1/*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 *     Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
15#include <traceevent/event-parse.h>
16
17#include "builtin.h"
18
19#include "util/util.h"
20
21#include "util/color.h"
22#include <linux/list.h>
23#include "util/cache.h"
24#include "util/evlist.h"
25#include "util/evsel.h"
26#include <linux/rbtree.h>
27#include "util/symbol.h"
28#include "util/callchain.h"
29#include "util/strlist.h"
30
31#include "perf.h"
32#include "util/header.h"
33#include "util/parse-options.h"
34#include "util/parse-events.h"
35#include "util/event.h"
36#include "util/session.h"
37#include "util/svghelper.h"
38#include "util/tool.h"
39
40#define SUPPORT_OLD_POWER_EVENTS 1
41#define PWR_EVENT_EXIT -1
42
43
44static unsigned int	numcpus;
45static u64		min_freq;	/* Lowest CPU frequency seen */
46static u64		max_freq;	/* Highest CPU frequency seen */
47static u64		turbo_frequency;
48
49static u64		first_time, last_time;
50
51static bool		power_only;
52
53
54struct per_pid;
55struct per_pidcomm;
56
57struct cpu_sample;
58struct power_event;
59struct wake_event;
60
61struct sample_wrapper;
62
63/*
64 * Datastructure layout:
65 * We keep an list of "pid"s, matching the kernels notion of a task struct.
66 * Each "pid" entry, has a list of "comm"s.
67 *	this is because we want to track different programs different, while
68 *	exec will reuse the original pid (by design).
69 * Each comm has a list of samples that will be used to draw
70 * final graph.
71 */
72
73struct per_pid {
74	struct per_pid *next;
75
76	int		pid;
77	int		ppid;
78
79	u64		start_time;
80	u64		end_time;
81	u64		total_time;
82	int		display;
83
84	struct per_pidcomm *all;
85	struct per_pidcomm *current;
86};
87
88
89struct per_pidcomm {
90	struct per_pidcomm *next;
91
92	u64		start_time;
93	u64		end_time;
94	u64		total_time;
95
96	int		Y;
97	int		display;
98
99	long		state;
100	u64		state_since;
101
102	char		*comm;
103
104	struct cpu_sample *samples;
105};
106
107struct sample_wrapper {
108	struct sample_wrapper *next;
109
110	u64		timestamp;
111	unsigned char	data[0];
112};
113
114#define TYPE_NONE	0
115#define TYPE_RUNNING	1
116#define TYPE_WAITING	2
117#define TYPE_BLOCKED	3
118
119struct cpu_sample {
120	struct cpu_sample *next;
121
122	u64 start_time;
123	u64 end_time;
124	int type;
125	int cpu;
126};
127
128static struct per_pid *all_data;
129
130#define CSTATE 1
131#define PSTATE 2
132
133struct power_event {
134	struct power_event *next;
135	int type;
136	int state;
137	u64 start_time;
138	u64 end_time;
139	int cpu;
140};
141
142struct wake_event {
143	struct wake_event *next;
144	int waker;
145	int wakee;
146	u64 time;
147};
148
149static struct power_event    *power_events;
150static struct wake_event     *wake_events;
151
152struct process_filter;
153struct process_filter {
154	char			*name;
155	int			pid;
156	struct process_filter	*next;
157};
158
159static struct process_filter *process_filter;
160
161
162static struct per_pid *find_create_pid(int pid)
163{
164	struct per_pid *cursor = all_data;
165
166	while (cursor) {
167		if (cursor->pid == pid)
168			return cursor;
169		cursor = cursor->next;
170	}
171	cursor = zalloc(sizeof(*cursor));
172	assert(cursor != NULL);
173	cursor->pid = pid;
174	cursor->next = all_data;
175	all_data = cursor;
176	return cursor;
177}
178
179static void pid_set_comm(int pid, char *comm)
180{
181	struct per_pid *p;
182	struct per_pidcomm *c;
183	p = find_create_pid(pid);
184	c = p->all;
185	while (c) {
186		if (c->comm && strcmp(c->comm, comm) == 0) {
187			p->current = c;
188			return;
189		}
190		if (!c->comm) {
191			c->comm = strdup(comm);
192			p->current = c;
193			return;
194		}
195		c = c->next;
196	}
197	c = zalloc(sizeof(*c));
198	assert(c != NULL);
199	c->comm = strdup(comm);
200	p->current = c;
201	c->next = p->all;
202	p->all = c;
203}
204
205static void pid_fork(int pid, int ppid, u64 timestamp)
206{
207	struct per_pid *p, *pp;
208	p = find_create_pid(pid);
209	pp = find_create_pid(ppid);
210	p->ppid = ppid;
211	if (pp->current && pp->current->comm && !p->current)
212		pid_set_comm(pid, pp->current->comm);
213
214	p->start_time = timestamp;
215	if (p->current) {
216		p->current->start_time = timestamp;
217		p->current->state_since = timestamp;
218	}
219}
220
221static void pid_exit(int pid, u64 timestamp)
222{
223	struct per_pid *p;
224	p = find_create_pid(pid);
225	p->end_time = timestamp;
226	if (p->current)
227		p->current->end_time = timestamp;
228}
229
230static void
231pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
232{
233	struct per_pid *p;
234	struct per_pidcomm *c;
235	struct cpu_sample *sample;
236
237	p = find_create_pid(pid);
238	c = p->current;
239	if (!c) {
240		c = zalloc(sizeof(*c));
241		assert(c != NULL);
242		p->current = c;
243		c->next = p->all;
244		p->all = c;
245	}
246
247	sample = zalloc(sizeof(*sample));
248	assert(sample != NULL);
249	sample->start_time = start;
250	sample->end_time = end;
251	sample->type = type;
252	sample->next = c->samples;
253	sample->cpu = cpu;
254	c->samples = sample;
255
256	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
257		c->total_time += (end-start);
258		p->total_time += (end-start);
259	}
260
261	if (c->start_time == 0 || c->start_time > start)
262		c->start_time = start;
263	if (p->start_time == 0 || p->start_time > start)
264		p->start_time = start;
265}
266
267#define MAX_CPUS 4096
268
269static u64 cpus_cstate_start_times[MAX_CPUS];
270static int cpus_cstate_state[MAX_CPUS];
271static u64 cpus_pstate_start_times[MAX_CPUS];
272static u64 cpus_pstate_state[MAX_CPUS];
273
274static int process_comm_event(struct perf_tool *tool __maybe_unused,
275			      union perf_event *event,
276			      struct perf_sample *sample __maybe_unused,
277			      struct machine *machine __maybe_unused)
278{
279	pid_set_comm(event->comm.tid, event->comm.comm);
280	return 0;
281}
282
283static int process_fork_event(struct perf_tool *tool __maybe_unused,
284			      union perf_event *event,
285			      struct perf_sample *sample __maybe_unused,
286			      struct machine *machine __maybe_unused)
287{
288	pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
289	return 0;
290}
291
292static int process_exit_event(struct perf_tool *tool __maybe_unused,
293			      union perf_event *event,
294			      struct perf_sample *sample __maybe_unused,
295			      struct machine *machine __maybe_unused)
296{
297	pid_exit(event->fork.pid, event->fork.time);
298	return 0;
299}
300
301struct trace_entry {
302	unsigned short		type;
303	unsigned char		flags;
304	unsigned char		preempt_count;
305	int			pid;
306	int			lock_depth;
307};
308
309#ifdef SUPPORT_OLD_POWER_EVENTS
310static int use_old_power_events;
311struct power_entry_old {
312	struct trace_entry te;
313	u64	type;
314	u64	value;
315	u64	cpu_id;
316};
317#endif
318
319struct power_processor_entry {
320	struct trace_entry te;
321	u32	state;
322	u32	cpu_id;
323};
324
325#define TASK_COMM_LEN 16
326struct wakeup_entry {
327	struct trace_entry te;
328	char comm[TASK_COMM_LEN];
329	int   pid;
330	int   prio;
331	int   success;
332};
333
334struct sched_switch {
335	struct trace_entry te;
336	char prev_comm[TASK_COMM_LEN];
337	int  prev_pid;
338	int  prev_prio;
339	long prev_state; /* Arjan weeps. */
340	char next_comm[TASK_COMM_LEN];
341	int  next_pid;
342	int  next_prio;
343};
344
345static void c_state_start(int cpu, u64 timestamp, int state)
346{
347	cpus_cstate_start_times[cpu] = timestamp;
348	cpus_cstate_state[cpu] = state;
349}
350
351static void c_state_end(int cpu, u64 timestamp)
352{
353	struct power_event *pwr = zalloc(sizeof(*pwr));
354
355	if (!pwr)
356		return;
357
358	pwr->state = cpus_cstate_state[cpu];
359	pwr->start_time = cpus_cstate_start_times[cpu];
360	pwr->end_time = timestamp;
361	pwr->cpu = cpu;
362	pwr->type = CSTATE;
363	pwr->next = power_events;
364
365	power_events = pwr;
366}
367
368static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
369{
370	struct power_event *pwr;
371
372	if (new_freq > 8000000) /* detect invalid data */
373		return;
374
375	pwr = zalloc(sizeof(*pwr));
376	if (!pwr)
377		return;
378
379	pwr->state = cpus_pstate_state[cpu];
380	pwr->start_time = cpus_pstate_start_times[cpu];
381	pwr->end_time = timestamp;
382	pwr->cpu = cpu;
383	pwr->type = PSTATE;
384	pwr->next = power_events;
385
386	if (!pwr->start_time)
387		pwr->start_time = first_time;
388
389	power_events = pwr;
390
391	cpus_pstate_state[cpu] = new_freq;
392	cpus_pstate_start_times[cpu] = timestamp;
393
394	if ((u64)new_freq > max_freq)
395		max_freq = new_freq;
396
397	if (new_freq < min_freq || min_freq == 0)
398		min_freq = new_freq;
399
400	if (new_freq == max_freq - 1000)
401			turbo_frequency = max_freq;
402}
403
404static void
405sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
406{
407	struct per_pid *p;
408	struct wakeup_entry *wake = (void *)te;
409	struct wake_event *we = zalloc(sizeof(*we));
410
411	if (!we)
412		return;
413
414	we->time = timestamp;
415	we->waker = pid;
416
417	if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
418		we->waker = -1;
419
420	we->wakee = wake->pid;
421	we->next = wake_events;
422	wake_events = we;
423	p = find_create_pid(we->wakee);
424
425	if (p && p->current && p->current->state == TYPE_NONE) {
426		p->current->state_since = timestamp;
427		p->current->state = TYPE_WAITING;
428	}
429	if (p && p->current && p->current->state == TYPE_BLOCKED) {
430		pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
431		p->current->state_since = timestamp;
432		p->current->state = TYPE_WAITING;
433	}
434}
435
436static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
437{
438	struct per_pid *p = NULL, *prev_p;
439	struct sched_switch *sw = (void *)te;
440
441
442	prev_p = find_create_pid(sw->prev_pid);
443
444	p = find_create_pid(sw->next_pid);
445
446	if (prev_p->current && prev_p->current->state != TYPE_NONE)
447		pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
448	if (p && p->current) {
449		if (p->current->state != TYPE_NONE)
450			pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
451
452		p->current->state_since = timestamp;
453		p->current->state = TYPE_RUNNING;
454	}
455
456	if (prev_p->current) {
457		prev_p->current->state = TYPE_NONE;
458		prev_p->current->state_since = timestamp;
459		if (sw->prev_state & 2)
460			prev_p->current->state = TYPE_BLOCKED;
461		if (sw->prev_state == 0)
462			prev_p->current->state = TYPE_WAITING;
463	}
464}
465
466typedef int (*tracepoint_handler)(struct perf_evsel *evsel,
467				  struct perf_sample *sample);
468
469static int process_sample_event(struct perf_tool *tool __maybe_unused,
470				union perf_event *event __maybe_unused,
471				struct perf_sample *sample,
472				struct perf_evsel *evsel,
473				struct machine *machine __maybe_unused)
474{
475	if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
476		if (!first_time || first_time > sample->time)
477			first_time = sample->time;
478		if (last_time < sample->time)
479			last_time = sample->time;
480	}
481
482	if (sample->cpu > numcpus)
483		numcpus = sample->cpu;
484
485	if (evsel->handler.func != NULL) {
486		tracepoint_handler f = evsel->handler.func;
487		return f(evsel, sample);
488	}
489
490	return 0;
491}
492
493static int
494process_sample_cpu_idle(struct perf_evsel *evsel __maybe_unused,
495			struct perf_sample *sample)
496{
497	struct power_processor_entry *ppe = sample->raw_data;
498
499	if (ppe->state == (u32) PWR_EVENT_EXIT)
500		c_state_end(ppe->cpu_id, sample->time);
501	else
502		c_state_start(ppe->cpu_id, sample->time, ppe->state);
503	return 0;
504}
505
506static int
507process_sample_cpu_frequency(struct perf_evsel *evsel __maybe_unused,
508			     struct perf_sample *sample)
509{
510	struct power_processor_entry *ppe = sample->raw_data;
511
512	p_state_change(ppe->cpu_id, sample->time, ppe->state);
513	return 0;
514}
515
516static int
517process_sample_sched_wakeup(struct perf_evsel *evsel __maybe_unused,
518			    struct perf_sample *sample)
519{
520	struct trace_entry *te = sample->raw_data;
521
522	sched_wakeup(sample->cpu, sample->time, sample->pid, te);
523	return 0;
524}
525
526static int
527process_sample_sched_switch(struct perf_evsel *evsel __maybe_unused,
528			    struct perf_sample *sample)
529{
530	struct trace_entry *te = sample->raw_data;
531
532	sched_switch(sample->cpu, sample->time, te);
533	return 0;
534}
535
536#ifdef SUPPORT_OLD_POWER_EVENTS
537static int
538process_sample_power_start(struct perf_evsel *evsel __maybe_unused,
539			   struct perf_sample *sample)
540{
541	struct power_entry_old *peo = sample->raw_data;
542
543	c_state_start(peo->cpu_id, sample->time, peo->value);
544	return 0;
545}
546
547static int
548process_sample_power_end(struct perf_evsel *evsel __maybe_unused,
549			 struct perf_sample *sample)
550{
551	c_state_end(sample->cpu, sample->time);
552	return 0;
553}
554
555static int
556process_sample_power_frequency(struct perf_evsel *evsel __maybe_unused,
557			       struct perf_sample *sample)
558{
559	struct power_entry_old *peo = sample->raw_data;
560
561	p_state_change(peo->cpu_id, sample->time, peo->value);
562	return 0;
563}
564#endif /* SUPPORT_OLD_POWER_EVENTS */
565
566/*
567 * After the last sample we need to wrap up the current C/P state
568 * and close out each CPU for these.
569 */
570static void end_sample_processing(void)
571{
572	u64 cpu;
573	struct power_event *pwr;
574
575	for (cpu = 0; cpu <= numcpus; cpu++) {
576		/* C state */
577#if 0
578		pwr = zalloc(sizeof(*pwr));
579		if (!pwr)
580			return;
581
582		pwr->state = cpus_cstate_state[cpu];
583		pwr->start_time = cpus_cstate_start_times[cpu];
584		pwr->end_time = last_time;
585		pwr->cpu = cpu;
586		pwr->type = CSTATE;
587		pwr->next = power_events;
588
589		power_events = pwr;
590#endif
591		/* P state */
592
593		pwr = zalloc(sizeof(*pwr));
594		if (!pwr)
595			return;
596
597		pwr->state = cpus_pstate_state[cpu];
598		pwr->start_time = cpus_pstate_start_times[cpu];
599		pwr->end_time = last_time;
600		pwr->cpu = cpu;
601		pwr->type = PSTATE;
602		pwr->next = power_events;
603
604		if (!pwr->start_time)
605			pwr->start_time = first_time;
606		if (!pwr->state)
607			pwr->state = min_freq;
608		power_events = pwr;
609	}
610}
611
612/*
613 * Sort the pid datastructure
614 */
615static void sort_pids(void)
616{
617	struct per_pid *new_list, *p, *cursor, *prev;
618	/* sort by ppid first, then by pid, lowest to highest */
619
620	new_list = NULL;
621
622	while (all_data) {
623		p = all_data;
624		all_data = p->next;
625		p->next = NULL;
626
627		if (new_list == NULL) {
628			new_list = p;
629			p->next = NULL;
630			continue;
631		}
632		prev = NULL;
633		cursor = new_list;
634		while (cursor) {
635			if (cursor->ppid > p->ppid ||
636				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
637				/* must insert before */
638				if (prev) {
639					p->next = prev->next;
640					prev->next = p;
641					cursor = NULL;
642					continue;
643				} else {
644					p->next = new_list;
645					new_list = p;
646					cursor = NULL;
647					continue;
648				}
649			}
650
651			prev = cursor;
652			cursor = cursor->next;
653			if (!cursor)
654				prev->next = p;
655		}
656	}
657	all_data = new_list;
658}
659
660
661static void draw_c_p_states(void)
662{
663	struct power_event *pwr;
664	pwr = power_events;
665
666	/*
667	 * two pass drawing so that the P state bars are on top of the C state blocks
668	 */
669	while (pwr) {
670		if (pwr->type == CSTATE)
671			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
672		pwr = pwr->next;
673	}
674
675	pwr = power_events;
676	while (pwr) {
677		if (pwr->type == PSTATE) {
678			if (!pwr->state)
679				pwr->state = min_freq;
680			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
681		}
682		pwr = pwr->next;
683	}
684}
685
686static void draw_wakeups(void)
687{
688	struct wake_event *we;
689	struct per_pid *p;
690	struct per_pidcomm *c;
691
692	we = wake_events;
693	while (we) {
694		int from = 0, to = 0;
695		char *task_from = NULL, *task_to = NULL;
696
697		/* locate the column of the waker and wakee */
698		p = all_data;
699		while (p) {
700			if (p->pid == we->waker || p->pid == we->wakee) {
701				c = p->all;
702				while (c) {
703					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
704						if (p->pid == we->waker && !from) {
705							from = c->Y;
706							task_from = strdup(c->comm);
707						}
708						if (p->pid == we->wakee && !to) {
709							to = c->Y;
710							task_to = strdup(c->comm);
711						}
712					}
713					c = c->next;
714				}
715				c = p->all;
716				while (c) {
717					if (p->pid == we->waker && !from) {
718						from = c->Y;
719						task_from = strdup(c->comm);
720					}
721					if (p->pid == we->wakee && !to) {
722						to = c->Y;
723						task_to = strdup(c->comm);
724					}
725					c = c->next;
726				}
727			}
728			p = p->next;
729		}
730
731		if (!task_from) {
732			task_from = malloc(40);
733			sprintf(task_from, "[%i]", we->waker);
734		}
735		if (!task_to) {
736			task_to = malloc(40);
737			sprintf(task_to, "[%i]", we->wakee);
738		}
739
740		if (we->waker == -1)
741			svg_interrupt(we->time, to);
742		else if (from && to && abs(from - to) == 1)
743			svg_wakeline(we->time, from, to);
744		else
745			svg_partial_wakeline(we->time, from, task_from, to, task_to);
746		we = we->next;
747
748		free(task_from);
749		free(task_to);
750	}
751}
752
753static void draw_cpu_usage(void)
754{
755	struct per_pid *p;
756	struct per_pidcomm *c;
757	struct cpu_sample *sample;
758	p = all_data;
759	while (p) {
760		c = p->all;
761		while (c) {
762			sample = c->samples;
763			while (sample) {
764				if (sample->type == TYPE_RUNNING)
765					svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
766
767				sample = sample->next;
768			}
769			c = c->next;
770		}
771		p = p->next;
772	}
773}
774
775static void draw_process_bars(void)
776{
777	struct per_pid *p;
778	struct per_pidcomm *c;
779	struct cpu_sample *sample;
780	int Y = 0;
781
782	Y = 2 * numcpus + 2;
783
784	p = all_data;
785	while (p) {
786		c = p->all;
787		while (c) {
788			if (!c->display) {
789				c->Y = 0;
790				c = c->next;
791				continue;
792			}
793
794			svg_box(Y, c->start_time, c->end_time, "process");
795			sample = c->samples;
796			while (sample) {
797				if (sample->type == TYPE_RUNNING)
798					svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
799				if (sample->type == TYPE_BLOCKED)
800					svg_box(Y, sample->start_time, sample->end_time, "blocked");
801				if (sample->type == TYPE_WAITING)
802					svg_waiting(Y, sample->start_time, sample->end_time);
803				sample = sample->next;
804			}
805
806			if (c->comm) {
807				char comm[256];
808				if (c->total_time > 5000000000) /* 5 seconds */
809					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
810				else
811					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
812
813				svg_text(Y, c->start_time, comm);
814			}
815			c->Y = Y;
816			Y++;
817			c = c->next;
818		}
819		p = p->next;
820	}
821}
822
823static void add_process_filter(const char *string)
824{
825	int pid = strtoull(string, NULL, 10);
826	struct process_filter *filt = malloc(sizeof(*filt));
827
828	if (!filt)
829		return;
830
831	filt->name = strdup(string);
832	filt->pid  = pid;
833	filt->next = process_filter;
834
835	process_filter = filt;
836}
837
838static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
839{
840	struct process_filter *filt;
841	if (!process_filter)
842		return 1;
843
844	filt = process_filter;
845	while (filt) {
846		if (filt->pid && p->pid == filt->pid)
847			return 1;
848		if (strcmp(filt->name, c->comm) == 0)
849			return 1;
850		filt = filt->next;
851	}
852	return 0;
853}
854
855static int determine_display_tasks_filtered(void)
856{
857	struct per_pid *p;
858	struct per_pidcomm *c;
859	int count = 0;
860
861	p = all_data;
862	while (p) {
863		p->display = 0;
864		if (p->start_time == 1)
865			p->start_time = first_time;
866
867		/* no exit marker, task kept running to the end */
868		if (p->end_time == 0)
869			p->end_time = last_time;
870
871		c = p->all;
872
873		while (c) {
874			c->display = 0;
875
876			if (c->start_time == 1)
877				c->start_time = first_time;
878
879			if (passes_filter(p, c)) {
880				c->display = 1;
881				p->display = 1;
882				count++;
883			}
884
885			if (c->end_time == 0)
886				c->end_time = last_time;
887
888			c = c->next;
889		}
890		p = p->next;
891	}
892	return count;
893}
894
895static int determine_display_tasks(u64 threshold)
896{
897	struct per_pid *p;
898	struct per_pidcomm *c;
899	int count = 0;
900
901	if (process_filter)
902		return determine_display_tasks_filtered();
903
904	p = all_data;
905	while (p) {
906		p->display = 0;
907		if (p->start_time == 1)
908			p->start_time = first_time;
909
910		/* no exit marker, task kept running to the end */
911		if (p->end_time == 0)
912			p->end_time = last_time;
913		if (p->total_time >= threshold && !power_only)
914			p->display = 1;
915
916		c = p->all;
917
918		while (c) {
919			c->display = 0;
920
921			if (c->start_time == 1)
922				c->start_time = first_time;
923
924			if (c->total_time >= threshold && !power_only) {
925				c->display = 1;
926				count++;
927			}
928
929			if (c->end_time == 0)
930				c->end_time = last_time;
931
932			c = c->next;
933		}
934		p = p->next;
935	}
936	return count;
937}
938
939
940
941#define TIME_THRESH 10000000
942
943static void write_svg_file(const char *filename)
944{
945	u64 i;
946	int count;
947
948	numcpus++;
949
950
951	count = determine_display_tasks(TIME_THRESH);
952
953	/* We'd like to show at least 15 tasks; be less picky if we have fewer */
954	if (count < 15)
955		count = determine_display_tasks(TIME_THRESH / 10);
956
957	open_svg(filename, numcpus, count, first_time, last_time);
958
959	svg_time_grid();
960	svg_legenda();
961
962	for (i = 0; i < numcpus; i++)
963		svg_cpu_box(i, max_freq, turbo_frequency);
964
965	draw_cpu_usage();
966	draw_process_bars();
967	draw_c_p_states();
968	draw_wakeups();
969
970	svg_close();
971}
972
973static int __cmd_timechart(const char *output_name)
974{
975	struct perf_tool perf_timechart = {
976		.comm		 = process_comm_event,
977		.fork		 = process_fork_event,
978		.exit		 = process_exit_event,
979		.sample		 = process_sample_event,
980		.ordered_samples = true,
981	};
982	const struct perf_evsel_str_handler power_tracepoints[] = {
983		{ "power:cpu_idle",		process_sample_cpu_idle },
984		{ "power:cpu_frequency",	process_sample_cpu_frequency },
985		{ "sched:sched_wakeup",		process_sample_sched_wakeup },
986		{ "sched:sched_switch",		process_sample_sched_switch },
987#ifdef SUPPORT_OLD_POWER_EVENTS
988		{ "power:power_start",		process_sample_power_start },
989		{ "power:power_end",		process_sample_power_end },
990		{ "power:power_frequency",	process_sample_power_frequency },
991#endif
992	};
993	struct perf_session *session = perf_session__new(input_name, O_RDONLY,
994							 0, false, &perf_timechart);
995	int ret = -EINVAL;
996
997	if (session == NULL)
998		return -ENOMEM;
999
1000	if (!perf_session__has_traces(session, "timechart record"))
1001		goto out_delete;
1002
1003	if (perf_session__set_tracepoints_handlers(session,
1004						   power_tracepoints)) {
1005		pr_err("Initializing session tracepoint handlers failed\n");
1006		goto out_delete;
1007	}
1008
1009	ret = perf_session__process_events(session, &perf_timechart);
1010	if (ret)
1011		goto out_delete;
1012
1013	end_sample_processing();
1014
1015	sort_pids();
1016
1017	write_svg_file(output_name);
1018
1019	pr_info("Written %2.1f seconds of trace to %s.\n",
1020		(last_time - first_time) / 1000000000.0, output_name);
1021out_delete:
1022	perf_session__delete(session);
1023	return ret;
1024}
1025
1026static int __cmd_record(int argc, const char **argv)
1027{
1028#ifdef SUPPORT_OLD_POWER_EVENTS
1029	const char * const record_old_args[] = {
1030		"record", "-a", "-R", "-c", "1",
1031		"-e", "power:power_start",
1032		"-e", "power:power_end",
1033		"-e", "power:power_frequency",
1034		"-e", "sched:sched_wakeup",
1035		"-e", "sched:sched_switch",
1036	};
1037#endif
1038	const char * const record_new_args[] = {
1039		"record", "-a", "-R", "-c", "1",
1040		"-e", "power:cpu_frequency",
1041		"-e", "power:cpu_idle",
1042		"-e", "sched:sched_wakeup",
1043		"-e", "sched:sched_switch",
1044	};
1045	unsigned int rec_argc, i, j;
1046	const char **rec_argv;
1047	const char * const *record_args = record_new_args;
1048	unsigned int record_elems = ARRAY_SIZE(record_new_args);
1049
1050#ifdef SUPPORT_OLD_POWER_EVENTS
1051	if (!is_valid_tracepoint("power:cpu_idle") &&
1052	    is_valid_tracepoint("power:power_start")) {
1053		use_old_power_events = 1;
1054		record_args = record_old_args;
1055		record_elems = ARRAY_SIZE(record_old_args);
1056	}
1057#endif
1058
1059	rec_argc = record_elems + argc - 1;
1060	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1061
1062	if (rec_argv == NULL)
1063		return -ENOMEM;
1064
1065	for (i = 0; i < record_elems; i++)
1066		rec_argv[i] = strdup(record_args[i]);
1067
1068	for (j = 1; j < (unsigned int)argc; j++, i++)
1069		rec_argv[i] = argv[j];
1070
1071	return cmd_record(i, rec_argv, NULL);
1072}
1073
1074static int
1075parse_process(const struct option *opt __maybe_unused, const char *arg,
1076	      int __maybe_unused unset)
1077{
1078	if (arg)
1079		add_process_filter(arg);
1080	return 0;
1081}
1082
1083int cmd_timechart(int argc, const char **argv,
1084		  const char *prefix __maybe_unused)
1085{
1086	const char *output_name = "output.svg";
1087	const struct option options[] = {
1088	OPT_STRING('i', "input", &input_name, "file", "input file name"),
1089	OPT_STRING('o', "output", &output_name, "file", "output file name"),
1090	OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1091	OPT_BOOLEAN('P', "power-only", &power_only, "output power data only"),
1092	OPT_CALLBACK('p', "process", NULL, "process",
1093		      "process selector. Pass a pid or process name.",
1094		       parse_process),
1095	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1096		    "Look for files with symbols relative to this directory"),
1097	OPT_END()
1098	};
1099	const char * const timechart_usage[] = {
1100		"perf timechart [<options>] {record}",
1101		NULL
1102	};
1103
1104	argc = parse_options(argc, argv, options, timechart_usage,
1105			PARSE_OPT_STOP_AT_NON_OPTION);
1106
1107	symbol__init();
1108
1109	if (argc && !strncmp(argv[0], "rec", 3))
1110		return __cmd_record(argc, argv);
1111	else if (argc)
1112		usage_with_options(timechart_usage, options);
1113
1114	setup_pager();
1115
1116	return __cmd_timechart(output_name);
1117}
1118