1//===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the declaration of the Type class.  For more "Type"
11// stuff, look in DerivedTypes.h.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_TYPE_H
16#define LLVM_IR_TYPE_H
17
18#include "llvm-c/Core.h"
19#include "llvm/ADT/APFloat.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/Support/CBindingWrapping.h"
22#include "llvm/Support/Casting.h"
23#include "llvm/Support/DataTypes.h"
24#include "llvm/Support/ErrorHandling.h"
25
26namespace llvm {
27
28class PointerType;
29class IntegerType;
30class raw_ostream;
31class Module;
32class LLVMContext;
33class LLVMContextImpl;
34class StringRef;
35template<class GraphType> struct GraphTraits;
36
37/// The instances of the Type class are immutable: once they are created,
38/// they are never changed.  Also note that only one instance of a particular
39/// type is ever created.  Thus seeing if two types are equal is a matter of
40/// doing a trivial pointer comparison. To enforce that no two equal instances
41/// are created, Type instances can only be created via static factory methods
42/// in class Type and in derived classes.  Once allocated, Types are never
43/// free'd.
44///
45class Type {
46public:
47  //===--------------------------------------------------------------------===//
48  /// Definitions of all of the base types for the Type system.  Based on this
49  /// value, you can cast to a class defined in DerivedTypes.h.
50  /// Note: If you add an element to this, you need to add an element to the
51  /// Type::getPrimitiveType function, or else things will break!
52  /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
53  ///
54  enum TypeID {
55    // PrimitiveTypes - make sure LastPrimitiveTyID stays up to date.
56    VoidTyID = 0,    ///<  0: type with no size
57    HalfTyID,        ///<  1: 16-bit floating point type
58    FloatTyID,       ///<  2: 32-bit floating point type
59    DoubleTyID,      ///<  3: 64-bit floating point type
60    X86_FP80TyID,    ///<  4: 80-bit floating point type (X87)
61    FP128TyID,       ///<  5: 128-bit floating point type (112-bit mantissa)
62    PPC_FP128TyID,   ///<  6: 128-bit floating point type (two 64-bits, PowerPC)
63    LabelTyID,       ///<  7: Labels
64    MetadataTyID,    ///<  8: Metadata
65    X86_MMXTyID,     ///<  9: MMX vectors (64 bits, X86 specific)
66
67    // Derived types... see DerivedTypes.h file.
68    // Make sure FirstDerivedTyID stays up to date!
69    IntegerTyID,     ///< 10: Arbitrary bit width integers
70    FunctionTyID,    ///< 11: Functions
71    StructTyID,      ///< 12: Structures
72    ArrayTyID,       ///< 13: Arrays
73    PointerTyID,     ///< 14: Pointers
74    VectorTyID       ///< 15: SIMD 'packed' format, or other vector type
75  };
76
77private:
78  /// Context - This refers to the LLVMContext in which this type was uniqued.
79  LLVMContext &Context;
80
81  // Due to Ubuntu GCC bug 910363:
82  // https://bugs.launchpad.net/ubuntu/+source/gcc-4.5/+bug/910363
83  // Bitpack ID and SubclassData manually.
84  // Note: TypeID : low 8 bit; SubclassData : high 24 bit.
85  uint32_t IDAndSubclassData;
86
87protected:
88  friend class LLVMContextImpl;
89  explicit Type(LLVMContext &C, TypeID tid)
90    : Context(C), IDAndSubclassData(0),
91      NumContainedTys(0), ContainedTys(nullptr) {
92    setTypeID(tid);
93  }
94  ~Type() {}
95
96  void setTypeID(TypeID ID) {
97    IDAndSubclassData = (ID & 0xFF) | (IDAndSubclassData & 0xFFFFFF00);
98    assert(getTypeID() == ID && "TypeID data too large for field");
99  }
100
101  unsigned getSubclassData() const { return IDAndSubclassData >> 8; }
102
103  void setSubclassData(unsigned val) {
104    IDAndSubclassData = (IDAndSubclassData & 0xFF) | (val << 8);
105    // Ensure we don't have any accidental truncation.
106    assert(getSubclassData() == val && "Subclass data too large for field");
107  }
108
109  /// NumContainedTys - Keeps track of how many Type*'s there are in the
110  /// ContainedTys list.
111  unsigned NumContainedTys;
112
113  /// ContainedTys - A pointer to the array of Types contained by this Type.
114  /// For example, this includes the arguments of a function type, the elements
115  /// of a structure, the pointee of a pointer, the element type of an array,
116  /// etc.  This pointer may be 0 for types that don't contain other types
117  /// (Integer, Double, Float).
118  Type * const *ContainedTys;
119
120public:
121  void print(raw_ostream &O) const;
122  void dump() const;
123
124  /// getContext - Return the LLVMContext in which this type was uniqued.
125  LLVMContext &getContext() const { return Context; }
126
127  //===--------------------------------------------------------------------===//
128  // Accessors for working with types.
129  //
130
131  /// getTypeID - Return the type id for the type.  This will return one
132  /// of the TypeID enum elements defined above.
133  ///
134  TypeID getTypeID() const { return (TypeID)(IDAndSubclassData & 0xFF); }
135
136  /// isVoidTy - Return true if this is 'void'.
137  bool isVoidTy() const { return getTypeID() == VoidTyID; }
138
139  /// isHalfTy - Return true if this is 'half', a 16-bit IEEE fp type.
140  bool isHalfTy() const { return getTypeID() == HalfTyID; }
141
142  /// isFloatTy - Return true if this is 'float', a 32-bit IEEE fp type.
143  bool isFloatTy() const { return getTypeID() == FloatTyID; }
144
145  /// isDoubleTy - Return true if this is 'double', a 64-bit IEEE fp type.
146  bool isDoubleTy() const { return getTypeID() == DoubleTyID; }
147
148  /// isX86_FP80Ty - Return true if this is x86 long double.
149  bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; }
150
151  /// isFP128Ty - Return true if this is 'fp128'.
152  bool isFP128Ty() const { return getTypeID() == FP128TyID; }
153
154  /// isPPC_FP128Ty - Return true if this is powerpc long double.
155  bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; }
156
157  /// isFloatingPointTy - Return true if this is one of the six floating point
158  /// types
159  bool isFloatingPointTy() const {
160    return getTypeID() == HalfTyID || getTypeID() == FloatTyID ||
161           getTypeID() == DoubleTyID ||
162           getTypeID() == X86_FP80TyID || getTypeID() == FP128TyID ||
163           getTypeID() == PPC_FP128TyID;
164  }
165
166  const fltSemantics &getFltSemantics() const {
167    switch (getTypeID()) {
168    case HalfTyID: return APFloat::IEEEhalf;
169    case FloatTyID: return APFloat::IEEEsingle;
170    case DoubleTyID: return APFloat::IEEEdouble;
171    case X86_FP80TyID: return APFloat::x87DoubleExtended;
172    case FP128TyID: return APFloat::IEEEquad;
173    case PPC_FP128TyID: return APFloat::PPCDoubleDouble;
174    default: llvm_unreachable("Invalid floating type");
175    }
176  }
177
178  /// isX86_MMXTy - Return true if this is X86 MMX.
179  bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; }
180
181  /// isFPOrFPVectorTy - Return true if this is a FP type or a vector of FP.
182  ///
183  bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); }
184
185  /// isLabelTy - Return true if this is 'label'.
186  bool isLabelTy() const { return getTypeID() == LabelTyID; }
187
188  /// isMetadataTy - Return true if this is 'metadata'.
189  bool isMetadataTy() const { return getTypeID() == MetadataTyID; }
190
191  /// isIntegerTy - True if this is an instance of IntegerType.
192  ///
193  bool isIntegerTy() const { return getTypeID() == IntegerTyID; }
194
195  /// isIntegerTy - Return true if this is an IntegerType of the given width.
196  bool isIntegerTy(unsigned Bitwidth) const;
197
198  /// isIntOrIntVectorTy - Return true if this is an integer type or a vector of
199  /// integer types.
200  ///
201  bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); }
202
203  /// isFunctionTy - True if this is an instance of FunctionType.
204  ///
205  bool isFunctionTy() const { return getTypeID() == FunctionTyID; }
206
207  /// isStructTy - True if this is an instance of StructType.
208  ///
209  bool isStructTy() const { return getTypeID() == StructTyID; }
210
211  /// isArrayTy - True if this is an instance of ArrayType.
212  ///
213  bool isArrayTy() const { return getTypeID() == ArrayTyID; }
214
215  /// isPointerTy - True if this is an instance of PointerType.
216  ///
217  bool isPointerTy() const { return getTypeID() == PointerTyID; }
218
219  /// isPtrOrPtrVectorTy - Return true if this is a pointer type or a vector of
220  /// pointer types.
221  ///
222  bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); }
223
224  /// isVectorTy - True if this is an instance of VectorType.
225  ///
226  bool isVectorTy() const { return getTypeID() == VectorTyID; }
227
228  /// canLosslesslyBitCastTo - Return true if this type could be converted
229  /// with a lossless BitCast to type 'Ty'. For example, i8* to i32*. BitCasts
230  /// are valid for types of the same size only where no re-interpretation of
231  /// the bits is done.
232  /// @brief Determine if this type could be losslessly bitcast to Ty
233  bool canLosslesslyBitCastTo(Type *Ty) const;
234
235  /// isEmptyTy - Return true if this type is empty, that is, it has no
236  /// elements or all its elements are empty.
237  bool isEmptyTy() const;
238
239  /// isFirstClassType - Return true if the type is "first class", meaning it
240  /// is a valid type for a Value.
241  ///
242  bool isFirstClassType() const {
243    return getTypeID() != FunctionTyID && getTypeID() != VoidTyID;
244  }
245
246  /// isSingleValueType - Return true if the type is a valid type for a
247  /// register in codegen.  This includes all first-class types except struct
248  /// and array types.
249  ///
250  bool isSingleValueType() const {
251    return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() ||
252           isPointerTy() || isVectorTy();
253  }
254
255  /// isAggregateType - Return true if the type is an aggregate type. This
256  /// means it is valid as the first operand of an insertvalue or
257  /// extractvalue instruction. This includes struct and array types, but
258  /// does not include vector types.
259  ///
260  bool isAggregateType() const {
261    return getTypeID() == StructTyID || getTypeID() == ArrayTyID;
262  }
263
264  /// isSized - Return true if it makes sense to take the size of this type.  To
265  /// get the actual size for a particular target, it is reasonable to use the
266  /// DataLayout subsystem to do this.
267  ///
268  bool isSized(SmallPtrSet<const Type*, 4> *Visited = nullptr) const {
269    // If it's a primitive, it is always sized.
270    if (getTypeID() == IntegerTyID || isFloatingPointTy() ||
271        getTypeID() == PointerTyID ||
272        getTypeID() == X86_MMXTyID)
273      return true;
274    // If it is not something that can have a size (e.g. a function or label),
275    // it doesn't have a size.
276    if (getTypeID() != StructTyID && getTypeID() != ArrayTyID &&
277        getTypeID() != VectorTyID)
278      return false;
279    // Otherwise we have to try harder to decide.
280    return isSizedDerivedType(Visited);
281  }
282
283  /// getPrimitiveSizeInBits - Return the basic size of this type if it is a
284  /// primitive type.  These are fixed by LLVM and are not target dependent.
285  /// This will return zero if the type does not have a size or is not a
286  /// primitive type.
287  ///
288  /// Note that this may not reflect the size of memory allocated for an
289  /// instance of the type or the number of bytes that are written when an
290  /// instance of the type is stored to memory. The DataLayout class provides
291  /// additional query functions to provide this information.
292  ///
293  unsigned getPrimitiveSizeInBits() const LLVM_READONLY;
294
295  /// getScalarSizeInBits - If this is a vector type, return the
296  /// getPrimitiveSizeInBits value for the element type. Otherwise return the
297  /// getPrimitiveSizeInBits value for this type.
298  unsigned getScalarSizeInBits() const LLVM_READONLY;
299
300  /// getFPMantissaWidth - Return the width of the mantissa of this type.  This
301  /// is only valid on floating point types.  If the FP type does not
302  /// have a stable mantissa (e.g. ppc long double), this method returns -1.
303  int getFPMantissaWidth() const;
304
305  /// getScalarType - If this is a vector type, return the element type,
306  /// otherwise return 'this'.
307  const Type *getScalarType() const LLVM_READONLY;
308  Type *getScalarType() LLVM_READONLY;
309
310  //===--------------------------------------------------------------------===//
311  // Type Iteration support.
312  //
313  typedef Type * const *subtype_iterator;
314  subtype_iterator subtype_begin() const { return ContainedTys; }
315  subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
316
317  typedef std::reverse_iterator<subtype_iterator> subtype_reverse_iterator;
318  subtype_reverse_iterator subtype_rbegin() const {
319    return subtype_reverse_iterator(subtype_end());
320  }
321  subtype_reverse_iterator subtype_rend() const {
322    return subtype_reverse_iterator(subtype_begin());
323  }
324
325  /// getContainedType - This method is used to implement the type iterator
326  /// (defined a the end of the file).  For derived types, this returns the
327  /// types 'contained' in the derived type.
328  ///
329  Type *getContainedType(unsigned i) const {
330    assert(i < NumContainedTys && "Index out of range!");
331    return ContainedTys[i];
332  }
333
334  /// getNumContainedTypes - Return the number of types in the derived type.
335  ///
336  unsigned getNumContainedTypes() const { return NumContainedTys; }
337
338  //===--------------------------------------------------------------------===//
339  // Helper methods corresponding to subclass methods.  This forces a cast to
340  // the specified subclass and calls its accessor.  "getVectorNumElements" (for
341  // example) is shorthand for cast<VectorType>(Ty)->getNumElements().  This is
342  // only intended to cover the core methods that are frequently used, helper
343  // methods should not be added here.
344
345  unsigned getIntegerBitWidth() const;
346
347  Type *getFunctionParamType(unsigned i) const;
348  unsigned getFunctionNumParams() const;
349  bool isFunctionVarArg() const;
350
351  StringRef getStructName() const;
352  unsigned getStructNumElements() const;
353  Type *getStructElementType(unsigned N) const;
354
355  Type *getSequentialElementType() const;
356
357  uint64_t getArrayNumElements() const;
358  Type *getArrayElementType() const { return getSequentialElementType(); }
359
360  unsigned getVectorNumElements() const;
361  Type *getVectorElementType() const { return getSequentialElementType(); }
362
363  Type *getPointerElementType() const { return getSequentialElementType(); }
364
365  /// \brief Get the address space of this pointer or pointer vector type.
366  unsigned getPointerAddressSpace() const;
367
368  //===--------------------------------------------------------------------===//
369  // Static members exported by the Type class itself.  Useful for getting
370  // instances of Type.
371  //
372
373  /// getPrimitiveType - Return a type based on an identifier.
374  static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
375
376  //===--------------------------------------------------------------------===//
377  // These are the builtin types that are always available.
378  //
379  static Type *getVoidTy(LLVMContext &C);
380  static Type *getLabelTy(LLVMContext &C);
381  static Type *getHalfTy(LLVMContext &C);
382  static Type *getFloatTy(LLVMContext &C);
383  static Type *getDoubleTy(LLVMContext &C);
384  static Type *getMetadataTy(LLVMContext &C);
385  static Type *getX86_FP80Ty(LLVMContext &C);
386  static Type *getFP128Ty(LLVMContext &C);
387  static Type *getPPC_FP128Ty(LLVMContext &C);
388  static Type *getX86_MMXTy(LLVMContext &C);
389  static IntegerType *getIntNTy(LLVMContext &C, unsigned N);
390  static IntegerType *getInt1Ty(LLVMContext &C);
391  static IntegerType *getInt8Ty(LLVMContext &C);
392  static IntegerType *getInt16Ty(LLVMContext &C);
393  static IntegerType *getInt32Ty(LLVMContext &C);
394  static IntegerType *getInt64Ty(LLVMContext &C);
395
396  //===--------------------------------------------------------------------===//
397  // Convenience methods for getting pointer types with one of the above builtin
398  // types as pointee.
399  //
400  static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0);
401  static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
402  static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
403  static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
404  static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
405  static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
406  static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0);
407  static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0);
408  static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
409  static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
410  static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
411  static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
412  static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);
413
414  /// getPointerTo - Return a pointer to the current type.  This is equivalent
415  /// to PointerType::get(Foo, AddrSpace).
416  PointerType *getPointerTo(unsigned AddrSpace = 0);
417
418private:
419  /// isSizedDerivedType - Derived types like structures and arrays are sized
420  /// iff all of the members of the type are sized as well.  Since asking for
421  /// their size is relatively uncommon, move this operation out of line.
422  bool isSizedDerivedType(SmallPtrSet<const Type*, 4> *Visited = nullptr) const;
423};
424
425// Printing of types.
426static inline raw_ostream &operator<<(raw_ostream &OS, Type &T) {
427  T.print(OS);
428  return OS;
429}
430
431// allow isa<PointerType>(x) to work without DerivedTypes.h included.
432template <> struct isa_impl<PointerType, Type> {
433  static inline bool doit(const Type &Ty) {
434    return Ty.getTypeID() == Type::PointerTyID;
435  }
436};
437
438
439//===----------------------------------------------------------------------===//
440// Provide specializations of GraphTraits to be able to treat a type as a
441// graph of sub types.
442
443
444template <> struct GraphTraits<Type*> {
445  typedef Type NodeType;
446  typedef Type::subtype_iterator ChildIteratorType;
447
448  static inline NodeType *getEntryNode(Type *T) { return T; }
449  static inline ChildIteratorType child_begin(NodeType *N) {
450    return N->subtype_begin();
451  }
452  static inline ChildIteratorType child_end(NodeType *N) {
453    return N->subtype_end();
454  }
455};
456
457template <> struct GraphTraits<const Type*> {
458  typedef const Type NodeType;
459  typedef Type::subtype_iterator ChildIteratorType;
460
461  static inline NodeType *getEntryNode(NodeType *T) { return T; }
462  static inline ChildIteratorType child_begin(NodeType *N) {
463    return N->subtype_begin();
464  }
465  static inline ChildIteratorType child_end(NodeType *N) {
466    return N->subtype_end();
467  }
468};
469
470// Create wrappers for C Binding types (see CBindingWrapping.h).
471DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef)
472
473/* Specialized opaque type conversions.
474 */
475inline Type **unwrap(LLVMTypeRef* Tys) {
476  return reinterpret_cast<Type**>(Tys);
477}
478
479inline LLVMTypeRef *wrap(Type **Tys) {
480  return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys));
481}
482
483} // End llvm namespace
484
485#endif
486