVoidType() &&
2157        ME->getMethodFamily() == OMF_init) {
2158      WarnE = this;
2159      Loc = getExprLoc();
2160      R1 = ME->getSourceRange();
2161      return true;
2162    }
2163
2164    const ObjCMethodDecl *MD = ME->getMethodDecl();
2165    if (MD && MD->hasAttr<WarnUnusedResultAttr>()) {
2166      WarnE = this;
2167      Loc = getExprLoc();
2168      return true;
2169    }
2170    return false;
2171  }
2172
2173  case ObjCPropertyRefExprClass:
2174    WarnE = this;
2175    Loc = getExprLoc();
2176    R1 = getSourceRange();
2177    return true;
2178
2179  case PseudoObjectExprClass: {
2180    const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2181
2182    // Only complain about things that have the form of a getter.
2183    if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
2184        isa<BinaryOperator>(PO->getSyntacticForm()))
2185      return false;
2186
2187    WarnE = this;
2188    Loc = getExprLoc();
2189    R1 = getSourceRange();
2190    return true;
2191  }
2192
2193  case StmtExprClass: {
2194    // Statement exprs don't logically have side effects themselves, but are
2195    // sometimes used in macros in ways that give them a type that is unused.
2196    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2197    // however, if the result of the stmt expr is dead, we don't want to emit a
2198    // warning.
2199    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2200    if (!CS->body_empty()) {
2201      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2202        return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2203      if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2204        if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2205          return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2206    }
2207
2208    if (getType()->isVoidType())
2209      return false;
2210    WarnE = this;
2211    Loc = cast<StmtExpr>(this)->getLParenLoc();
2212    R1 = getSourceRange();
2213    return true;
2214  }
2215  case CXXFunctionalCastExprClass:
2216  case CStyleCastExprClass: {
2217    // Ignore an explicit cast to void unless the operand is a non-trivial
2218    // volatile lvalue.
2219    const CastExpr *CE = cast<CastExpr>(this);
2220    if (CE->getCastKind() == CK_ToVoid) {
2221      if (CE->getSubExpr()->isGLValue() &&
2222          CE->getSubExpr()->getType().isVolatileQualified()) {
2223        const DeclRefExpr *DRE =
2224            dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
2225        if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
2226              cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) {
2227          return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
2228                                                          R1, R2, Ctx);
2229        }
2230      }
2231      return false;
2232    }
2233
2234    // If this is a cast to a constructor conversion, check the operand.
2235    // Otherwise, the result of the cast is unused.
2236    if (CE->getCastKind() == CK_ConstructorConversion)
2237      return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2238
2239    WarnE = this;
2240    if (const CXXFunctionalCastExpr *CXXCE =
2241            dyn_cast<CXXFunctionalCastExpr>(this)) {
2242      Loc = CXXCE->getLocStart();
2243      R1 = CXXCE->getSubExpr()->getSourceRange();
2244    } else {
2245      const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2246      Loc = CStyleCE->getLParenLoc();
2247      R1 = CStyleCE->getSubExpr()->getSourceRange();
2248    }
2249    return true;
2250  }
2251  case ImplicitCastExprClass: {
2252    const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2253
2254    // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2255    if (ICE->getCastKind() == CK_LValueToRValue &&
2256        ICE->getSubExpr()->getType().isVolatileQualified())
2257      return false;
2258
2259    return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2260  }
2261  case CXXDefaultArgExprClass:
2262    return (cast<CXXDefaultArgExpr>(this)
2263            ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2264  case CXXDefaultInitExprClass:
2265    return (cast<CXXDefaultInitExpr>(this)
2266            ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2267
2268  case CXXNewExprClass:
2269    // FIXME: In theory, there might be new expressions that don't have side
2270    // effects (e.g. a placement new with an uninitialized POD).
2271  case CXXDeleteExprClass:
2272    return false;
2273  case CXXBindTemporaryExprClass:
2274    return (cast<CXXBindTemporaryExpr>(this)
2275            ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2276  case ExprWithCleanupsClass:
2277    return (cast<ExprWithCleanups>(this)
2278            ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2279  }
2280}
2281
2282/// isOBJCGCCandidate - Check if an expression is objc gc'able.
2283/// returns true, if it is; false otherwise.
2284bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2285  const Expr *E = IgnoreParens();
2286  switch (E->getStmtClass()) {
2287  default:
2288    return false;
2289  case ObjCIvarRefExprClass:
2290    return true;
2291  case Expr::UnaryOperatorClass:
2292    return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2293  case ImplicitCastExprClass:
2294    return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2295  case MaterializeTemporaryExprClass:
2296    return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
2297                                                      ->isOBJCGCCandidate(Ctx);
2298  case CStyleCastExprClass:
2299    return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2300  case DeclRefExprClass: {
2301    const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2302
2303    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2304      if (VD->hasGlobalStorage())
2305        return true;
2306      QualType T = VD->getType();
2307      // dereferencing to a  pointer is always a gc'able candidate,
2308      // unless it is __weak.
2309      return T->isPointerType() &&
2310             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2311    }
2312    return false;
2313  }
2314  case MemberExprClass: {
2315    const MemberExpr *M = cast<MemberExpr>(E);
2316    return M->getBase()->isOBJCGCCandidate(Ctx);
2317  }
2318  case ArraySubscriptExprClass:
2319    return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2320  }
2321}
2322
2323bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2324  if (isTypeDependent())
2325    return false;
2326  return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2327}
2328
2329QualType Expr::findBoundMemberType(const Expr *expr) {
2330  assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2331
2332  // Bound member expressions are always one of these possibilities:
2333  //   x->m      x.m      x->*y      x.*y
2334  // (possibly parenthesized)
2335
2336  expr = expr->IgnoreParens();
2337  if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2338    assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2339    return mem->getMemberDecl()->getType();
2340  }
2341
2342  if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2343    QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2344                      ->getPointeeType();
2345    assert(type->isFunctionType());
2346    return type;
2347  }
2348
2349  assert(isa<UnresolvedMemberExpr>(expr));
2350  return QualType();
2351}
2352
2353Expr* Expr::IgnoreParens() {
2354  Expr* E = this;
2355  while (true) {
2356    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2357      E = P->getSubExpr();
2358      continue;
2359    }
2360    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2361      if (P->getOpcode() == UO_Extension) {
2362        E = P->getSubExpr();
2363        continue;
2364      }
2365    }
2366    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2367      if (!P->isResultDependent()) {
2368        E = P->getResultExpr();
2369        continue;
2370      }
2371    }
2372    if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) {
2373      if (!P->isConditionDependent()) {
2374        E = P->getChosenSubExpr();
2375        continue;
2376      }
2377    }
2378    return E;
2379  }
2380}
2381
2382/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
2383/// or CastExprs or ImplicitCastExprs, returning their operand.
2384Expr *Expr::IgnoreParenCasts() {
2385  Expr *E = this;
2386  while (true) {
2387    E = E->IgnoreParens();
2388    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2389      E = P->getSubExpr();
2390      continue;
2391    }
2392    if (MaterializeTemporaryExpr *Materialize
2393                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2394      E = Materialize->GetTemporaryExpr();
2395      continue;
2396    }
2397    if (SubstNonTypeTemplateParmExpr *NTTP
2398                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2399      E = NTTP->getReplacement();
2400      continue;
2401    }
2402    return E;
2403  }
2404}
2405
2406Expr *Expr::IgnoreCasts() {
2407  Expr *E = this;
2408  while (true) {
2409    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2410      E = P->getSubExpr();
2411      continue;
2412    }
2413    if (MaterializeTemporaryExpr *Materialize
2414        = dyn_cast<MaterializeTemporaryExpr>(E)) {
2415      E = Materialize->GetTemporaryExpr();
2416      continue;
2417    }
2418    if (SubstNonTypeTemplateParmExpr *NTTP
2419        = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2420      E = NTTP->getReplacement();
2421      continue;
2422    }
2423    return E;
2424  }
2425}
2426
2427/// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2428/// casts.  This is intended purely as a temporary workaround for code
2429/// that hasn't yet been rewritten to do the right thing about those
2430/// casts, and may disappear along with the last internal use.
2431Expr *Expr::IgnoreParenLValueCasts() {
2432  Expr *E = this;
2433  while (true) {
2434    E = E->IgnoreParens();
2435    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2436      if (P->getCastKind() == CK_LValueToRValue) {
2437        E = P->getSubExpr();
2438        continue;
2439      }
2440    } else if (MaterializeTemporaryExpr *Materialize
2441                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2442      E = Materialize->GetTemporaryExpr();
2443      continue;
2444    } else if (SubstNonTypeTemplateParmExpr *NTTP
2445                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2446      E = NTTP->getReplacement();
2447      continue;
2448    }
2449    break;
2450  }
2451  return E;
2452}
2453
2454Expr *Expr::ignoreParenBaseCasts() {
2455  Expr *E = this;
2456  while (true) {
2457    E = E->IgnoreParens();
2458    if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
2459      if (CE->getCastKind() == CK_DerivedToBase ||
2460          CE->getCastKind() == CK_UncheckedDerivedToBase ||
2461          CE->getCastKind() == CK_NoOp) {
2462        E = CE->getSubExpr();
2463        continue;
2464      }
2465    }
2466
2467    return E;
2468  }
2469}
2470
2471Expr *Expr::IgnoreParenImpCasts() {
2472  Expr *E = this;
2473  while (true) {
2474    E = E->IgnoreParens();
2475    if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2476      E = P->getSubExpr();
2477      continue;
2478    }
2479    if (MaterializeTemporaryExpr *Materialize
2480                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2481      E = Materialize->GetTemporaryExpr();
2482      continue;
2483    }
2484    if (SubstNonTypeTemplateParmExpr *NTTP
2485                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2486      E = NTTP->getReplacement();
2487      continue;
2488    }
2489    return E;
2490  }
2491}
2492
2493Expr *Expr::IgnoreConversionOperator() {
2494  if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2495    if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2496      return MCE->getImplicitObjectArgument();
2497  }
2498  return this;
2499}
2500
2501/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2502/// value (including ptr->int casts of the same size).  Strip off any
2503/// ParenExpr or CastExprs, returning their operand.
2504Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
2505  Expr *E = this;
2506  while (true) {
2507    E = E->IgnoreParens();
2508
2509    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2510      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2511      // ptr<->int casts of the same width.  We also ignore all identity casts.
2512      Expr *SE = P->getSubExpr();
2513
2514      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2515        E = SE;
2516        continue;
2517      }
2518
2519      if ((E->getType()->isPointerType() ||
2520           E->getType()->isIntegralType(Ctx)) &&
2521          (SE->getType()->isPointerType() ||
2522           SE->getType()->isIntegralType(Ctx)) &&
2523          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2524        E = SE;
2525        continue;
2526      }
2527    }
2528
2529    if (SubstNonTypeTemplateParmExpr *NTTP
2530                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2531      E = NTTP->getReplacement();
2532      continue;
2533    }
2534
2535    return E;
2536  }
2537}
2538
2539bool Expr::isDefaultArgument() const {
2540  const Expr *E = this;
2541  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2542    E = M->GetTemporaryExpr();
2543
2544  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2545    E = ICE->getSubExprAsWritten();
2546
2547  return isa<CXXDefaultArgExpr>(E);
2548}
2549
2550/// \brief Skip over any no-op casts and any temporary-binding
2551/// expressions.
2552static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2553  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2554    E = M->GetTemporaryExpr();
2555
2556  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2557    if (ICE->getCastKind() == CK_NoOp)
2558      E = ICE->getSubExpr();
2559    else
2560      break;
2561  }
2562
2563  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2564    E = BE->getSubExpr();
2565
2566  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2567    if (ICE->getCastKind() == CK_NoOp)
2568      E = ICE->getSubExpr();
2569    else
2570      break;
2571  }
2572
2573  return E->IgnoreParens();
2574}
2575
2576/// isTemporaryObject - Determines if this expression produces a
2577/// temporary of the given class type.
2578bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2579  if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2580    return false;
2581
2582  const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
2583
2584  // Temporaries are by definition pr-values of class type.
2585  if (!E->Classify(C).isPRValue()) {
2586    // In this context, property reference is a message call and is pr-value.
2587    if (!isa<ObjCPropertyRefExpr>(E))
2588      return false;
2589  }
2590
2591  // Black-list a few cases which yield pr-values of class type that don't
2592  // refer to temporaries of that type:
2593
2594  // - implicit derived-to-base conversions
2595  if (isa<ImplicitCastExpr>(E)) {
2596    switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2597    case CK_DerivedToBase:
2598    case CK_UncheckedDerivedToBase:
2599      return false;
2600    default:
2601      break;
2602    }
2603  }
2604
2605  // - member expressions (all)
2606  if (isa<MemberExpr>(E))
2607    return false;
2608
2609  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
2610    if (BO->isPtrMemOp())
2611      return false;
2612
2613  // - opaque values (all)
2614  if (isa<OpaqueValueExpr>(E))
2615    return false;
2616
2617  return true;
2618}
2619
2620bool Expr::isImplicitCXXThis() const {
2621  const Expr *E = this;
2622
2623  // Strip away parentheses and casts we don't care about.
2624  while (true) {
2625    if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2626      E = Paren->getSubExpr();
2627      continue;
2628    }
2629
2630    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2631      if (ICE->getCastKind() == CK_NoOp ||
2632          ICE->getCastKind() == CK_LValueToRValue ||
2633          ICE->getCastKind() == CK_DerivedToBase ||
2634          ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2635        E = ICE->getSubExpr();
2636        continue;
2637      }
2638    }
2639
2640    if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2641      if (UnOp->getOpcode() == UO_Extension) {
2642        E = UnOp->getSubExpr();
2643        continue;
2644      }
2645    }
2646
2647    if (const MaterializeTemporaryExpr *M
2648                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2649      E = M->GetTemporaryExpr();
2650      continue;
2651    }
2652
2653    break;
2654  }
2655
2656  if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2657    return This->isImplicit();
2658
2659  return false;
2660}
2661
2662/// hasAnyTypeDependentArguments - Determines if any of the expressions
2663/// in Exprs is type-dependent.
2664bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
2665  for (unsigned I = 0; I < Exprs.size(); ++I)
2666    if (Exprs[I]->isTypeDependent())
2667      return true;
2668
2669  return false;
2670}
2671
2672bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
2673                                 const Expr **Culprit) const {
2674  // This function is attempting whether an expression is an initializer
2675  // which can be evaluated at compile-time. It very closely parallels
2676  // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
2677  // will lead to unexpected results.  Like ConstExprEmitter, it falls back
2678  // to isEvaluatable most of the time.
2679  //
2680  // If we ever capture reference-binding directly in the AST, we can
2681  // kill the second parameter.
2682
2683  if (IsForRef) {
2684    EvalResult Result;
2685    if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
2686      return true;
2687    if (Culprit)
2688      *Culprit = this;
2689    return false;
2690  }
2691
2692  switch (getStmtClass()) {
2693  default: break;
2694  case StringLiteralClass:
2695  case ObjCEncodeExprClass:
2696    return true;
2697  case CXXTemporaryObjectExprClass:
2698  case CXXConstructExprClass: {
2699    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2700
2701    if (CE->getConstructor()->isTrivial() &&
2702        CE->getConstructor()->getParent()->hasTrivialDestructor()) {
2703      // Trivial default constructor
2704      if (!CE->getNumArgs()) return true;
2705
2706      // Trivial copy constructor
2707      assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
2708      return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
2709    }
2710
2711    break;
2712  }
2713  case CompoundLiteralExprClass: {
2714    // This handles gcc's extension that allows global initializers like
2715    // "struct x {int x;} x = (struct x) {};".
2716    // FIXME: This accepts other cases it shouldn't!
2717    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2718    return Exp->isConstantInitializer(Ctx, false, Culprit);
2719  }
2720  case InitListExprClass: {
2721    const InitListExpr *ILE = cast<InitListExpr>(this);
2722    if (ILE->getType()->isArrayType()) {
2723      unsigned numInits = ILE->getNumInits();
2724      for (unsigned i = 0; i < numInits; i++) {
2725        if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
2726          return false;
2727      }
2728      return true;
2729    }
2730
2731    if (ILE->getType()->isRecordType()) {
2732      unsigned ElementNo = 0;
2733      RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
2734      for (RecordDecl::field_iterator Field = RD->field_begin(),
2735           FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) {
2736        // If this is a union, skip all the fields that aren't being initialized.
2737        if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field)
2738          continue;
2739
2740        // Don't emit anonymous bitfields, they just affect layout.
2741        if (Field->isUnnamedBitfield())
2742          continue;
2743
2744        if (ElementNo < ILE->getNumInits()) {
2745          const Expr *Elt = ILE->getInit(ElementNo++);
2746          if (Field->isBitField()) {
2747            // Bitfields have to evaluate to an integer.
2748            llvm::APSInt ResultTmp;
2749            if (!Elt->EvaluateAsInt(ResultTmp, Ctx)) {
2750              if (Culprit)
2751                *Culprit = Elt;
2752              return false;
2753            }
2754          } else {
2755            bool RefType = Field->getType()->isReferenceType();
2756            if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
2757              return false;
2758          }
2759        }
2760      }
2761      return true;
2762    }
2763
2764    break;
2765  }
2766  case ImplicitValueInitExprClass:
2767    return true;
2768  case ParenExprClass:
2769    return cast<ParenExpr>(this)->getSubExpr()
2770      ->isConstantInitializer(Ctx, IsForRef, Culprit);
2771  case GenericSelectionExprClass:
2772    return cast<GenericSelectionExpr>(this)->getResultExpr()
2773      ->isConstantInitializer(Ctx, IsForRef, Culprit);
2774  case ChooseExprClass:
2775    if (cast<ChooseExpr>(this)->isConditionDependent()) {
2776      if (Culprit)
2777        *Culprit = this;
2778      return false;
2779    }
2780    return cast<ChooseExpr>(this)->getChosenSubExpr()
2781      ->isConstantInitializer(Ctx, IsForRef, Culprit);
2782  case UnaryOperatorClass: {
2783    const UnaryOperator* Exp = cast<UnaryOperator>(this);
2784    if (Exp->getOpcode() == UO_Extension)
2785      return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
2786    break;
2787  }
2788  case CXXFunctionalCastExprClass:
2789  case CXXStaticCastExprClass:
2790  case ImplicitCastExprClass:
2791  case CStyleCastExprClass:
2792  case ObjCBridgedCastExprClass:
2793  case CXXDynamicCastExprClass:
2794  case CXXReinterpretCastExprClass:
2795  case CXXConstCastExprClass: {
2796    const CastExpr *CE = cast<CastExpr>(this);
2797
2798    // Handle misc casts we want to ignore.
2799    if (CE->getCastKind() == CK_NoOp ||
2800        CE->getCastKind() == CK_LValueToRValue ||
2801        CE->getCastKind() == CK_ToUnion ||
2802        CE->getCastKind() == CK_ConstructorConversion ||
2803        CE->getCastKind() == CK_NonAtomicToAtomic ||
2804        CE->getCastKind() == CK_AtomicToNonAtomic)
2805      return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
2806
2807    break;
2808  }
2809  case MaterializeTemporaryExprClass:
2810    return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2811      ->isConstantInitializer(Ctx, false, Culprit);
2812
2813  case SubstNonTypeTemplateParmExprClass:
2814    return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
2815      ->isConstantInitializer(Ctx, false, Culprit);
2816  case CXXDefaultArgExprClass:
2817    return cast<CXXDefaultArgExpr>(this)->getExpr()
2818      ->isConstantInitializer(Ctx, false, Culprit);
2819  case CXXDefaultInitExprClass:
2820    return cast<CXXDefaultInitExpr>(this)->getExpr()
2821      ->isConstantInitializer(Ctx, false, Culprit);
2822  }
2823  if (isEvaluatable(Ctx))
2824    return true;
2825  if (Culprit)
2826    *Culprit = this;
2827  return false;
2828}
2829
2830bool Expr::HasSideEffects(const ASTContext &Ctx) const {
2831  if (isInstantiationDependent())
2832    return true;
2833
2834  switch (getStmtClass()) {
2835  case NoStmtClass:
2836  #define ABSTRACT_STMT(Type)
2837  #define STMT(Type, Base) case Type##Class:
2838  #define EXPR(Type, Base)
2839  #include "clang/AST/StmtNodes.inc"
2840    llvm_unreachable("unexpected Expr kind");
2841
2842  case DependentScopeDeclRefExprClass:
2843  case CXXUnresolvedConstructExprClass:
2844  case CXXDependentScopeMemberExprClass:
2845  case UnresolvedLookupExprClass:
2846  case UnresolvedMemberExprClass:
2847  case PackExpansionExprClass:
2848  case SubstNonTypeTemplateParmPackExprClass:
2849  case FunctionParmPackExprClass:
2850    llvm_unreachable("shouldn't see dependent / unresolved nodes here");
2851
2852  case DeclRefExprClass:
2853  case ObjCIvarRefExprClass:
2854  case PredefinedExprClass:
2855  case IntegerLiteralClass:
2856  case FloatingLiteralClass:
2857  case ImaginaryLiteralClass:
2858  case StringLiteralClass:
2859  case CharacterLiteralClass:
2860  case OffsetOfExprClass:
2861  case ImplicitValueInitExprClass:
2862  case UnaryExprOrTypeTraitExprClass:
2863  case AddrLabelExprClass:
2864  case GNUNullExprClass:
2865  case CXXBoolLiteralExprClass:
2866  case CXXNullPtrLiteralExprClass:
2867  case CXXThisExprClass:
2868  case CXXScalarValueInitExprClass:
2869  case TypeTraitExprClass:
2870  case ArrayTypeTraitExprClass:
2871  case ExpressionTraitExprClass:
2872  case CXXNoexceptExprClass:
2873  case SizeOfPackExprClass:
2874  case ObjCStringLiteralClass:
2875  case ObjCEncodeExprClass:
2876  case ObjCBoolLiteralExprClass:
2877  case CXXUuidofExprClass:
2878  case OpaqueValueExprClass:
2879    // These never have a side-effect.
2880    return false;
2881
2882  case CallExprClass:
2883  case MSPropertyRefExprClass:
2884  case CompoundAssignOperatorClass:
2885  case VAArgExprClass:
2886  case AtomicExprClass:
2887  case StmtExprClass:
2888  case CXXOperatorCallExprClass:
2889  case CXXMemberCallExprClass:
2890  case UserDefinedLiteralClass:
2891  case CXXThrowExprClass:
2892  case CXXNewExprClass:
2893  case CXXDeleteExprClass:
2894  case ExprWithCleanupsClass:
2895  case CXXBindTemporaryExprClass:
2896  case BlockExprClass:
2897  case CUDAKernelCallExprClass:
2898    // These always have a side-effect.
2899    return true;
2900
2901  case ParenExprClass:
2902  case ArraySubscriptExprClass:
2903  case MemberExprClass:
2904  case ConditionalOperatorClass:
2905  case BinaryConditionalOperatorClass:
2906  case CompoundLiteralExprClass:
2907  case ExtVectorElementExprClass:
2908  case DesignatedInitExprClass:
2909  case ParenListExprClass:
2910  case CXXPseudoDestructorExprClass:
2911  case CXXStdInitializerListExprClass:
2912  case SubstNonTypeTemplateParmExprClass:
2913  case MaterializeTemporaryExprClass:
2914  case ShuffleVectorExprClass:
2915  case ConvertVectorExprClass:
2916  case AsTypeExprClass:
2917    // These have a side-effect if any subexpression does.
2918    break;
2919
2920  case UnaryOperatorClass:
2921    if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
2922      return true;
2923    break;
2924
2925  case BinaryOperatorClass:
2926    if (cast<BinaryOperator>(this)->isAssignmentOp())
2927      return true;
2928    break;
2929
2930  case InitListExprClass:
2931    // FIXME: The children for an InitListExpr doesn't include the array filler.
2932    if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
2933      if (E->HasSideEffects(Ctx))
2934        return true;
2935    break;
2936
2937  case GenericSelectionExprClass:
2938    return cast<GenericSelectionExpr>(this)->getResultExpr()->
2939        HasSideEffects(Ctx);
2940
2941  case ChooseExprClass:
2942    return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(Ctx);
2943
2944  case CXXDefaultArgExprClass:
2945    return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(Ctx);
2946
2947  case CXXDefaultInitExprClass:
2948    if (const Expr *E = cast<CXXDefaultInitExpr>(this)->getExpr())
2949      return E->HasSideEffects(Ctx);
2950    // If we've not yet parsed the initializer, assume it has side-effects.
2951    return true;
2952
2953  case CXXDynamicCastExprClass: {
2954    // A dynamic_cast expression has side-effects if it can throw.
2955    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
2956    if (DCE->getTypeAsWritten()->isReferenceType() &&
2957        DCE->getCastKind() == CK_Dynamic)
2958      return true;
2959  } // Fall through.
2960  case ImplicitCastExprClass:
2961  case CStyleCastExprClass:
2962  case CXXStaticCastExprClass:
2963  case CXXReinterpretCastExprClass:
2964  case CXXConstCastExprClass:
2965  case CXXFunctionalCastExprClass: {
2966    const CastExpr *CE = cast<CastExpr>(this);
2967    if (CE->getCastKind() == CK_LValueToRValue &&
2968        CE->getSubExpr()->getType().isVolatileQualified())
2969      return true;
2970    break;
2971  }
2972
2973  case CXXTypeidExprClass:
2974    // typeid might throw if its subexpression is potentially-evaluated, so has
2975    // side-effects in that case whether or not its subexpression does.
2976    return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
2977
2978  case CXXConstructExprClass:
2979  case CXXTemporaryObjectExprClass: {
2980    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2981    if (!CE->getConstructor()->isTrivial())
2982      return true;
2983    // A trivial constructor does not add any side-effects of its own. Just look
2984    // at its arguments.
2985    break;
2986  }
2987
2988  case LambdaExprClass: {
2989    const LambdaExpr *LE = cast<LambdaExpr>(this);
2990    for (LambdaExpr::capture_iterator I = LE->capture_begin(),
2991                                      E = LE->capture_end(); I != E; ++I)
2992      if (I->getCaptureKind() == LCK_ByCopy)
2993        // FIXME: Only has a side-effect if the variable is volatile or if
2994        // the copy would invoke a non-trivial copy constructor.
2995        return true;
2996    return false;
2997  }
2998
2999  case PseudoObjectExprClass: {
3000    // Only look for side-effects in the semantic form, and look past
3001    // OpaqueValueExpr bindings in that form.
3002    const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3003    for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
3004                                                    E = PO->semantics_end();
3005         I != E; ++I) {
3006      const Expr *Subexpr = *I;
3007      if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3008        Subexpr = OVE->getSourceExpr();
3009      if (Subexpr->HasSideEffects(Ctx))
3010        return true;
3011    }
3012    return false;
3013  }
3014
3015  case ObjCBoxedExprClass:
3016  case ObjCArrayLiteralClass:
3017  case ObjCDictionaryLiteralClass:
3018  case ObjCMessageExprClass:
3019  case ObjCSelectorExprClass:
3020  case ObjCProtocolExprClass:
3021  case ObjCPropertyRefExprClass:
3022  case ObjCIsaExprClass:
3023  case ObjCIndirectCopyRestoreExprClass:
3024  case ObjCSubscriptRefExprClass:
3025  case ObjCBridgedCastExprClass:
3026    // FIXME: Classify these cases better.
3027    return true;
3028  }
3029
3030  // Recurse to children.
3031  for (const_child_range SubStmts = children(); SubStmts; ++SubStmts)
3032    if (const Stmt *S = *SubStmts)
3033      if (cast<Expr>(S)->HasSideEffects(Ctx))
3034        return true;
3035
3036  return false;
3037}
3038
3039namespace {
3040  /// \brief Look for a call to a non-trivial function within an expression.
3041  class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder>
3042  {
3043    typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
3044
3045    bool NonTrivial;
3046
3047  public:
3048    explicit NonTrivialCallFinder(ASTContext &Context)
3049      : Inherited(Context), NonTrivial(false) { }
3050
3051    bool hasNonTrivialCall() const { return NonTrivial; }
3052
3053    void VisitCallExpr(CallExpr *E) {
3054      if (CXXMethodDecl *Method
3055          = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) {
3056        if (Method->isTrivial()) {
3057          // Recurse to children of the call.
3058          Inherited::VisitStmt(E);
3059          return;
3060        }
3061      }
3062
3063      NonTrivial = true;
3064    }
3065
3066    void VisitCXXConstructExpr(CXXConstructExpr *E) {
3067      if (E->getConstructor()->isTrivial()) {
3068        // Recurse to children of the call.
3069        Inherited::VisitStmt(E);
3070        return;
3071      }
3072
3073      NonTrivial = true;
3074    }
3075
3076    void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3077      if (E->getTemporary()->getDestructor()->isTrivial()) {
3078        Inherited::VisitStmt(E);
3079        return;
3080      }
3081
3082      NonTrivial = true;
3083    }
3084  };
3085}
3086
3087bool Expr::hasNonTrivialCall(ASTContext &Ctx) {
3088  NonTrivialCallFinder Finder(Ctx);
3089  Finder.Visit(this);
3090  return Finder.hasNonTrivialCall();
3091}
3092
3093/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3094/// pointer constant or not, as well as the specific kind of constant detected.
3095/// Null pointer constants can be integer constant expressions with the
3096/// value zero, casts of zero to void*, nullptr (C++0X), or __null
3097/// (a GNU extension).
3098Expr::NullPointerConstantKind
3099Expr::isNullPointerConstant(ASTContext &Ctx,
3100                            NullPointerConstantValueDependence NPC) const {
3101  if (isValueDependent() &&
3102      (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3103    switch (NPC) {
3104    case NPC_NeverValueDependent:
3105      llvm_unreachable("Unexpected value dependent expression!");
3106    case NPC_ValueDependentIsNull:
3107      if (isTypeDependent() || getType()->isIntegralType(Ctx))
3108        return NPCK_ZeroExpression;
3109      else
3110        return NPCK_NotNull;
3111
3112    case NPC_ValueDependentIsNotNull:
3113      return NPCK_NotNull;
3114    }
3115  }
3116
3117  // Strip off a cast to void*, if it exists. Except in C++.
3118  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3119    if (!Ctx.getLangOpts().CPlusPlus) {
3120      // Check that it is a cast to void*.
3121      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3122        QualType Pointee = PT->getPointeeType();
3123        if (!Pointee.hasQualifiers() &&
3124            Pointee->isVoidType() &&                              // to void*
3125            CE->getSubExpr()->getType()->isIntegerType())         // from int.
3126          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3127      }
3128    }
3129  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3130    // Ignore the ImplicitCastExpr type entirely.
3131    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3132  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3133    // Accept ((void*)0) as a null pointer constant, as many other
3134    // implementations do.
3135    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3136  } else if (const GenericSelectionExpr *GE =
3137               dyn_cast<GenericSelectionExpr>(this)) {
3138    if (GE->isResultDependent())
3139      return NPCK_NotNull;
3140    return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3141  } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3142    if (CE->isConditionDependent())
3143      return NPCK_NotNull;
3144    return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3145  } else if (const CXXDefaultArgExpr *DefaultArg
3146               = dyn_cast<CXXDefaultArgExpr>(this)) {
3147    // See through default argument expressions.
3148    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3149  } else if (const CXXDefaultInitExpr *DefaultInit
3150               = dyn_cast<CXXDefaultInitExpr>(this)) {
3151    // See through default initializer expressions.
3152    return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3153  } else if (isa<GNUNullExpr>(this)) {
3154    // The GNU __null extension is always a null pointer constant.
3155    return NPCK_GNUNull;
3156  } else if (const MaterializeTemporaryExpr *M
3157                                   = dyn_cast<MaterializeTemporaryExpr>(this)) {
3158    return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
3159  } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3160    if (const Expr *Source = OVE->getSourceExpr())
3161      return Source->isNullPointerConstant(Ctx, NPC);
3162  }
3163
3164  // C++11 nullptr_t is always a null pointer constant.
3165  if (getType()->isNullPtrType())
3166    return NPCK_CXX11_nullptr;
3167
3168  if (const RecordType *UT = getType()->getAsUnionType())
3169    if (!Ctx.getLangOpts().CPlusPlus11 &&
3170        UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3171      if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3172        const Expr *InitExpr = CLE->getInitializer();
3173        if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3174          return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3175      }
3176  // This expression must be an integer type.
3177  if (!getType()->isIntegerType() ||
3178      (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3179    return NPCK_NotNull;
3180
3181  if (Ctx.getLangOpts().CPlusPlus11) {
3182    // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3183    // value zero or a prvalue of type std::nullptr_t.
3184    // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3185    const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3186    if (Lit && !Lit->getValue())
3187      return NPCK_ZeroLiteral;
3188    else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
3189      return NPCK_NotNull;
3190  } else {
3191    // If we have an integer constant expression, we need to *evaluate* it and
3192    // test for the value 0.
3193    if (!isIntegerConstantExpr(Ctx))
3194      return NPCK_NotNull;
3195  }
3196
3197  if (EvaluateKnownConstInt(Ctx) != 0)
3198    return NPCK_NotNull;
3199
3200  if (isa<IntegerLiteral>(this))
3201    return NPCK_ZeroLiteral;
3202  return NPCK_ZeroExpression;
3203}
3204
3205/// \brief If this expression is an l-value for an Objective C
3206/// property, find the underlying property reference expression.
3207const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
3208  const Expr *E = this;
3209  while (true) {
3210    assert((E->getValueKind() == VK_LValue &&
3211            E->getObjectKind() == OK_ObjCProperty) &&
3212           "expression is not a property reference");
3213    E = E->IgnoreParenCasts();
3214    if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3215      if (BO->getOpcode() == BO_Comma) {
3216        E = BO->getRHS();
3217        continue;
3218      }
3219    }
3220
3221    break;
3222  }
3223
3224  return cast<ObjCPropertyRefExpr>(E);
3225}
3226
3227bool Expr::isObjCSelfExpr() const {
3228  const Expr *E = IgnoreParenImpCasts();
3229
3230  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3231  if (!DRE)
3232    return false;
3233
3234  const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3235  if (!Param)
3236    return false;
3237
3238  const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3239  if (!M)
3240    return false;
3241
3242  return M->getSelfDecl() == Param;
3243}
3244
3245FieldDecl *Expr::getSourceBitField() {
3246  Expr *E = this->IgnoreParens();
3247
3248  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3249    if (ICE->getCastKind() == CK_LValueToRValue ||
3250        (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
3251      E = ICE->getSubExpr()->IgnoreParens();
3252    else
3253      break;
3254  }
3255
3256  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3257    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3258      if (Field->isBitField())
3259        return Field;
3260
3261  if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E))
3262    if (FieldDecl *Ivar = dyn_cast<FieldDecl>(IvarRef->getDecl()))
3263      if (Ivar->isBitField())
3264        return Ivar;
3265
3266  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
3267    if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3268      if (Field->isBitField())
3269        return Field;
3270
3271  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3272    if (BinOp->isAssignmentOp() && BinOp->getLHS())
3273      return BinOp->getLHS()->getSourceBitField();
3274
3275    if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3276      return BinOp->getRHS()->getSourceBitField();
3277  }
3278
3279  return nullptr;
3280}
3281
3282bool Expr::refersToVectorElement() const {
3283  const Expr *E = this->IgnoreParens();
3284
3285  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3286    if (ICE->getValueKind() != VK_RValue &&
3287        ICE->getCastKind() == CK_NoOp)
3288      E = ICE->getSubExpr()->IgnoreParens();
3289    else
3290      break;
3291  }
3292
3293  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3294    return ASE->getBase()->getType()->isVectorType();
3295
3296  if (isa<ExtVectorElementExpr>(E))
3297    return true;
3298
3299  return false;
3300}
3301
3302/// isArrow - Return true if the base expression is a pointer to vector,
3303/// return false if the base expression is a vector.
3304bool ExtVectorElementExpr::isArrow() const {
3305  return getBase()->getType()->isPointerType();
3306}
3307
3308unsigned ExtVectorElementExpr::getNumElements() const {
3309  if (const VectorType *VT = getType()->getAs<VectorType>())
3310    return VT->getNumElements();
3311  return 1;
3312}
3313
3314/// containsDuplicateElements - Return true if any element access is repeated.
3315bool ExtVectorElementExpr::containsDuplicateElements() const {
3316  // FIXME: Refactor this code to an accessor on the AST node which returns the
3317  // "type" of component access, and share with code below and in Sema.
3318  StringRef Comp = Accessor->getName();
3319
3320  // Halving swizzles do not contain duplicate elements.
3321  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
3322    return false;
3323
3324  // Advance past s-char prefix on hex swizzles.
3325  if (Comp[0] == 's' || Comp[0] == 'S')
3326    Comp = Comp.substr(1);
3327
3328  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
3329    if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
3330        return true;
3331
3332  return false;
3333}
3334
3335/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
3336void ExtVectorElementExpr::getEncodedElementAccess(
3337                                  SmallVectorImpl<unsigned> &Elts) const {
3338  StringRef Comp = Accessor->getName();
3339  if (Comp[0] == 's' || Comp[0] == 'S')
3340    Comp = Comp.substr(1);
3341
3342  bool isHi =   Comp == "hi";
3343  bool isLo =   Comp == "lo";
3344  bool isEven = Comp == "even";
3345  bool isOdd  = Comp == "odd";
3346
3347  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
3348    uint64_t Index;
3349
3350    if (isHi)
3351      Index = e + i;
3352    else if (isLo)
3353      Index = i;
3354    else if (isEven)
3355      Index = 2 * i;
3356    else if (isOdd)
3357      Index = 2 * i + 1;
3358    else
3359      Index = ExtVectorType::getAccessorIdx(Comp[i]);
3360
3361    Elts.push_back(Index);
3362  }
3363}
3364
3365ObjCMessageExpr::ObjCMessageExpr(QualType T,
3366                                 ExprValueKind VK,
3367                                 SourceLocation LBracLoc,
3368                                 SourceLocation SuperLoc,
3369                                 bool IsInstanceSuper,
3370                                 QualType SuperType,
3371                                 Selector Sel,
3372                                 ArrayRef<SourceLocation> SelLocs,
3373                                 SelectorLocationsKind SelLocsK,
3374                                 ObjCMethodDecl *Method,
3375                                 ArrayRef<Expr *> Args,
3376                                 SourceLocation RBracLoc,
3377                                 bool isImplicit)
3378  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
3379         /*TypeDependent=*/false, /*ValueDependent=*/false,
3380         /*InstantiationDependent=*/false,
3381         /*ContainsUnexpandedParameterPack=*/false),
3382    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3383                                                       : Sel.getAsOpaquePtr())),
3384    Kind(IsInstanceSuper? SuperInstance : SuperClass),
3385    HasMethod(Method != nullptr), IsDelegateInitCall(false),
3386    IsImplicit(isImplicit), SuperLoc(SuperLoc), LBracLoc(LBracLoc),
3387    RBracLoc(RBracLoc)
3388{
3389  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3390  setReceiverPointer(SuperType.getAsOpaquePtr());
3391}
3392
3393ObjCMessageExpr::ObjCMessageExpr(QualType T,
3394                                 ExprValueKind VK,
3395                                 SourceLocation LBracLoc,
3396                                 TypeSourceInfo *Receiver,
3397                                 Selector Sel,
3398                                 ArrayRef<SourceLocation> SelLocs,
3399                                 SelectorLocationsKind SelLocsK,
3400                                 ObjCMethodDecl *Method,
3401                                 ArrayRef<Expr *> Args,
3402                                 SourceLocation RBracLoc,
3403                                 bool isImplicit)
3404  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
3405         T->isDependentType(), T->isInstantiationDependentType(),
3406         T->containsUnexpandedParameterPack()),
3407    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3408                                                       : Sel.getAsOpaquePtr())),
3409    Kind(Class),
3410    HasMethod(Method != nullptr), IsDelegateInitCall(false),
3411    IsImplicit(isImplicit), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3412{
3413  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3414  setReceiverPointer(Receiver);
3415}
3416
3417ObjCMessageExpr::ObjCMessageExpr(QualType T,
3418                                 ExprValueKind VK,
3419                                 SourceLocation LBracLoc,
3420                                 Expr *Receiver,
3421                                 Selector Sel,
3422                                 ArrayRef<SourceLocation> SelLocs,
3423                                 SelectorLocationsKind SelLocsK,
3424                                 ObjCMethodDecl *Method,
3425                                 ArrayRef<Expr *> Args,
3426                                 SourceLocation RBracLoc,
3427                                 bool isImplicit)
3428  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
3429         Receiver->isTypeDependent(),
3430         Receiver->isInstantiationDependent(),
3431         Receiver->containsUnexpandedParameterPack()),
3432    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3433                                                       : Sel.getAsOpaquePtr())),
3434    Kind(Instance),
3435    HasMethod(Method != nullptr), IsDelegateInitCall(false),
3436    IsImplicit(isImplicit), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3437{
3438  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3439  setReceiverPointer(Receiver);
3440}
3441
3442void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
3443                                         ArrayRef<SourceLocation> SelLocs,
3444                                         SelectorLocationsKind SelLocsK) {
3445  setNumArgs(Args.size());
3446  Expr **MyArgs = getArgs();
3447  for (unsigned I = 0; I != Args.size(); ++I) {
3448    if (Args[I]->isTypeDependent())
3449      ExprBits.TypeDependent = true;
3450    if (Args[I]->isValueDependent())
3451      ExprBits.ValueDependent = true;
3452    if (Args[I]->isInstantiationDependent())
3453      ExprBits.InstantiationDependent = true;
3454    if (Args[I]->containsUnexpandedParameterPack())
3455      ExprBits.ContainsUnexpandedParameterPack = true;
3456
3457    MyArgs[I] = Args[I];
3458  }
3459
3460  SelLocsKind = SelLocsK;
3461  if (!isImplicit()) {
3462    if (SelLocsK == SelLoc_NonStandard)
3463      std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
3464  }
3465}
3466
3467ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
3468                                         ExprValueKind VK,
3469                                         SourceLocation LBracLoc,
3470                                         SourceLocation SuperLoc,
3471                                         bool IsInstanceSuper,
3472                                         QualType SuperType,
3473                                         Selector Sel,
3474                                         ArrayRef<SourceLocation> SelLocs,
3475                                         ObjCMethodDecl *Method,
3476                                         ArrayRef<Expr *> Args,
3477                                         SourceLocation RBracLoc,
3478                                         bool isImplicit) {
3479  assert((!SelLocs.empty() || isImplicit) &&
3480         "No selector locs for non-implicit message");
3481  ObjCMessageExpr *Mem;
3482  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3483  if (isImplicit)
3484    Mem = alloc(Context, Args.size(), 0);
3485  else
3486    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3487  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
3488                                   SuperType, Sel, SelLocs, SelLocsK,
3489                                   Method, Args, RBracLoc, isImplicit);
3490}
3491
3492ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
3493                                         ExprValueKind VK,
3494                                         SourceLocation LBracLoc,
3495                                         TypeSourceInfo *Receiver,
3496                                         Selector Sel,
3497                                         ArrayRef<SourceLocation> SelLocs,
3498                                         ObjCMethodDecl *Method,
3499                                         ArrayRef<Expr *> Args,
3500                                         SourceLocation RBracLoc,
3501                                         bool isImplicit) {
3502  assert((!SelLocs.empty() || isImplicit) &&
3503         "No selector locs for non-implicit message");
3504  ObjCMessageExpr *Mem;
3505  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3506  if (isImplicit)
3507    Mem = alloc(Context, Args.size(), 0);
3508  else
3509    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3510  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3511                                   SelLocs, SelLocsK, Method, Args, RBracLoc,
3512                                   isImplicit);
3513}
3514
3515ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
3516                                         ExprValueKind VK,
3517                                         SourceLocation LBracLoc,
3518                                         Expr *Receiver,
3519                                         Selector Sel,
3520                                         ArrayRef<SourceLocation> SelLocs,
3521                                         ObjCMethodDecl *Method,
3522                                         ArrayRef<Expr *> Args,
3523                                         SourceLocation RBracLoc,
3524                                         bool isImplicit) {
3525  assert((!SelLocs.empty() || isImplicit) &&
3526         "No selector locs for non-implicit message");
3527  ObjCMessageExpr *Mem;
3528  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3529  if (isImplicit)
3530    Mem = alloc(Context, Args.size(), 0);
3531  else
3532    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3533  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3534                                   SelLocs, SelLocsK, Method, Args, RBracLoc,
3535                                   isImplicit);
3536}
3537
3538ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(const ASTContext &Context,
3539                                              unsigned NumArgs,
3540                                              unsigned NumStoredSelLocs) {
3541  ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
3542  return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
3543}
3544
3545ObjCMessageExpr *ObjCMessageExpr::alloc(const ASTContext &C,
3546                                        ArrayRef<Expr *> Args,
3547                                        SourceLocation RBraceLoc,
3548                                        ArrayRef<SourceLocation> SelLocs,
3549                                        Selector Sel,
3550                                        SelectorLocationsKind &SelLocsK) {
3551  SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
3552  unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
3553                                                               : 0;
3554  return alloc(C, Args.size(), NumStoredSelLocs);
3555}
3556
3557ObjCMessageExpr *ObjCMessageExpr::alloc(const ASTContext &C,
3558                                        unsigned NumArgs,
3559                                        unsigned NumStoredSelLocs) {
3560  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
3561    NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
3562  return (ObjCMessageExpr *)C.Allocate(Size,
3563                                     llvm::AlignOf<ObjCMessageExpr>::Alignment);
3564}
3565
3566void ObjCMessageExpr::getSelectorLocs(
3567                               SmallVectorImpl<SourceLocation> &SelLocs) const {
3568  for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
3569    SelLocs.push_back(getSelectorLoc(i));
3570}
3571
3572SourceRange ObjCMessageExpr::getReceiverRange() const {
3573  switch (getReceiverKind()) {
3574  case Instance:
3575    return getInstanceReceiver()->getSourceRange();
3576
3577  case Class:
3578    return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
3579
3580  case SuperInstance:
3581  case SuperClass:
3582    return getSuperLoc();
3583  }
3584
3585  llvm_unreachable("Invalid ReceiverKind!");
3586}
3587
3588Selector ObjCMessageExpr::getSelector() const {
3589  if (HasMethod)
3590    return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
3591                                                               ->getSelector();
3592  return Selector(SelectorOrMethod);
3593}
3594
3595QualType ObjCMessageExpr::getReceiverType() const {
3596  switch (getReceiverKind()) {
3597  case Instance:
3598    return getInstanceReceiver()->getType();
3599  case Class:
3600    return getClassReceiver();
3601  case SuperInstance:
3602  case SuperClass:
3603    return getSuperType();
3604  }
3605
3606  llvm_unreachable("unexpected receiver kind");
3607}
3608
3609ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
3610  QualType T = getReceiverType();
3611
3612  if (const ObjCObjectPointerType *Ptr = T->getAs<ObjCObjectPointerType>())
3613    return Ptr->getInterfaceDecl();
3614
3615  if (const ObjCObjectType *Ty = T->getAs<ObjCObjectType>())
3616    return Ty->getInterface();
3617
3618  return nullptr;
3619}
3620
3621StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
3622  switch (getBridgeKind()) {
3623  case OBC_Bridge:
3624    return "__bridge";
3625  case OBC_BridgeTransfer:
3626    return "__bridge_transfer";
3627  case OBC_BridgeRetained:
3628    return "__bridge_retained";
3629  }
3630
3631  llvm_unreachable("Invalid BridgeKind!");
3632}
3633
3634ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args,
3635                                     QualType Type, SourceLocation BLoc,
3636                                     SourceLocation RP)
3637   : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3638          Type->isDependentType(), Type->isDependentType(),
3639          Type->isInstantiationDependentType(),
3640          Type->containsUnexpandedParameterPack()),
3641     BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
3642{
3643  SubExprs = new (C) Stmt*[args.size()];
3644  for (unsigned i = 0; i != args.size(); i++) {
3645    if (args[i]->isTypeDependent())
3646      ExprBits.TypeDependent = true;
3647    if (args[i]->isValueDependent())
3648      ExprBits.ValueDependent = true;
3649    if (args[i]->isInstantiationDependent())
3650      ExprBits.InstantiationDependent = true;
3651    if (args[i]->containsUnexpandedParameterPack())
3652      ExprBits.ContainsUnexpandedParameterPack = true;
3653
3654    SubExprs[i] = args[i];
3655  }
3656}
3657
3658void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
3659  if (SubExprs) C.Deallocate(SubExprs);
3660
3661  this->NumExprs = Exprs.size();
3662  SubExprs = new (C) Stmt*[NumExprs];
3663  memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
3664}
3665
3666GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
3667                               SourceLocation GenericLoc, Expr *ControllingExpr,
3668                               ArrayRef<TypeSourceInfo*> AssocTypes,
3669                               ArrayRef<Expr*> AssocExprs,
3670                               SourceLocation DefaultLoc,
3671                               SourceLocation RParenLoc,
3672                               bool ContainsUnexpandedParameterPack,
3673                               unsigned ResultIndex)
3674  : Expr(GenericSelectionExprClass,
3675         AssocExprs[ResultIndex]->getType(),
3676         AssocExprs[ResultIndex]->getValueKind(),
3677         AssocExprs[ResultIndex]->getObjectKind(),
3678         AssocExprs[ResultIndex]->isTypeDependent(),
3679         AssocExprs[ResultIndex]->isValueDependent(),
3680         AssocExprs[ResultIndex]->isInstantiationDependent(),
3681         ContainsUnexpandedParameterPack),
3682    AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3683    SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3684    NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
3685    GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3686  SubExprs[CONTROLLING] = ControllingExpr;
3687  assert(AssocTypes.size() == AssocExprs.size());
3688  std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3689  std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3690}
3691
3692GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
3693                               SourceLocation GenericLoc, Expr *ControllingExpr,
3694                               ArrayRef<TypeSourceInfo*> AssocTypes,
3695                               ArrayRef<Expr*> AssocExprs,
3696                               SourceLocation DefaultLoc,
3697                               SourceLocation RParenLoc,
3698                               bool ContainsUnexpandedParameterPack)
3699  : Expr(GenericSelectionExprClass,
3700         Context.DependentTy,
3701         VK_RValue,
3702         OK_Ordinary,
3703         /*isTypeDependent=*/true,
3704         /*isValueDependent=*/true,
3705         /*isInstantiationDependent=*/true,
3706         ContainsUnexpandedParameterPack),
3707    AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3708    SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3709    NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
3710    DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3711  SubExprs[CONTROLLING] = ControllingExpr;
3712  assert(AssocTypes.size() == AssocExprs.size());
3713  std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3714  std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3715}
3716
3717//===----------------------------------------------------------------------===//
3718//  DesignatedInitExpr
3719//===----------------------------------------------------------------------===//
3720
3721IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
3722  assert(Kind == FieldDesignator && "Only valid on a field designator");
3723  if (Field.NameOrField & 0x01)
3724    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3725  else
3726    return getField()->getIdentifier();
3727}
3728
3729DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
3730                                       unsigned NumDesignators,
3731                                       const Designator *Designators,
3732                                       SourceLocation EqualOrColonLoc,
3733                                       bool GNUSyntax,
3734                                       ArrayRef<Expr*> IndexExprs,
3735                                       Expr *Init)
3736  : Expr(DesignatedInitExprClass, Ty,
3737         Init->getValueKind(), Init->getObjectKind(),
3738         Init->isTypeDependent(), Init->isValueDependent(),
3739         Init->isInstantiationDependent(),
3740         Init->containsUnexpandedParameterPack()),
3741    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3742    NumDesignators(NumDesignators), NumSubExprs(IndexExprs.size() + 1) {
3743  this->Designators = new (C) Designator[NumDesignators];
3744
3745  // Record the initializer itself.
3746  child_range Child = children();
3747  *Child++ = Init;
3748
3749  // Copy the designators and their subexpressions, computing
3750  // value-dependence along the way.
3751  unsigned IndexIdx = 0;
3752  for (unsigned I = 0; I != NumDesignators; ++I) {
3753    this->Designators[I] = Designators[I];
3754
3755    if (this->Designators[I].isArrayDesignator()) {
3756      // Compute type- and value-dependence.
3757      Expr *Index = IndexExprs[IndexIdx];
3758      if (Index->isTypeDependent() || Index->isValueDependent())
3759        ExprBits.ValueDependent = true;
3760      if (Index->isInstantiationDependent())
3761        ExprBits.InstantiationDependent = true;
3762      // Propagate unexpanded parameter packs.
3763      if (Index->containsUnexpandedParameterPack())
3764        ExprBits.ContainsUnexpandedParameterPack = true;
3765
3766      // Copy the index expressions into permanent storage.
3767      *Child++ = IndexExprs[IndexIdx++];
3768    } else if (this->Designators[I].isArrayRangeDesignator()) {
3769      // Compute type- and value-dependence.
3770      Expr *Start = IndexExprs[IndexIdx];
3771      Expr *End = IndexExprs[IndexIdx + 1];
3772      if (Start->isTypeDependent() || Start->isValueDependent() ||
3773          End->isTypeDependent() || End->isValueDependent()) {
3774        ExprBits.ValueDependent = true;
3775        ExprBits.InstantiationDependent = true;
3776      } else if (Start->isInstantiationDependent() ||
3777                 End->isInstantiationDependent()) {
3778        ExprBits.InstantiationDependent = true;
3779      }
3780
3781      // Propagate unexpanded parameter packs.
3782      if (Start->containsUnexpandedParameterPack() ||
3783          End->containsUnexpandedParameterPack())
3784        ExprBits.ContainsUnexpandedParameterPack = true;
3785
3786      // Copy the start/end expressions into permanent storage.
3787      *Child++ = IndexExprs[IndexIdx++];
3788      *Child++ = IndexExprs[IndexIdx++];
3789    }
3790  }
3791
3792  assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
3793}
3794
3795DesignatedInitExpr *
3796DesignatedInitExpr::Create(const ASTContext &C, Designator *Designators,
3797                           unsigned NumDesignators,
3798                           ArrayRef<Expr*> IndexExprs,
3799                           SourceLocation ColonOrEqualLoc,
3800                           bool UsesColonSyntax, Expr *Init) {
3801  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3802                         sizeof(Stmt *) * (IndexExprs.size() + 1), 8);
3803  return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
3804                                      ColonOrEqualLoc, UsesColonSyntax,
3805                                      IndexExprs, Init);
3806}
3807
3808DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
3809                                                    unsigned NumIndexExprs) {
3810  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3811                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3812  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3813}
3814
3815void DesignatedInitExpr::setDesignators(const ASTContext &C,
3816                                        const Designator *Desigs,
3817                                        unsigned NumDesigs) {
3818  Designators = new (C) Designator[NumDesigs];
3819  NumDesignators = NumDesigs;
3820  for (unsigned I = 0; I != NumDesigs; ++I)
3821    Designators[I] = Desigs[I];
3822}
3823
3824SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
3825  DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3826  if (size() == 1)
3827    return DIE->getDesignator(0)->getSourceRange();
3828  return SourceRange(DIE->getDesignator(0)->getLocStart(),
3829                     DIE->getDesignator(size()-1)->getLocEnd());
3830}
3831
3832SourceLocation DesignatedInitExpr::getLocStart() const {
3833  SourceLocation StartLoc;
3834  Designator &First =
3835    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
3836  if (First.isFieldDesignator()) {
3837    if (GNUSyntax)
3838      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
3839    else
3840      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
3841  } else
3842    StartLoc =
3843      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
3844  return StartLoc;
3845}
3846
3847SourceLocation DesignatedInitExpr::getLocEnd() const {
3848  return getInit()->getLocEnd();
3849}
3850
3851Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
3852  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3853  Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
3854  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3855}
3856
3857Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
3858  assert(D.Kind == Designator::ArrayRangeDesignator &&
3859         "Requires array range designator");
3860  Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
3861  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3862}
3863
3864Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
3865  assert(D.Kind == Designator::ArrayRangeDesignator &&
3866         "Requires array range designator");
3867  Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
3868  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
3869}
3870
3871/// \brief Replaces the designator at index @p Idx with the series
3872/// of designators in [First, Last).
3873void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
3874                                          const Designator *First,
3875                                          const Designator *Last) {
3876  unsigned NumNewDesignators = Last - First;
3877  if (NumNewDesignators == 0) {
3878    std::copy_backward(Designators + Idx + 1,
3879                       Designators + NumDesignators,
3880                       Designators + Idx);
3881    --NumNewDesignators;
3882    return;
3883  } else if (NumNewDesignators == 1) {
3884    Designators[Idx] = *First;
3885    return;
3886  }
3887
3888  Designator *NewDesignators
3889    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
3890  std::copy(Designators, Designators + Idx, NewDesignators);
3891  std::copy(First, Last, NewDesignators + Idx);
3892  std::copy(Designators + Idx + 1, Designators + NumDesignators,
3893            NewDesignators + Idx + NumNewDesignators);
3894  Designators = NewDesignators;
3895  NumDesignators = NumDesignators - 1 + NumNewDesignators;
3896}
3897
3898ParenListExpr::ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
3899                             ArrayRef<Expr*> exprs,
3900                             SourceLocation rparenloc)
3901  : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
3902         false, false, false, false),
3903    NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) {
3904  Exprs = new (C) Stmt*[exprs.size()];
3905  for (unsigned i = 0; i != exprs.size(); ++i) {
3906    if (exprs[i]->isTypeDependent())
3907      ExprBits.TypeDependent = true;
3908    if (exprs[i]->isValueDependent())
3909      ExprBits.ValueDependent = true;
3910    if (exprs[i]->isInstantiationDependent())
3911      ExprBits.InstantiationDependent = true;
3912    if (exprs[i]->containsUnexpandedParameterPack())
3913      ExprBits.ContainsUnexpandedParameterPack = true;
3914
3915    Exprs[i] = exprs[i];
3916  }
3917}
3918
3919const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
3920  if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
3921    e = ewc->getSubExpr();
3922  if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
3923    e = m->GetTemporaryExpr();
3924  e = cast<CXXConstructExpr>(e)->getArg(0);
3925  while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
3926    e = ice->getSubExpr();
3927  return cast<OpaqueValueExpr>(e);
3928}
3929
3930PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
3931                                           EmptyShell sh,
3932                                           unsigned numSemanticExprs) {
3933  void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
3934                                    (1 + numSemanticExprs) * sizeof(Expr*),
3935                                  llvm::alignOf<PseudoObjectExpr>());
3936  return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
3937}
3938
3939PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
3940  : Expr(PseudoObjectExprClass, shell) {
3941  PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
3942}
3943
3944PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
3945                                           ArrayRef<Expr*> semantics,
3946                                           unsigned resultIndex) {
3947  assert(syntax && "no syntactic expression!");
3948  assert(semantics.size() && "no semantic expressions!");
3949
3950  QualType type;
3951  ExprValueKind VK;
3952  if (resultIndex == NoResult) {
3953    type = C.VoidTy;
3954    VK = VK_RValue;
3955  } else {
3956    assert(resultIndex < semantics.size());
3957    type = semantics[resultIndex]->getType();
3958    VK = semantics[resultIndex]->getValueKind();
3959    assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
3960  }
3961
3962  void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
3963                              (1 + semantics.size()) * sizeof(Expr*),
3964                            llvm::alignOf<PseudoObjectExpr>());
3965  return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
3966                                      resultIndex);
3967}
3968
3969PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
3970                                   Expr *syntax, ArrayRef<Expr*> semantics,
3971                                   unsigned resultIndex)
3972  : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
3973         /*filled in at end of ctor*/ false, false, false, false) {
3974  PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
3975  PseudoObjectExprBits.ResultIndex = resultIndex + 1;
3976
3977  for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
3978    Expr *E = (i == 0 ? syntax : semantics[i-1]);
3979    getSubExprsBuffer()[i] = E;
3980
3981    if (E->isTypeDependent())
3982      ExprBits.TypeDependent = true;
3983    if (E->isValueDependent())
3984      ExprBits.ValueDependent = true;
3985    if (E->isInstantiationDependent())
3986      ExprBits.InstantiationDependent = true;
3987    if (E->containsUnexpandedParameterPack())
3988      ExprBits.ContainsUnexpandedParameterPack = true;
3989
3990    if (isa<OpaqueValueExpr>(E))
3991      assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
3992             "opaque-value semantic expressions for pseudo-object "
3993             "operations must have sources");
3994  }
3995}
3996
3997//===----------------------------------------------------------------------===//
3998//  ExprIterator.
3999//===----------------------------------------------------------------------===//
4000
4001Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
4002Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
4003Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
4004const Expr* ConstExprIterator::operator[](size_t idx) const {
4005  return cast<Expr>(I[idx]);
4006}
4007const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
4008const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
4009
4010//===----------------------------------------------------------------------===//
4011//  Child Iterators for iterating over subexpressions/substatements
4012//===----------------------------------------------------------------------===//
4013
4014// UnaryExprOrTypeTraitExpr
4015Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
4016  // If this is of a type and the type is a VLA type (and not a typedef), the
4017  // size expression of the VLA needs to be treated as an executable expression.
4018  // Why isn't this weirdness documented better in StmtIterator?
4019  if (isArgumentType()) {
4020    if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
4021                                   getArgumentType().getTypePtr()))
4022      return child_range(child_iterator(T), child_iterator());
4023    return child_range();
4024  }
4025  return child_range(&Argument.Ex, &Argument.Ex + 1);
4026}
4027
4028// ObjCMessageExpr
4029Stmt::child_range ObjCMessageExpr::children() {
4030  Stmt **begin;
4031  if (getReceiverKind() == Instance)
4032    begin = reinterpret_cast<Stmt **>(this + 1);
4033  else
4034    begin = reinterpret_cast<Stmt **>(getArgs());
4035  return child_range(begin,
4036                     reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
4037}
4038
4039ObjCArrayLiteral::ObjCArrayLiteral(ArrayRef<Expr *> Elements,
4040                                   QualType T, ObjCMethodDecl *Method,
4041                                   SourceRange SR)
4042  : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary,
4043         false, false, false, false),
4044    NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method)
4045{
4046  Expr **SaveElements = getElements();
4047  for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
4048    if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent())
4049      ExprBits.ValueDependent = true;
4050    if (Elements[I]->isInstantiationDependent())
4051      ExprBits.InstantiationDependent = true;
4052    if (Elements[I]->containsUnexpandedParameterPack())
4053      ExprBits.ContainsUnexpandedParameterPack = true;
4054
4055    SaveElements[I] = Elements[I];
4056  }
4057}
4058
4059ObjCArrayLiteral *ObjCArrayLiteral::Create(const ASTContext &C,
4060                                           ArrayRef<Expr *> Elements,
4061                                           QualType T, ObjCMethodDecl * Method,
4062                                           SourceRange SR) {
4063  void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
4064                         + Elements.size() * sizeof(Expr *));
4065  return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR);
4066}
4067
4068ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(const ASTContext &C,
4069                                                unsigned NumElements) {
4070
4071  void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
4072                         + NumElements * sizeof(Expr *));
4073  return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements);
4074}
4075
4076ObjCDictionaryLiteral::ObjCDictionaryLiteral(
4077                                             ArrayRef<ObjCDictionaryElement> VK,
4078                                             bool HasPackExpansions,
4079                                             QualType T, ObjCMethodDecl *method,
4080                                             SourceRange SR)
4081  : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
4082         false, false),
4083    NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR),
4084    DictWithObjectsMethod(method)
4085{
4086  KeyValuePair *KeyValues = getKeyValues();
4087  ExpansionData *Expansions = getExpansionData();
4088  for (unsigned I = 0; I < NumElements; I++) {
4089    if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() ||
4090        VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent())
4091      ExprBits.ValueDependent = true;
4092    if (VK[I].Key->isInstantiationDependent() ||
4093        VK[I].Value->isInstantiationDependent())
4094      ExprBits.InstantiationDependent = true;
4095    if (VK[I].EllipsisLoc.isInvalid() &&
4096        (VK[I].Key->containsUnexpandedParameterPack() ||
4097         VK[I].Value->containsUnexpandedParameterPack()))
4098      ExprBits.ContainsUnexpandedParameterPack = true;
4099
4100    KeyValues[I].Key = VK[I].Key;
4101    KeyValues[I].Value = VK[I].Value;
4102    if (Expansions) {
4103      Expansions[I].EllipsisLoc = VK[I].EllipsisLoc;
4104      if (VK[I].NumExpansions)
4105        Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1;
4106      else
4107        Expansions[I].NumExpansionsPlusOne = 0;
4108    }
4109  }
4110}
4111
4112ObjCDictionaryLiteral *
4113ObjCDictionaryLiteral::Create(const ASTContext &C,
4114                              ArrayRef<ObjCDictionaryElement> VK,
4115                              bool HasPackExpansions,
4116                              QualType T, ObjCMethodDecl *method,
4117                              SourceRange SR) {
4118  unsigned ExpansionsSize = 0;
4119  if (HasPackExpansions)
4120    ExpansionsSize = sizeof(ExpansionData) * VK.size();
4121
4122  void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
4123                         sizeof(KeyValuePair) * VK.size() + ExpansionsSize);
4124  return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR);
4125}
4126
4127ObjCDictionaryLiteral *
4128ObjCDictionaryLiteral::CreateEmpty(const ASTContext &C, unsigned NumElements,
4129                                   bool HasPackExpansions) {
4130  unsigned ExpansionsSize = 0;
4131  if (HasPackExpansions)
4132    ExpansionsSize = sizeof(ExpansionData) * NumElements;
4133  void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
4134                         sizeof(KeyValuePair) * NumElements + ExpansionsSize);
4135  return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements,
4136                                         HasPackExpansions);
4137}
4138
4139ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(const ASTContext &C,
4140                                                   Expr *base,
4141                                                   Expr *key, QualType T,
4142                                                   ObjCMethodDecl *getMethod,
4143                                                   ObjCMethodDecl *setMethod,
4144                                                   SourceLocation RB) {
4145  void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr));
4146  return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue,
4147                                        OK_ObjCSubscript,
4148                                        getMethod, setMethod, RB);
4149}
4150
4151AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
4152                       QualType t, AtomicOp op, SourceLocation RP)
4153  : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
4154         false, false, false, false),
4155    NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
4156{
4157  assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4158  for (unsigned i = 0; i != args.size(); i++) {
4159    if (args[i]->isTypeDependent())
4160      ExprBits.TypeDependent = true;
4161    if (args[i]->isValueDependent())
4162      ExprBits.ValueDependent = true;
4163    if (args[i]->isInstantiationDependent())
4164      ExprBits.InstantiationDependent = true;
4165    if (args[i]->containsUnexpandedParameterPack())
4166      ExprBits.ContainsUnexpandedParameterPack = true;
4167
4168    SubExprs[i] = args[i];
4169  }
4170}
4171
4172unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
4173  switch (Op) {
4174  case AO__c11_atomic_init:
4175  case AO__c11_atomic_load:
4176  case AO__atomic_load_n:
4177    return 2;
4178
4179  case AO__c11_atomic_store:
4180  case AO__c11_atomic_exchange:
4181  case AO__atomic_load:
4182  case AO__atomic_store:
4183  case AO__atomic_store_n:
4184  case AO__atomic_exchange_n:
4185  case AO__c11_atomic_fetch_add:
4186  case AO__c11_atomic_fetch_sub:
4187  case AO__c11_atomic_fetch_and:
4188  case AO__c11_atomic_fetch_or:
4189  case AO__c11_atomic_fetch_xor:
4190  case AO__atomic_fetch_add:
4191  case AO__atomic_fetch_sub:
4192  case AO__atomic_fetch_and:
4193  case AO__atomic_fetch_or:
4194  case AO__atomic_fetch_xor:
4195  case AO__atomic_fetch_nand:
4196  case AO__atomic_add_fetch:
4197  case AO__atomic_sub_fetch:
4198  case AO__atomic_and_fetch:
4199  case AO__atomic_or_fetch:
4200  case AO__atomic_xor_fetch:
4201  case AO__atomic_nand_fetch:
4202    return 3;
4203
4204  case AO__atomic_exchange:
4205    return 4;
4206
4207  case AO__c11_atomic_compare_exchange_strong:
4208  case AO__c11_atomic_compare_exchange_weak:
4209    return 5;
4210
4211  case AO__atomic_compare_exchange:
4212  case AO__atomic_compare_exchange_n:
4213    return 6;
4214  }
4215  llvm_unreachable("unknown atomic op");
4216}
4217