1//===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ lambda expressions.
11//
12//===----------------------------------------------------------------------===//
13#include "clang/Sema/DeclSpec.h"
14#include "TypeLocBuilder.h"
15#include "clang/AST/ASTLambda.h"
16#include "clang/AST/ExprCXX.h"
17#include "clang/Basic/TargetInfo.h"
18#include "clang/Sema/Initialization.h"
19#include "clang/Sema/Lookup.h"
20#include "clang/Sema/Scope.h"
21#include "clang/Sema/ScopeInfo.h"
22#include "clang/Sema/SemaInternal.h"
23#include "clang/Sema/SemaLambda.h"
24using namespace clang;
25using namespace sema;
26
27/// \brief Examines the FunctionScopeInfo stack to determine the nearest
28/// enclosing lambda (to the current lambda) that is 'capture-ready' for
29/// the variable referenced in the current lambda (i.e. \p VarToCapture).
30/// If successful, returns the index into Sema's FunctionScopeInfo stack
31/// of the capture-ready lambda's LambdaScopeInfo.
32///
33/// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
34/// lambda - is on top) to determine the index of the nearest enclosing/outer
35/// lambda that is ready to capture the \p VarToCapture being referenced in
36/// the current lambda.
37/// As we climb down the stack, we want the index of the first such lambda -
38/// that is the lambda with the highest index that is 'capture-ready'.
39///
40/// A lambda 'L' is capture-ready for 'V' (var or this) if:
41///  - its enclosing context is non-dependent
42///  - and if the chain of lambdas between L and the lambda in which
43///    V is potentially used (i.e. the lambda at the top of the scope info
44///    stack), can all capture or have already captured V.
45/// If \p VarToCapture is 'null' then we are trying to capture 'this'.
46///
47/// Note that a lambda that is deemed 'capture-ready' still needs to be checked
48/// for whether it is 'capture-capable' (see
49/// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
50/// capture.
51///
52/// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
53///  LambdaScopeInfo inherits from).  The current/deepest/innermost lambda
54///  is at the top of the stack and has the highest index.
55/// \param VarToCapture - the variable to capture.  If NULL, capture 'this'.
56///
57/// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
58/// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
59/// which is capture-ready.  If the return value evaluates to 'false' then
60/// no lambda is capture-ready for \p VarToCapture.
61
62static inline Optional<unsigned>
63getStackIndexOfNearestEnclosingCaptureReadyLambda(
64    ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes,
65    VarDecl *VarToCapture) {
66  // Label failure to capture.
67  const Optional<unsigned> NoLambdaIsCaptureReady;
68
69  assert(
70      isa<clang::sema::LambdaScopeInfo>(
71          FunctionScopes[FunctionScopes.size() - 1]) &&
72      "The function on the top of sema's function-info stack must be a lambda");
73
74  // If VarToCapture is null, we are attempting to capture 'this'.
75  const bool IsCapturingThis = !VarToCapture;
76  const bool IsCapturingVariable = !IsCapturingThis;
77
78  // Start with the current lambda at the top of the stack (highest index).
79  unsigned CurScopeIndex = FunctionScopes.size() - 1;
80  DeclContext *EnclosingDC =
81      cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
82
83  do {
84    const clang::sema::LambdaScopeInfo *LSI =
85        cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
86    // IF we have climbed down to an intervening enclosing lambda that contains
87    // the variable declaration - it obviously can/must not capture the
88    // variable.
89    // Since its enclosing DC is dependent, all the lambdas between it and the
90    // innermost nested lambda are dependent (otherwise we wouldn't have
91    // arrived here) - so we don't yet have a lambda that can capture the
92    // variable.
93    if (IsCapturingVariable &&
94        VarToCapture->getDeclContext()->Equals(EnclosingDC))
95      return NoLambdaIsCaptureReady;
96
97    // For an enclosing lambda to be capture ready for an entity, all
98    // intervening lambda's have to be able to capture that entity. If even
99    // one of the intervening lambda's is not capable of capturing the entity
100    // then no enclosing lambda can ever capture that entity.
101    // For e.g.
102    // const int x = 10;
103    // [=](auto a) {    #1
104    //   [](auto b) {   #2 <-- an intervening lambda that can never capture 'x'
105    //    [=](auto c) { #3
106    //       f(x, c);  <-- can not lead to x's speculative capture by #1 or #2
107    //    }; }; };
108    // If they do not have a default implicit capture, check to see
109    // if the entity has already been explicitly captured.
110    // If even a single dependent enclosing lambda lacks the capability
111    // to ever capture this variable, there is no further enclosing
112    // non-dependent lambda that can capture this variable.
113    if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) {
114      if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
115        return NoLambdaIsCaptureReady;
116      if (IsCapturingThis && !LSI->isCXXThisCaptured())
117        return NoLambdaIsCaptureReady;
118    }
119    EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
120
121    assert(CurScopeIndex);
122    --CurScopeIndex;
123  } while (!EnclosingDC->isTranslationUnit() &&
124           EnclosingDC->isDependentContext() &&
125           isLambdaCallOperator(EnclosingDC));
126
127  assert(CurScopeIndex < (FunctionScopes.size() - 1));
128  // If the enclosingDC is not dependent, then the immediately nested lambda
129  // (one index above) is capture-ready.
130  if (!EnclosingDC->isDependentContext())
131    return CurScopeIndex + 1;
132  return NoLambdaIsCaptureReady;
133}
134
135/// \brief Examines the FunctionScopeInfo stack to determine the nearest
136/// enclosing lambda (to the current lambda) that is 'capture-capable' for
137/// the variable referenced in the current lambda (i.e. \p VarToCapture).
138/// If successful, returns the index into Sema's FunctionScopeInfo stack
139/// of the capture-capable lambda's LambdaScopeInfo.
140///
141/// Given the current stack of lambdas being processed by Sema and
142/// the variable of interest, to identify the nearest enclosing lambda (to the
143/// current lambda at the top of the stack) that can truly capture
144/// a variable, it has to have the following two properties:
145///  a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
146///     - climb down the stack (i.e. starting from the innermost and examining
147///       each outer lambda step by step) checking if each enclosing
148///       lambda can either implicitly or explicitly capture the variable.
149///       Record the first such lambda that is enclosed in a non-dependent
150///       context. If no such lambda currently exists return failure.
151///  b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
152///  capture the variable by checking all its enclosing lambdas:
153///     - check if all outer lambdas enclosing the 'capture-ready' lambda
154///       identified above in 'a' can also capture the variable (this is done
155///       via tryCaptureVariable for variables and CheckCXXThisCapture for
156///       'this' by passing in the index of the Lambda identified in step 'a')
157///
158/// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
159/// LambdaScopeInfo inherits from).  The current/deepest/innermost lambda
160/// is at the top of the stack.
161///
162/// \param VarToCapture - the variable to capture.  If NULL, capture 'this'.
163///
164///
165/// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
166/// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
167/// which is capture-capable.  If the return value evaluates to 'false' then
168/// no lambda is capture-capable for \p VarToCapture.
169
170Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda(
171    ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes,
172    VarDecl *VarToCapture, Sema &S) {
173
174  const Optional<unsigned> NoLambdaIsCaptureCapable;
175
176  const Optional<unsigned> OptionalStackIndex =
177      getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes,
178                                                        VarToCapture);
179  if (!OptionalStackIndex)
180    return NoLambdaIsCaptureCapable;
181
182  const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue();
183  assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
184          S.getCurGenericLambda()) &&
185         "The capture ready lambda for a potential capture can only be the "
186         "current lambda if it is a generic lambda");
187
188  const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
189      cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
190
191  // If VarToCapture is null, we are attempting to capture 'this'
192  const bool IsCapturingThis = !VarToCapture;
193  const bool IsCapturingVariable = !IsCapturingThis;
194
195  if (IsCapturingVariable) {
196    // Check if the capture-ready lambda can truly capture the variable, by
197    // checking whether all enclosing lambdas of the capture-ready lambda allow
198    // the capture - i.e. make sure it is capture-capable.
199    QualType CaptureType, DeclRefType;
200    const bool CanCaptureVariable =
201        !S.tryCaptureVariable(VarToCapture,
202                              /*ExprVarIsUsedInLoc*/ SourceLocation(),
203                              clang::Sema::TryCapture_Implicit,
204                              /*EllipsisLoc*/ SourceLocation(),
205                              /*BuildAndDiagnose*/ false, CaptureType,
206                              DeclRefType, &IndexOfCaptureReadyLambda);
207    if (!CanCaptureVariable)
208      return NoLambdaIsCaptureCapable;
209  } else {
210    // Check if the capture-ready lambda can truly capture 'this' by checking
211    // whether all enclosing lambdas of the capture-ready lambda can capture
212    // 'this'.
213    const bool CanCaptureThis =
214        !S.CheckCXXThisCapture(
215             CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
216             /*Explicit*/ false, /*BuildAndDiagnose*/ false,
217             &IndexOfCaptureReadyLambda);
218    if (!CanCaptureThis)
219      return NoLambdaIsCaptureCapable;
220  }
221  return IndexOfCaptureReadyLambda;
222}
223
224static inline TemplateParameterList *
225getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) {
226  if (LSI->GLTemplateParameterList)
227    return LSI->GLTemplateParameterList;
228
229  if (LSI->AutoTemplateParams.size()) {
230    SourceRange IntroRange = LSI->IntroducerRange;
231    SourceLocation LAngleLoc = IntroRange.getBegin();
232    SourceLocation RAngleLoc = IntroRange.getEnd();
233    LSI->GLTemplateParameterList = TemplateParameterList::Create(
234        SemaRef.Context,
235        /*Template kw loc*/ SourceLocation(), LAngleLoc,
236        (NamedDecl **)LSI->AutoTemplateParams.data(),
237        LSI->AutoTemplateParams.size(), RAngleLoc);
238  }
239  return LSI->GLTemplateParameterList;
240}
241
242CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange,
243                                             TypeSourceInfo *Info,
244                                             bool KnownDependent,
245                                             LambdaCaptureDefault CaptureDefault) {
246  DeclContext *DC = CurContext;
247  while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
248    DC = DC->getParent();
249  bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
250                                                               *this);
251  // Start constructing the lambda class.
252  CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info,
253                                                     IntroducerRange.getBegin(),
254                                                     KnownDependent,
255                                                     IsGenericLambda,
256                                                     CaptureDefault);
257  DC->addDecl(Class);
258
259  return Class;
260}
261
262/// \brief Determine whether the given context is or is enclosed in an inline
263/// function.
264static bool isInInlineFunction(const DeclContext *DC) {
265  while (!DC->isFileContext()) {
266    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
267      if (FD->isInlined())
268        return true;
269
270    DC = DC->getLexicalParent();
271  }
272
273  return false;
274}
275
276MangleNumberingContext *
277Sema::getCurrentMangleNumberContext(const DeclContext *DC,
278                                    Decl *&ManglingContextDecl) {
279  // Compute the context for allocating mangling numbers in the current
280  // expression, if the ABI requires them.
281  ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
282
283  enum ContextKind {
284    Normal,
285    DefaultArgument,
286    DataMember,
287    StaticDataMember
288  } Kind = Normal;
289
290  // Default arguments of member function parameters that appear in a class
291  // definition, as well as the initializers of data members, receive special
292  // treatment. Identify them.
293  if (ManglingContextDecl) {
294    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
295      if (const DeclContext *LexicalDC
296          = Param->getDeclContext()->getLexicalParent())
297        if (LexicalDC->isRecord())
298          Kind = DefaultArgument;
299    } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
300      if (Var->getDeclContext()->isRecord())
301        Kind = StaticDataMember;
302    } else if (isa<FieldDecl>(ManglingContextDecl)) {
303      Kind = DataMember;
304    }
305  }
306
307  // Itanium ABI [5.1.7]:
308  //   In the following contexts [...] the one-definition rule requires closure
309  //   types in different translation units to "correspond":
310  bool IsInNonspecializedTemplate =
311    !ActiveTemplateInstantiations.empty() || CurContext->isDependentContext();
312  switch (Kind) {
313  case Normal:
314    //  -- the bodies of non-exported nonspecialized template functions
315    //  -- the bodies of inline functions
316    if ((IsInNonspecializedTemplate &&
317         !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
318        isInInlineFunction(CurContext)) {
319      ManglingContextDecl = nullptr;
320      return &Context.getManglingNumberContext(DC);
321    }
322
323    ManglingContextDecl = nullptr;
324    return nullptr;
325
326  case StaticDataMember:
327    //  -- the initializers of nonspecialized static members of template classes
328    if (!IsInNonspecializedTemplate) {
329      ManglingContextDecl = nullptr;
330      return nullptr;
331    }
332    // Fall through to get the current context.
333
334  case DataMember:
335    //  -- the in-class initializers of class members
336  case DefaultArgument:
337    //  -- default arguments appearing in class definitions
338    return &ExprEvalContexts.back().getMangleNumberingContext(Context);
339  }
340
341  llvm_unreachable("unexpected context");
342}
343
344MangleNumberingContext &
345Sema::ExpressionEvaluationContextRecord::getMangleNumberingContext(
346    ASTContext &Ctx) {
347  assert(ManglingContextDecl && "Need to have a context declaration");
348  if (!MangleNumbering)
349    MangleNumbering = Ctx.createMangleNumberingContext();
350  return *MangleNumbering;
351}
352
353CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class,
354                                           SourceRange IntroducerRange,
355                                           TypeSourceInfo *MethodTypeInfo,
356                                           SourceLocation EndLoc,
357                                           ArrayRef<ParmVarDecl *> Params) {
358  QualType MethodType = MethodTypeInfo->getType();
359  TemplateParameterList *TemplateParams =
360            getGenericLambdaTemplateParameterList(getCurLambda(), *this);
361  // If a lambda appears in a dependent context or is a generic lambda (has
362  // template parameters) and has an 'auto' return type, deduce it to a
363  // dependent type.
364  if (Class->isDependentContext() || TemplateParams) {
365    const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
366    QualType Result = FPT->getReturnType();
367    if (Result->isUndeducedType()) {
368      Result = SubstAutoType(Result, Context.DependentTy);
369      MethodType = Context.getFunctionType(Result, FPT->getParamTypes(),
370                                           FPT->getExtProtoInfo());
371    }
372  }
373
374  // C++11 [expr.prim.lambda]p5:
375  //   The closure type for a lambda-expression has a public inline function
376  //   call operator (13.5.4) whose parameters and return type are described by
377  //   the lambda-expression's parameter-declaration-clause and
378  //   trailing-return-type respectively.
379  DeclarationName MethodName
380    = Context.DeclarationNames.getCXXOperatorName(OO_Call);
381  DeclarationNameLoc MethodNameLoc;
382  MethodNameLoc.CXXOperatorName.BeginOpNameLoc
383    = IntroducerRange.getBegin().getRawEncoding();
384  MethodNameLoc.CXXOperatorName.EndOpNameLoc
385    = IntroducerRange.getEnd().getRawEncoding();
386  CXXMethodDecl *Method
387    = CXXMethodDecl::Create(Context, Class, EndLoc,
388                            DeclarationNameInfo(MethodName,
389                                                IntroducerRange.getBegin(),
390                                                MethodNameLoc),
391                            MethodType, MethodTypeInfo,
392                            SC_None,
393                            /*isInline=*/true,
394                            /*isConstExpr=*/false,
395                            EndLoc);
396  Method->setAccess(AS_public);
397
398  // Temporarily set the lexical declaration context to the current
399  // context, so that the Scope stack matches the lexical nesting.
400  Method->setLexicalDeclContext(CurContext);
401  // Create a function template if we have a template parameter list
402  FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
403            FunctionTemplateDecl::Create(Context, Class,
404                                         Method->getLocation(), MethodName,
405                                         TemplateParams,
406                                         Method) : nullptr;
407  if (TemplateMethod) {
408    TemplateMethod->setLexicalDeclContext(CurContext);
409    TemplateMethod->setAccess(AS_public);
410    Method->setDescribedFunctionTemplate(TemplateMethod);
411  }
412
413  // Add parameters.
414  if (!Params.empty()) {
415    Method->setParams(Params);
416    CheckParmsForFunctionDef(const_cast<ParmVarDecl **>(Params.begin()),
417                             const_cast<ParmVarDecl **>(Params.end()),
418                             /*CheckParameterNames=*/false);
419
420    for (auto P : Method->params())
421      P->setOwningFunction(Method);
422  }
423
424  Decl *ManglingContextDecl;
425  if (MangleNumberingContext *MCtx =
426          getCurrentMangleNumberContext(Class->getDeclContext(),
427                                        ManglingContextDecl)) {
428    unsigned ManglingNumber = MCtx->getManglingNumber(Method);
429    Class->setLambdaMangling(ManglingNumber, ManglingContextDecl);
430  }
431
432  return Method;
433}
434
435void Sema::buildLambdaScope(LambdaScopeInfo *LSI,
436                                        CXXMethodDecl *CallOperator,
437                                        SourceRange IntroducerRange,
438                                        LambdaCaptureDefault CaptureDefault,
439                                        SourceLocation CaptureDefaultLoc,
440                                        bool ExplicitParams,
441                                        bool ExplicitResultType,
442                                        bool Mutable) {
443  LSI->CallOperator = CallOperator;
444  CXXRecordDecl *LambdaClass = CallOperator->getParent();
445  LSI->Lambda = LambdaClass;
446  if (CaptureDefault == LCD_ByCopy)
447    LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
448  else if (CaptureDefault == LCD_ByRef)
449    LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
450  LSI->CaptureDefaultLoc = CaptureDefaultLoc;
451  LSI->IntroducerRange = IntroducerRange;
452  LSI->ExplicitParams = ExplicitParams;
453  LSI->Mutable = Mutable;
454
455  if (ExplicitResultType) {
456    LSI->ReturnType = CallOperator->getReturnType();
457
458    if (!LSI->ReturnType->isDependentType() &&
459        !LSI->ReturnType->isVoidType()) {
460      if (RequireCompleteType(CallOperator->getLocStart(), LSI->ReturnType,
461                              diag::err_lambda_incomplete_result)) {
462        // Do nothing.
463      }
464    }
465  } else {
466    LSI->HasImplicitReturnType = true;
467  }
468}
469
470void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) {
471  LSI->finishedExplicitCaptures();
472}
473
474void Sema::addLambdaParameters(CXXMethodDecl *CallOperator, Scope *CurScope) {
475  // Introduce our parameters into the function scope
476  for (unsigned p = 0, NumParams = CallOperator->getNumParams();
477       p < NumParams; ++p) {
478    ParmVarDecl *Param = CallOperator->getParamDecl(p);
479
480    // If this has an identifier, add it to the scope stack.
481    if (CurScope && Param->getIdentifier()) {
482      CheckShadow(CurScope, Param);
483
484      PushOnScopeChains(Param, CurScope);
485    }
486  }
487}
488
489/// If this expression is an enumerator-like expression of some type
490/// T, return the type T; otherwise, return null.
491///
492/// Pointer comparisons on the result here should always work because
493/// it's derived from either the parent of an EnumConstantDecl
494/// (i.e. the definition) or the declaration returned by
495/// EnumType::getDecl() (i.e. the definition).
496static EnumDecl *findEnumForBlockReturn(Expr *E) {
497  // An expression is an enumerator-like expression of type T if,
498  // ignoring parens and parens-like expressions:
499  E = E->IgnoreParens();
500
501  //  - it is an enumerator whose enum type is T or
502  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
503    if (EnumConstantDecl *D
504          = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
505      return cast<EnumDecl>(D->getDeclContext());
506    }
507    return nullptr;
508  }
509
510  //  - it is a comma expression whose RHS is an enumerator-like
511  //    expression of type T or
512  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
513    if (BO->getOpcode() == BO_Comma)
514      return findEnumForBlockReturn(BO->getRHS());
515    return nullptr;
516  }
517
518  //  - it is a statement-expression whose value expression is an
519  //    enumerator-like expression of type T or
520  if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
521    if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
522      return findEnumForBlockReturn(last);
523    return nullptr;
524  }
525
526  //   - it is a ternary conditional operator (not the GNU ?:
527  //     extension) whose second and third operands are
528  //     enumerator-like expressions of type T or
529  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
530    if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
531      if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
532        return ED;
533    return nullptr;
534  }
535
536  // (implicitly:)
537  //   - it is an implicit integral conversion applied to an
538  //     enumerator-like expression of type T or
539  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
540    // We can sometimes see integral conversions in valid
541    // enumerator-like expressions.
542    if (ICE->getCastKind() == CK_IntegralCast)
543      return findEnumForBlockReturn(ICE->getSubExpr());
544
545    // Otherwise, just rely on the type.
546  }
547
548  //   - it is an expression of that formal enum type.
549  if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
550    return ET->getDecl();
551  }
552
553  // Otherwise, nope.
554  return nullptr;
555}
556
557/// Attempt to find a type T for which the returned expression of the
558/// given statement is an enumerator-like expression of that type.
559static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) {
560  if (Expr *retValue = ret->getRetValue())
561    return findEnumForBlockReturn(retValue);
562  return nullptr;
563}
564
565/// Attempt to find a common type T for which all of the returned
566/// expressions in a block are enumerator-like expressions of that
567/// type.
568static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) {
569  ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
570
571  // Try to find one for the first return.
572  EnumDecl *ED = findEnumForBlockReturn(*i);
573  if (!ED) return nullptr;
574
575  // Check that the rest of the returns have the same enum.
576  for (++i; i != e; ++i) {
577    if (findEnumForBlockReturn(*i) != ED)
578      return nullptr;
579  }
580
581  // Never infer an anonymous enum type.
582  if (!ED->hasNameForLinkage()) return nullptr;
583
584  return ED;
585}
586
587/// Adjust the given return statements so that they formally return
588/// the given type.  It should require, at most, an IntegralCast.
589static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns,
590                                     QualType returnType) {
591  for (ArrayRef<ReturnStmt*>::iterator
592         i = returns.begin(), e = returns.end(); i != e; ++i) {
593    ReturnStmt *ret = *i;
594    Expr *retValue = ret->getRetValue();
595    if (S.Context.hasSameType(retValue->getType(), returnType))
596      continue;
597
598    // Right now we only support integral fixup casts.
599    assert(returnType->isIntegralOrUnscopedEnumerationType());
600    assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
601
602    ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
603
604    Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
605    E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast,
606                                 E, /*base path*/ nullptr, VK_RValue);
607    if (cleanups) {
608      cleanups->setSubExpr(E);
609    } else {
610      ret->setRetValue(E);
611    }
612  }
613}
614
615void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) {
616  assert(CSI.HasImplicitReturnType);
617  // If it was ever a placeholder, it had to been deduced to DependentTy.
618  assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
619
620  // C++ Core Issue #975, proposed resolution:
621  //   If a lambda-expression does not include a trailing-return-type,
622  //   it is as if the trailing-return-type denotes the following type:
623  //     - if there are no return statements in the compound-statement,
624  //       or all return statements return either an expression of type
625  //       void or no expression or braced-init-list, the type void;
626  //     - otherwise, if all return statements return an expression
627  //       and the types of the returned expressions after
628  //       lvalue-to-rvalue conversion (4.1 [conv.lval]),
629  //       array-to-pointer conversion (4.2 [conv.array]), and
630  //       function-to-pointer conversion (4.3 [conv.func]) are the
631  //       same, that common type;
632  //     - otherwise, the program is ill-formed.
633  //
634  // In addition, in blocks in non-C++ modes, if all of the return
635  // statements are enumerator-like expressions of some type T, where
636  // T has a name for linkage, then we infer the return type of the
637  // block to be that type.
638
639  // First case: no return statements, implicit void return type.
640  ASTContext &Ctx = getASTContext();
641  if (CSI.Returns.empty()) {
642    // It's possible there were simply no /valid/ return statements.
643    // In this case, the first one we found may have at least given us a type.
644    if (CSI.ReturnType.isNull())
645      CSI.ReturnType = Ctx.VoidTy;
646    return;
647  }
648
649  // Second case: at least one return statement has dependent type.
650  // Delay type checking until instantiation.
651  assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
652  if (CSI.ReturnType->isDependentType())
653    return;
654
655  // Try to apply the enum-fuzz rule.
656  if (!getLangOpts().CPlusPlus) {
657    assert(isa<BlockScopeInfo>(CSI));
658    const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns);
659    if (ED) {
660      CSI.ReturnType = Context.getTypeDeclType(ED);
661      adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType);
662      return;
663    }
664  }
665
666  // Third case: only one return statement. Don't bother doing extra work!
667  SmallVectorImpl<ReturnStmt*>::iterator I = CSI.Returns.begin(),
668                                         E = CSI.Returns.end();
669  if (I+1 == E)
670    return;
671
672  // General case: many return statements.
673  // Check that they all have compatible return types.
674
675  // We require the return types to strictly match here.
676  // Note that we've already done the required promotions as part of
677  // processing the return statement.
678  for (; I != E; ++I) {
679    const ReturnStmt *RS = *I;
680    const Expr *RetE = RS->getRetValue();
681
682    QualType ReturnType = (RetE ? RetE->getType() : Context.VoidTy);
683    if (Context.hasSameType(ReturnType, CSI.ReturnType))
684      continue;
685
686    // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
687    // TODO: It's possible that the *first* return is the divergent one.
688    Diag(RS->getLocStart(),
689         diag::err_typecheck_missing_return_type_incompatible)
690      << ReturnType << CSI.ReturnType
691      << isa<LambdaScopeInfo>(CSI);
692    // Continue iterating so that we keep emitting diagnostics.
693  }
694}
695
696QualType Sema::performLambdaInitCaptureInitialization(SourceLocation Loc,
697                                                      bool ByRef,
698                                                      IdentifierInfo *Id,
699                                                      Expr *&Init) {
700
701  // We do not need to distinguish between direct-list-initialization
702  // and copy-list-initialization here, because we will always deduce
703  // std::initializer_list<T>, and direct- and copy-list-initialization
704  // always behave the same for such a type.
705  // FIXME: We should model whether an '=' was present.
706  const bool IsDirectInit = isa<ParenListExpr>(Init) || isa<InitListExpr>(Init);
707
708  // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
709  // deduce against.
710  QualType DeductType = Context.getAutoDeductType();
711  TypeLocBuilder TLB;
712  TLB.pushTypeSpec(DeductType).setNameLoc(Loc);
713  if (ByRef) {
714    DeductType = BuildReferenceType(DeductType, true, Loc, Id);
715    assert(!DeductType.isNull() && "can't build reference to auto");
716    TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
717  }
718  TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
719
720  // Are we a non-list direct initialization?
721  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
722
723  Expr *DeduceInit = Init;
724  // Initializer could be a C++ direct-initializer. Deduction only works if it
725  // contains exactly one expression.
726  if (CXXDirectInit) {
727    if (CXXDirectInit->getNumExprs() == 0) {
728      Diag(CXXDirectInit->getLocStart(), diag::err_init_capture_no_expression)
729          << DeclarationName(Id) << TSI->getType() << Loc;
730      return QualType();
731    } else if (CXXDirectInit->getNumExprs() > 1) {
732      Diag(CXXDirectInit->getExpr(1)->getLocStart(),
733           diag::err_init_capture_multiple_expressions)
734          << DeclarationName(Id) << TSI->getType() << Loc;
735      return QualType();
736    } else {
737      DeduceInit = CXXDirectInit->getExpr(0);
738      if (isa<InitListExpr>(DeduceInit))
739        Diag(CXXDirectInit->getLocStart(), diag::err_init_capture_paren_braces)
740          << DeclarationName(Id) << Loc;
741    }
742  }
743
744  // Now deduce against the initialization expression and store the deduced
745  // type below.
746  QualType DeducedType;
747  if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
748    if (isa<InitListExpr>(Init))
749      Diag(Loc, diag::err_init_capture_deduction_failure_from_init_list)
750          << DeclarationName(Id)
751          << (DeduceInit->getType().isNull() ? TSI->getType()
752                                             : DeduceInit->getType())
753          << DeduceInit->getSourceRange();
754    else
755      Diag(Loc, diag::err_init_capture_deduction_failure)
756          << DeclarationName(Id) << TSI->getType()
757          << (DeduceInit->getType().isNull() ? TSI->getType()
758                                             : DeduceInit->getType())
759          << DeduceInit->getSourceRange();
760  }
761  if (DeducedType.isNull())
762    return QualType();
763
764  // Perform initialization analysis and ensure any implicit conversions
765  // (such as lvalue-to-rvalue) are enforced.
766  InitializedEntity Entity =
767      InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
768  InitializationKind Kind =
769      IsDirectInit
770          ? (CXXDirectInit ? InitializationKind::CreateDirect(
771                                 Loc, Init->getLocStart(), Init->getLocEnd())
772                           : InitializationKind::CreateDirectList(Loc))
773          : InitializationKind::CreateCopy(Loc, Init->getLocStart());
774
775  MultiExprArg Args = Init;
776  if (CXXDirectInit)
777    Args =
778        MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
779  QualType DclT;
780  InitializationSequence InitSeq(*this, Entity, Kind, Args);
781  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
782
783  if (Result.isInvalid())
784    return QualType();
785  Init = Result.getAs<Expr>();
786
787  // The init-capture initialization is a full-expression that must be
788  // processed as one before we enter the declcontext of the lambda's
789  // call-operator.
790  Result = ActOnFinishFullExpr(Init, Loc, /*DiscardedValue*/ false,
791                               /*IsConstexpr*/ false,
792                               /*IsLambdaInitCaptureInitalizer*/ true);
793  if (Result.isInvalid())
794    return QualType();
795
796  Init = Result.getAs<Expr>();
797  return DeducedType;
798}
799
800VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc,
801    QualType InitCaptureType, IdentifierInfo *Id, Expr *Init) {
802
803  TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType,
804      Loc);
805  // Create a dummy variable representing the init-capture. This is not actually
806  // used as a variable, and only exists as a way to name and refer to the
807  // init-capture.
808  // FIXME: Pass in separate source locations for '&' and identifier.
809  VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
810                                   Loc, Id, InitCaptureType, TSI, SC_Auto);
811  NewVD->setInitCapture(true);
812  NewVD->setReferenced(true);
813  NewVD->markUsed(Context);
814  NewVD->setInit(Init);
815  return NewVD;
816
817}
818
819FieldDecl *Sema::buildInitCaptureField(LambdaScopeInfo *LSI, VarDecl *Var) {
820  FieldDecl *Field = FieldDecl::Create(
821      Context, LSI->Lambda, Var->getLocation(), Var->getLocation(),
822      nullptr, Var->getType(), Var->getTypeSourceInfo(), nullptr, false,
823      ICIS_NoInit);
824  Field->setImplicit(true);
825  Field->setAccess(AS_private);
826  LSI->Lambda->addDecl(Field);
827
828  LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(),
829                  /*isNested*/false, Var->getLocation(), SourceLocation(),
830                  Var->getType(), Var->getInit());
831  return Field;
832}
833
834void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
835                  Declarator &ParamInfo, Scope *CurScope) {
836  // Determine if we're within a context where we know that the lambda will
837  // be dependent, because there are template parameters in scope.
838  bool KnownDependent = false;
839  LambdaScopeInfo *const LSI = getCurLambda();
840  assert(LSI && "LambdaScopeInfo should be on stack!");
841  TemplateParameterList *TemplateParams =
842            getGenericLambdaTemplateParameterList(LSI, *this);
843
844  if (Scope *TmplScope = CurScope->getTemplateParamParent()) {
845    // Since we have our own TemplateParams, so check if an outer scope
846    // has template params, only then are we in a dependent scope.
847    if (TemplateParams)  {
848      TmplScope = TmplScope->getParent();
849      TmplScope = TmplScope ? TmplScope->getTemplateParamParent() : nullptr;
850    }
851    if (TmplScope && !TmplScope->decl_empty())
852      KnownDependent = true;
853  }
854  // Determine the signature of the call operator.
855  TypeSourceInfo *MethodTyInfo;
856  bool ExplicitParams = true;
857  bool ExplicitResultType = true;
858  bool ContainsUnexpandedParameterPack = false;
859  SourceLocation EndLoc;
860  SmallVector<ParmVarDecl *, 8> Params;
861  if (ParamInfo.getNumTypeObjects() == 0) {
862    // C++11 [expr.prim.lambda]p4:
863    //   If a lambda-expression does not include a lambda-declarator, it is as
864    //   if the lambda-declarator were ().
865    FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
866        /*IsVariadic=*/false, /*IsCXXMethod=*/true));
867    EPI.HasTrailingReturn = true;
868    EPI.TypeQuals |= DeclSpec::TQ_const;
869    // C++1y [expr.prim.lambda]:
870    //   The lambda return type is 'auto', which is replaced by the
871    //   trailing-return type if provided and/or deduced from 'return'
872    //   statements
873    // We don't do this before C++1y, because we don't support deduced return
874    // types there.
875    QualType DefaultTypeForNoTrailingReturn =
876        getLangOpts().CPlusPlus1y ? Context.getAutoDeductType()
877                                  : Context.DependentTy;
878    QualType MethodTy =
879        Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI);
880    MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
881    ExplicitParams = false;
882    ExplicitResultType = false;
883    EndLoc = Intro.Range.getEnd();
884  } else {
885    assert(ParamInfo.isFunctionDeclarator() &&
886           "lambda-declarator is a function");
887    DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo();
888
889    // C++11 [expr.prim.lambda]p5:
890    //   This function call operator is declared const (9.3.1) if and only if
891    //   the lambda-expression's parameter-declaration-clause is not followed
892    //   by mutable. It is neither virtual nor declared volatile. [...]
893    if (!FTI.hasMutableQualifier())
894      FTI.TypeQuals |= DeclSpec::TQ_const;
895
896    MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
897    assert(MethodTyInfo && "no type from lambda-declarator");
898    EndLoc = ParamInfo.getSourceRange().getEnd();
899
900    ExplicitResultType = FTI.hasTrailingReturnType();
901
902    if (FTIHasNonVoidParameters(FTI)) {
903      Params.reserve(FTI.NumParams);
904      for (unsigned i = 0, e = FTI.NumParams; i != e; ++i)
905        Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param));
906    }
907
908    // Check for unexpanded parameter packs in the method type.
909    if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
910      ContainsUnexpandedParameterPack = true;
911  }
912
913  CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo,
914                                                 KnownDependent, Intro.Default);
915
916  CXXMethodDecl *Method = startLambdaDefinition(Class, Intro.Range,
917                                                MethodTyInfo, EndLoc, Params);
918  if (ExplicitParams)
919    CheckCXXDefaultArguments(Method);
920
921  // Attributes on the lambda apply to the method.
922  ProcessDeclAttributes(CurScope, Method, ParamInfo);
923
924  // Introduce the function call operator as the current declaration context.
925  PushDeclContext(CurScope, Method);
926
927  // Build the lambda scope.
928  buildLambdaScope(LSI, Method,
929                       Intro.Range,
930                       Intro.Default, Intro.DefaultLoc,
931                       ExplicitParams,
932                       ExplicitResultType,
933                       !Method->isConst());
934
935  // C++11 [expr.prim.lambda]p9:
936  //   A lambda-expression whose smallest enclosing scope is a block scope is a
937  //   local lambda expression; any other lambda expression shall not have a
938  //   capture-default or simple-capture in its lambda-introducer.
939  //
940  // For simple-captures, this is covered by the check below that any named
941  // entity is a variable that can be captured.
942  //
943  // For DR1632, we also allow a capture-default in any context where we can
944  // odr-use 'this' (in particular, in a default initializer for a non-static
945  // data member).
946  if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() &&
947      (getCurrentThisType().isNull() ||
948       CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
949                           /*BuildAndDiagnose*/false)))
950    Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
951
952  // Distinct capture names, for diagnostics.
953  llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;
954
955  // Handle explicit captures.
956  SourceLocation PrevCaptureLoc
957    = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
958  for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
959       PrevCaptureLoc = C->Loc, ++C) {
960    if (C->Kind == LCK_This) {
961      // C++11 [expr.prim.lambda]p8:
962      //   An identifier or this shall not appear more than once in a
963      //   lambda-capture.
964      if (LSI->isCXXThisCaptured()) {
965        Diag(C->Loc, diag::err_capture_more_than_once)
966            << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
967            << FixItHint::CreateRemoval(
968                   SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
969        continue;
970      }
971
972      // C++11 [expr.prim.lambda]p8:
973      //   If a lambda-capture includes a capture-default that is =, the
974      //   lambda-capture shall not contain this [...].
975      if (Intro.Default == LCD_ByCopy) {
976        Diag(C->Loc, diag::err_this_capture_with_copy_default)
977            << FixItHint::CreateRemoval(
978                SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
979        continue;
980      }
981
982      // C++11 [expr.prim.lambda]p12:
983      //   If this is captured by a local lambda expression, its nearest
984      //   enclosing function shall be a non-static member function.
985      QualType ThisCaptureType = getCurrentThisType();
986      if (ThisCaptureType.isNull()) {
987        Diag(C->Loc, diag::err_this_capture) << true;
988        continue;
989      }
990
991      CheckCXXThisCapture(C->Loc, /*Explicit=*/true);
992      continue;
993    }
994
995    assert(C->Id && "missing identifier for capture");
996
997    if (C->Init.isInvalid())
998      continue;
999
1000    VarDecl *Var = nullptr;
1001    if (C->Init.isUsable()) {
1002      Diag(C->Loc, getLangOpts().CPlusPlus1y
1003                       ? diag::warn_cxx11_compat_init_capture
1004                       : diag::ext_init_capture);
1005
1006      if (C->Init.get()->containsUnexpandedParameterPack())
1007        ContainsUnexpandedParameterPack = true;
1008      // If the initializer expression is usable, but the InitCaptureType
1009      // is not, then an error has occurred - so ignore the capture for now.
1010      // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
1011      // FIXME: we should create the init capture variable and mark it invalid
1012      // in this case.
1013      if (C->InitCaptureType.get().isNull())
1014        continue;
1015      Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
1016            C->Id, C->Init.get());
1017      // C++1y [expr.prim.lambda]p11:
1018      //   An init-capture behaves as if it declares and explicitly
1019      //   captures a variable [...] whose declarative region is the
1020      //   lambda-expression's compound-statement
1021      if (Var)
1022        PushOnScopeChains(Var, CurScope, false);
1023    } else {
1024      // C++11 [expr.prim.lambda]p8:
1025      //   If a lambda-capture includes a capture-default that is &, the
1026      //   identifiers in the lambda-capture shall not be preceded by &.
1027      //   If a lambda-capture includes a capture-default that is =, [...]
1028      //   each identifier it contains shall be preceded by &.
1029      if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
1030        Diag(C->Loc, diag::err_reference_capture_with_reference_default)
1031            << FixItHint::CreateRemoval(
1032                SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1033        continue;
1034      } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
1035        Diag(C->Loc, diag::err_copy_capture_with_copy_default)
1036            << FixItHint::CreateRemoval(
1037                SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1038        continue;
1039      }
1040
1041      // C++11 [expr.prim.lambda]p10:
1042      //   The identifiers in a capture-list are looked up using the usual
1043      //   rules for unqualified name lookup (3.4.1)
1044      DeclarationNameInfo Name(C->Id, C->Loc);
1045      LookupResult R(*this, Name, LookupOrdinaryName);
1046      LookupName(R, CurScope);
1047      if (R.isAmbiguous())
1048        continue;
1049      if (R.empty()) {
1050        // FIXME: Disable corrections that would add qualification?
1051        CXXScopeSpec ScopeSpec;
1052        DeclFilterCCC<VarDecl> Validator;
1053        if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator))
1054          continue;
1055      }
1056
1057      Var = R.getAsSingle<VarDecl>();
1058      if (Var && DiagnoseUseOfDecl(Var, C->Loc))
1059        continue;
1060    }
1061
1062    // C++11 [expr.prim.lambda]p8:
1063    //   An identifier or this shall not appear more than once in a
1064    //   lambda-capture.
1065    if (!CaptureNames.insert(C->Id)) {
1066      if (Var && LSI->isCaptured(Var)) {
1067        Diag(C->Loc, diag::err_capture_more_than_once)
1068            << C->Id << SourceRange(LSI->getCapture(Var).getLocation())
1069            << FixItHint::CreateRemoval(
1070                   SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1071      } else
1072        // Previous capture captured something different (one or both was
1073        // an init-cpature): no fixit.
1074        Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
1075      continue;
1076    }
1077
1078    // C++11 [expr.prim.lambda]p10:
1079    //   [...] each such lookup shall find a variable with automatic storage
1080    //   duration declared in the reaching scope of the local lambda expression.
1081    // Note that the 'reaching scope' check happens in tryCaptureVariable().
1082    if (!Var) {
1083      Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
1084      continue;
1085    }
1086
1087    // Ignore invalid decls; they'll just confuse the code later.
1088    if (Var->isInvalidDecl())
1089      continue;
1090
1091    if (!Var->hasLocalStorage()) {
1092      Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
1093      Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
1094      continue;
1095    }
1096
1097    // C++11 [expr.prim.lambda]p23:
1098    //   A capture followed by an ellipsis is a pack expansion (14.5.3).
1099    SourceLocation EllipsisLoc;
1100    if (C->EllipsisLoc.isValid()) {
1101      if (Var->isParameterPack()) {
1102        EllipsisLoc = C->EllipsisLoc;
1103      } else {
1104        Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1105          << SourceRange(C->Loc);
1106
1107        // Just ignore the ellipsis.
1108      }
1109    } else if (Var->isParameterPack()) {
1110      ContainsUnexpandedParameterPack = true;
1111    }
1112
1113    if (C->Init.isUsable()) {
1114      buildInitCaptureField(LSI, Var);
1115    } else {
1116      TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
1117                                                   TryCapture_ExplicitByVal;
1118      tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
1119    }
1120  }
1121  finishLambdaExplicitCaptures(LSI);
1122
1123  LSI->ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1124
1125  // Add lambda parameters into scope.
1126  addLambdaParameters(Method, CurScope);
1127
1128  // Enter a new evaluation context to insulate the lambda from any
1129  // cleanups from the enclosing full-expression.
1130  PushExpressionEvaluationContext(PotentiallyEvaluated);
1131}
1132
1133void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
1134                            bool IsInstantiation) {
1135  LambdaScopeInfo *LSI = getCurLambda();
1136
1137  // Leave the expression-evaluation context.
1138  DiscardCleanupsInEvaluationContext();
1139  PopExpressionEvaluationContext();
1140
1141  // Leave the context of the lambda.
1142  if (!IsInstantiation)
1143    PopDeclContext();
1144
1145  // Finalize the lambda.
1146  CXXRecordDecl *Class = LSI->Lambda;
1147  Class->setInvalidDecl();
1148  SmallVector<Decl*, 4> Fields(Class->fields());
1149  ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1150              SourceLocation(), nullptr);
1151  CheckCompletedCXXClass(Class);
1152
1153  PopFunctionScopeInfo();
1154}
1155
1156/// \brief Add a lambda's conversion to function pointer, as described in
1157/// C++11 [expr.prim.lambda]p6.
1158static void addFunctionPointerConversion(Sema &S,
1159                                         SourceRange IntroducerRange,
1160                                         CXXRecordDecl *Class,
1161                                         CXXMethodDecl *CallOperator) {
1162  // Add the conversion to function pointer.
1163  const FunctionProtoType *CallOpProto =
1164      CallOperator->getType()->getAs<FunctionProtoType>();
1165  const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
1166      CallOpProto->getExtProtoInfo();
1167  QualType PtrToFunctionTy;
1168  QualType InvokerFunctionTy;
1169  {
1170    FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
1171    CallingConv CC = S.Context.getDefaultCallingConvention(
1172        CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
1173    InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
1174    InvokerExtInfo.TypeQuals = 0;
1175    assert(InvokerExtInfo.RefQualifier == RQ_None &&
1176        "Lambda's call operator should not have a reference qualifier");
1177    InvokerFunctionTy =
1178        S.Context.getFunctionType(CallOpProto->getReturnType(),
1179                                  CallOpProto->getParamTypes(), InvokerExtInfo);
1180    PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
1181  }
1182
1183  // Create the type of the conversion function.
1184  FunctionProtoType::ExtProtoInfo ConvExtInfo(
1185      S.Context.getDefaultCallingConvention(
1186      /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1187  // The conversion function is always const.
1188  ConvExtInfo.TypeQuals = Qualifiers::Const;
1189  QualType ConvTy =
1190      S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo);
1191
1192  SourceLocation Loc = IntroducerRange.getBegin();
1193  DeclarationName ConversionName
1194    = S.Context.DeclarationNames.getCXXConversionFunctionName(
1195        S.Context.getCanonicalType(PtrToFunctionTy));
1196  DeclarationNameLoc ConvNameLoc;
1197  // Construct a TypeSourceInfo for the conversion function, and wire
1198  // all the parameters appropriately for the FunctionProtoTypeLoc
1199  // so that everything works during transformation/instantiation of
1200  // generic lambdas.
1201  // The main reason for wiring up the parameters of the conversion
1202  // function with that of the call operator is so that constructs
1203  // like the following work:
1204  // auto L = [](auto b) {                <-- 1
1205  //   return [](auto a) -> decltype(a) { <-- 2
1206  //      return a;
1207  //   };
1208  // };
1209  // int (*fp)(int) = L(5);
1210  // Because the trailing return type can contain DeclRefExprs that refer
1211  // to the original call operator's variables, we hijack the call
1212  // operators ParmVarDecls below.
1213  TypeSourceInfo *ConvNamePtrToFunctionTSI =
1214      S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
1215  ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI;
1216
1217  // The conversion function is a conversion to a pointer-to-function.
1218  TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
1219  FunctionProtoTypeLoc ConvTL =
1220      ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
1221  // Get the result of the conversion function which is a pointer-to-function.
1222  PointerTypeLoc PtrToFunctionTL =
1223      ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
1224  // Do the same for the TypeSourceInfo that is used to name the conversion
1225  // operator.
1226  PointerTypeLoc ConvNamePtrToFunctionTL =
1227      ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
1228
1229  // Get the underlying function types that the conversion function will
1230  // be converting to (should match the type of the call operator).
1231  FunctionProtoTypeLoc CallOpConvTL =
1232      PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1233  FunctionProtoTypeLoc CallOpConvNameTL =
1234    ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1235
1236  // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
1237  // These parameter's are essentially used to transform the name and
1238  // the type of the conversion operator.  By using the same parameters
1239  // as the call operator's we don't have to fix any back references that
1240  // the trailing return type of the call operator's uses (such as
1241  // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
1242  // - we can simply use the return type of the call operator, and
1243  // everything should work.
1244  SmallVector<ParmVarDecl *, 4> InvokerParams;
1245  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1246    ParmVarDecl *From = CallOperator->getParamDecl(I);
1247
1248    InvokerParams.push_back(ParmVarDecl::Create(S.Context,
1249           // Temporarily add to the TU. This is set to the invoker below.
1250                                             S.Context.getTranslationUnitDecl(),
1251                                             From->getLocStart(),
1252                                             From->getLocation(),
1253                                             From->getIdentifier(),
1254                                             From->getType(),
1255                                             From->getTypeSourceInfo(),
1256                                             From->getStorageClass(),
1257                                             /*DefaultArg=*/nullptr));
1258    CallOpConvTL.setParam(I, From);
1259    CallOpConvNameTL.setParam(I, From);
1260  }
1261
1262  CXXConversionDecl *Conversion
1263    = CXXConversionDecl::Create(S.Context, Class, Loc,
1264                                DeclarationNameInfo(ConversionName,
1265                                  Loc, ConvNameLoc),
1266                                ConvTy,
1267                                ConvTSI,
1268                                /*isInline=*/true, /*isExplicit=*/false,
1269                                /*isConstexpr=*/false,
1270                                CallOperator->getBody()->getLocEnd());
1271  Conversion->setAccess(AS_public);
1272  Conversion->setImplicit(true);
1273
1274  if (Class->isGenericLambda()) {
1275    // Create a template version of the conversion operator, using the template
1276    // parameter list of the function call operator.
1277    FunctionTemplateDecl *TemplateCallOperator =
1278            CallOperator->getDescribedFunctionTemplate();
1279    FunctionTemplateDecl *ConversionTemplate =
1280                  FunctionTemplateDecl::Create(S.Context, Class,
1281                                      Loc, ConversionName,
1282                                      TemplateCallOperator->getTemplateParameters(),
1283                                      Conversion);
1284    ConversionTemplate->setAccess(AS_public);
1285    ConversionTemplate->setImplicit(true);
1286    Conversion->setDescribedFunctionTemplate(ConversionTemplate);
1287    Class->addDecl(ConversionTemplate);
1288  } else
1289    Class->addDecl(Conversion);
1290  // Add a non-static member function that will be the result of
1291  // the conversion with a certain unique ID.
1292  DeclarationName InvokerName = &S.Context.Idents.get(
1293                                                 getLambdaStaticInvokerName());
1294  // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
1295  // we should get a prebuilt TrivialTypeSourceInfo from Context
1296  // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
1297  // then rewire the parameters accordingly, by hoisting up the InvokeParams
1298  // loop below and then use its Params to set Invoke->setParams(...) below.
1299  // This would avoid the 'const' qualifier of the calloperator from
1300  // contaminating the type of the invoker, which is currently adjusted
1301  // in SemaTemplateDeduction.cpp:DeduceTemplateArguments.  Fixing the
1302  // trailing return type of the invoker would require a visitor to rebuild
1303  // the trailing return type and adjusting all back DeclRefExpr's to refer
1304  // to the new static invoker parameters - not the call operator's.
1305  CXXMethodDecl *Invoke
1306    = CXXMethodDecl::Create(S.Context, Class, Loc,
1307                            DeclarationNameInfo(InvokerName, Loc),
1308                            InvokerFunctionTy,
1309                            CallOperator->getTypeSourceInfo(),
1310                            SC_Static, /*IsInline=*/true,
1311                            /*IsConstexpr=*/false,
1312                            CallOperator->getBody()->getLocEnd());
1313  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
1314    InvokerParams[I]->setOwningFunction(Invoke);
1315  Invoke->setParams(InvokerParams);
1316  Invoke->setAccess(AS_private);
1317  Invoke->setImplicit(true);
1318  if (Class->isGenericLambda()) {
1319    FunctionTemplateDecl *TemplateCallOperator =
1320            CallOperator->getDescribedFunctionTemplate();
1321    FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create(
1322                          S.Context, Class, Loc, InvokerName,
1323                          TemplateCallOperator->getTemplateParameters(),
1324                          Invoke);
1325    StaticInvokerTemplate->setAccess(AS_private);
1326    StaticInvokerTemplate->setImplicit(true);
1327    Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
1328    Class->addDecl(StaticInvokerTemplate);
1329  } else
1330    Class->addDecl(Invoke);
1331}
1332
1333/// \brief Add a lambda's conversion to block pointer.
1334static void addBlockPointerConversion(Sema &S,
1335                                      SourceRange IntroducerRange,
1336                                      CXXRecordDecl *Class,
1337                                      CXXMethodDecl *CallOperator) {
1338  const FunctionProtoType *Proto
1339    = CallOperator->getType()->getAs<FunctionProtoType>();
1340  QualType BlockPtrTy;
1341  {
1342    FunctionProtoType::ExtProtoInfo ExtInfo = Proto->getExtProtoInfo();
1343    ExtInfo.TypeQuals = 0;
1344    QualType FunctionTy = S.Context.getFunctionType(
1345        Proto->getReturnType(), Proto->getParamTypes(), ExtInfo);
1346    BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
1347  }
1348
1349  FunctionProtoType::ExtProtoInfo ExtInfo(S.Context.getDefaultCallingConvention(
1350      /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1351  ExtInfo.TypeQuals = Qualifiers::Const;
1352  QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ExtInfo);
1353
1354  SourceLocation Loc = IntroducerRange.getBegin();
1355  DeclarationName Name
1356    = S.Context.DeclarationNames.getCXXConversionFunctionName(
1357        S.Context.getCanonicalType(BlockPtrTy));
1358  DeclarationNameLoc NameLoc;
1359  NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc);
1360  CXXConversionDecl *Conversion
1361    = CXXConversionDecl::Create(S.Context, Class, Loc,
1362                                DeclarationNameInfo(Name, Loc, NameLoc),
1363                                ConvTy,
1364                                S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
1365                                /*isInline=*/true, /*isExplicit=*/false,
1366                                /*isConstexpr=*/false,
1367                                CallOperator->getBody()->getLocEnd());
1368  Conversion->setAccess(AS_public);
1369  Conversion->setImplicit(true);
1370  Class->addDecl(Conversion);
1371}
1372
1373ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
1374                                 Scope *CurScope,
1375                                 bool IsInstantiation) {
1376  // Collect information from the lambda scope.
1377  SmallVector<LambdaCapture, 4> Captures;
1378  SmallVector<Expr *, 4> CaptureInits;
1379  LambdaCaptureDefault CaptureDefault;
1380  SourceLocation CaptureDefaultLoc;
1381  CXXRecordDecl *Class;
1382  CXXMethodDecl *CallOperator;
1383  SourceRange IntroducerRange;
1384  bool ExplicitParams;
1385  bool ExplicitResultType;
1386  bool LambdaExprNeedsCleanups;
1387  bool ContainsUnexpandedParameterPack;
1388  SmallVector<VarDecl *, 4> ArrayIndexVars;
1389  SmallVector<unsigned, 4> ArrayIndexStarts;
1390  {
1391    LambdaScopeInfo *LSI = getCurLambda();
1392    CallOperator = LSI->CallOperator;
1393    Class = LSI->Lambda;
1394    IntroducerRange = LSI->IntroducerRange;
1395    ExplicitParams = LSI->ExplicitParams;
1396    ExplicitResultType = !LSI->HasImplicitReturnType;
1397    LambdaExprNeedsCleanups = LSI->ExprNeedsCleanups;
1398    ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
1399    ArrayIndexVars.swap(LSI->ArrayIndexVars);
1400    ArrayIndexStarts.swap(LSI->ArrayIndexStarts);
1401
1402    // Translate captures.
1403    for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) {
1404      LambdaScopeInfo::Capture From = LSI->Captures[I];
1405      assert(!From.isBlockCapture() && "Cannot capture __block variables");
1406      bool IsImplicit = I >= LSI->NumExplicitCaptures;
1407
1408      // Handle 'this' capture.
1409      if (From.isThisCapture()) {
1410        Captures.push_back(
1411            LambdaCapture(From.getLocation(), IsImplicit, LCK_This));
1412        CaptureInits.push_back(new (Context) CXXThisExpr(From.getLocation(),
1413                                                         getCurrentThisType(),
1414                                                         /*isImplicit=*/true));
1415        continue;
1416      }
1417
1418      VarDecl *Var = From.getVariable();
1419      LambdaCaptureKind Kind = From.isCopyCapture()? LCK_ByCopy : LCK_ByRef;
1420      Captures.push_back(LambdaCapture(From.getLocation(), IsImplicit, Kind,
1421                                       Var, From.getEllipsisLoc()));
1422      CaptureInits.push_back(From.getInitExpr());
1423    }
1424
1425    switch (LSI->ImpCaptureStyle) {
1426    case CapturingScopeInfo::ImpCap_None:
1427      CaptureDefault = LCD_None;
1428      break;
1429
1430    case CapturingScopeInfo::ImpCap_LambdaByval:
1431      CaptureDefault = LCD_ByCopy;
1432      break;
1433
1434    case CapturingScopeInfo::ImpCap_CapturedRegion:
1435    case CapturingScopeInfo::ImpCap_LambdaByref:
1436      CaptureDefault = LCD_ByRef;
1437      break;
1438
1439    case CapturingScopeInfo::ImpCap_Block:
1440      llvm_unreachable("block capture in lambda");
1441      break;
1442    }
1443    CaptureDefaultLoc = LSI->CaptureDefaultLoc;
1444
1445    // C++11 [expr.prim.lambda]p4:
1446    //   If a lambda-expression does not include a
1447    //   trailing-return-type, it is as if the trailing-return-type
1448    //   denotes the following type:
1449    //
1450    // Skip for C++1y return type deduction semantics which uses
1451    // different machinery.
1452    // FIXME: Refactor and Merge the return type deduction machinery.
1453    // FIXME: Assumes current resolution to core issue 975.
1454    if (LSI->HasImplicitReturnType && !getLangOpts().CPlusPlus1y) {
1455      deduceClosureReturnType(*LSI);
1456
1457      //   - if there are no return statements in the
1458      //     compound-statement, or all return statements return
1459      //     either an expression of type void or no expression or
1460      //     braced-init-list, the type void;
1461      if (LSI->ReturnType.isNull()) {
1462        LSI->ReturnType = Context.VoidTy;
1463      }
1464
1465      // Create a function type with the inferred return type.
1466      const FunctionProtoType *Proto
1467        = CallOperator->getType()->getAs<FunctionProtoType>();
1468      QualType FunctionTy = Context.getFunctionType(
1469          LSI->ReturnType, Proto->getParamTypes(), Proto->getExtProtoInfo());
1470      CallOperator->setType(FunctionTy);
1471    }
1472    // C++ [expr.prim.lambda]p7:
1473    //   The lambda-expression's compound-statement yields the
1474    //   function-body (8.4) of the function call operator [...].
1475    ActOnFinishFunctionBody(CallOperator, Body, IsInstantiation);
1476    CallOperator->setLexicalDeclContext(Class);
1477    Decl *TemplateOrNonTemplateCallOperatorDecl =
1478        CallOperator->getDescribedFunctionTemplate()
1479        ? CallOperator->getDescribedFunctionTemplate()
1480        : cast<Decl>(CallOperator);
1481
1482    TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
1483    Class->addDecl(TemplateOrNonTemplateCallOperatorDecl);
1484
1485    PopExpressionEvaluationContext();
1486
1487    // C++11 [expr.prim.lambda]p6:
1488    //   The closure type for a lambda-expression with no lambda-capture
1489    //   has a public non-virtual non-explicit const conversion function
1490    //   to pointer to function having the same parameter and return
1491    //   types as the closure type's function call operator.
1492    if (Captures.empty() && CaptureDefault == LCD_None)
1493      addFunctionPointerConversion(*this, IntroducerRange, Class,
1494                                   CallOperator);
1495
1496    // Objective-C++:
1497    //   The closure type for a lambda-expression has a public non-virtual
1498    //   non-explicit const conversion function to a block pointer having the
1499    //   same parameter and return types as the closure type's function call
1500    //   operator.
1501    // FIXME: Fix generic lambda to block conversions.
1502    if (getLangOpts().Blocks && getLangOpts().ObjC1 &&
1503                                              !Class->isGenericLambda())
1504      addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
1505
1506    // Finalize the lambda class.
1507    SmallVector<Decl*, 4> Fields(Class->fields());
1508    ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1509                SourceLocation(), nullptr);
1510    CheckCompletedCXXClass(Class);
1511  }
1512
1513  if (LambdaExprNeedsCleanups)
1514    ExprNeedsCleanups = true;
1515
1516  LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
1517                                          CaptureDefault, CaptureDefaultLoc,
1518                                          Captures,
1519                                          ExplicitParams, ExplicitResultType,
1520                                          CaptureInits, ArrayIndexVars,
1521                                          ArrayIndexStarts, Body->getLocEnd(),
1522                                          ContainsUnexpandedParameterPack);
1523
1524  if (!CurContext->isDependentContext()) {
1525    switch (ExprEvalContexts.back().Context) {
1526    // C++11 [expr.prim.lambda]p2:
1527    //   A lambda-expression shall not appear in an unevaluated operand
1528    //   (Clause 5).
1529    case Unevaluated:
1530    case UnevaluatedAbstract:
1531    // C++1y [expr.const]p2:
1532    //   A conditional-expression e is a core constant expression unless the
1533    //   evaluation of e, following the rules of the abstract machine, would
1534    //   evaluate [...] a lambda-expression.
1535    //
1536    // This is technically incorrect, there are some constant evaluated contexts
1537    // where this should be allowed.  We should probably fix this when DR1607 is
1538    // ratified, it lays out the exact set of conditions where we shouldn't
1539    // allow a lambda-expression.
1540    case ConstantEvaluated:
1541      // We don't actually diagnose this case immediately, because we
1542      // could be within a context where we might find out later that
1543      // the expression is potentially evaluated (e.g., for typeid).
1544      ExprEvalContexts.back().Lambdas.push_back(Lambda);
1545      break;
1546
1547    case PotentiallyEvaluated:
1548    case PotentiallyEvaluatedIfUsed:
1549      break;
1550    }
1551  }
1552
1553  return MaybeBindToTemporary(Lambda);
1554}
1555
1556ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
1557                                               SourceLocation ConvLocation,
1558                                               CXXConversionDecl *Conv,
1559                                               Expr *Src) {
1560  // Make sure that the lambda call operator is marked used.
1561  CXXRecordDecl *Lambda = Conv->getParent();
1562  CXXMethodDecl *CallOperator
1563    = cast<CXXMethodDecl>(
1564        Lambda->lookup(
1565          Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
1566  CallOperator->setReferenced();
1567  CallOperator->markUsed(Context);
1568
1569  ExprResult Init = PerformCopyInitialization(
1570                      InitializedEntity::InitializeBlock(ConvLocation,
1571                                                         Src->getType(),
1572                                                         /*NRVO=*/false),
1573                      CurrentLocation, Src);
1574  if (!Init.isInvalid())
1575    Init = ActOnFinishFullExpr(Init.get());
1576
1577  if (Init.isInvalid())
1578    return ExprError();
1579
1580  // Create the new block to be returned.
1581  BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
1582
1583  // Set the type information.
1584  Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
1585  Block->setIsVariadic(CallOperator->isVariadic());
1586  Block->setBlockMissingReturnType(false);
1587
1588  // Add parameters.
1589  SmallVector<ParmVarDecl *, 4> BlockParams;
1590  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1591    ParmVarDecl *From = CallOperator->getParamDecl(I);
1592    BlockParams.push_back(ParmVarDecl::Create(Context, Block,
1593                                              From->getLocStart(),
1594                                              From->getLocation(),
1595                                              From->getIdentifier(),
1596                                              From->getType(),
1597                                              From->getTypeSourceInfo(),
1598                                              From->getStorageClass(),
1599                                              /*DefaultArg=*/nullptr));
1600  }
1601  Block->setParams(BlockParams);
1602
1603  Block->setIsConversionFromLambda(true);
1604
1605  // Add capture. The capture uses a fake variable, which doesn't correspond
1606  // to any actual memory location. However, the initializer copy-initializes
1607  // the lambda object.
1608  TypeSourceInfo *CapVarTSI =
1609      Context.getTrivialTypeSourceInfo(Src->getType());
1610  VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
1611                                    ConvLocation, nullptr,
1612                                    Src->getType(), CapVarTSI,
1613                                    SC_None);
1614  BlockDecl::Capture Capture(/*Variable=*/CapVar, /*ByRef=*/false,
1615                             /*Nested=*/false, /*Copy=*/Init.get());
1616  Block->setCaptures(Context, &Capture, &Capture + 1,
1617                     /*CapturesCXXThis=*/false);
1618
1619  // Add a fake function body to the block. IR generation is responsible
1620  // for filling in the actual body, which cannot be expressed as an AST.
1621  Block->setBody(new (Context) CompoundStmt(ConvLocation));
1622
1623  // Create the block literal expression.
1624  Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
1625  ExprCleanupObjects.push_back(Block);
1626  ExprNeedsCleanups = true;
1627
1628  return BuildBlock;
1629}
1630