1//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a MachineCodeEmitter object that is used by the JIT to
11// write machine code to memory and remember where relocatable values are.
12//
13//===----------------------------------------------------------------------===//
14
15#include "JIT.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/SmallPtrSet.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/CodeGen/JITCodeEmitter.h"
21#include "llvm/CodeGen/MachineCodeInfo.h"
22#include "llvm/CodeGen/MachineConstantPool.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineJumpTableInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/MachineRelocation.h"
27#include "llvm/ExecutionEngine/GenericValue.h"
28#include "llvm/ExecutionEngine/JITEventListener.h"
29#include "llvm/ExecutionEngine/JITMemoryManager.h"
30#include "llvm/IR/Constants.h"
31#include "llvm/IR/DataLayout.h"
32#include "llvm/IR/DebugInfo.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/Module.h"
35#include "llvm/IR/Operator.h"
36#include "llvm/IR/ValueHandle.h"
37#include "llvm/IR/ValueMap.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/Disassembler.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/ManagedStatic.h"
42#include "llvm/Support/Memory.h"
43#include "llvm/Support/MutexGuard.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/Target/TargetInstrInfo.h"
46#include "llvm/Target/TargetJITInfo.h"
47#include "llvm/Target/TargetMachine.h"
48#include "llvm/Target/TargetOptions.h"
49#include <algorithm>
50#ifndef NDEBUG
51#include <iomanip>
52#endif
53using namespace llvm;
54
55#define DEBUG_TYPE "jit"
56
57STATISTIC(NumBytes, "Number of bytes of machine code compiled");
58STATISTIC(NumRelos, "Number of relocations applied");
59STATISTIC(NumRetries, "Number of retries with more memory");
60
61
62// A declaration may stop being a declaration once it's fully read from bitcode.
63// This function returns true if F is fully read and is still a declaration.
64static bool isNonGhostDeclaration(const Function *F) {
65  return F->isDeclaration() && !F->isMaterializable();
66}
67
68//===----------------------------------------------------------------------===//
69// JIT lazy compilation code.
70//
71namespace {
72  class JITEmitter;
73  class JITResolverState;
74
75  template<typename ValueTy>
76  struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> {
77    typedef JITResolverState *ExtraData;
78    static void onRAUW(JITResolverState *, Value *Old, Value *New) {
79      llvm_unreachable("The JIT doesn't know how to handle a"
80                       " RAUW on a value it has emitted.");
81    }
82  };
83
84  struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> {
85    typedef JITResolverState *ExtraData;
86    static void onDelete(JITResolverState *JRS, Function *F);
87  };
88
89  class JITResolverState {
90  public:
91    typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> >
92      FunctionToLazyStubMapTy;
93    typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy;
94    typedef ValueMap<Function *, SmallPtrSet<void*, 1>,
95                     CallSiteValueMapConfig> FunctionToCallSitesMapTy;
96    typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
97  private:
98    /// FunctionToLazyStubMap - Keep track of the lazy stub created for a
99    /// particular function so that we can reuse them if necessary.
100    FunctionToLazyStubMapTy FunctionToLazyStubMap;
101
102    /// CallSiteToFunctionMap - Keep track of the function that each lazy call
103    /// site corresponds to, and vice versa.
104    CallSiteToFunctionMapTy CallSiteToFunctionMap;
105    FunctionToCallSitesMapTy FunctionToCallSitesMap;
106
107    /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a
108    /// particular GlobalVariable so that we can reuse them if necessary.
109    GlobalToIndirectSymMapTy GlobalToIndirectSymMap;
110
111#ifndef NDEBUG
112    /// Instance of the JIT this ResolverState serves.
113    JIT *TheJIT;
114#endif
115
116  public:
117    JITResolverState(JIT *jit) : FunctionToLazyStubMap(this),
118                                 FunctionToCallSitesMap(this) {
119#ifndef NDEBUG
120      TheJIT = jit;
121#endif
122    }
123
124    FunctionToLazyStubMapTy& getFunctionToLazyStubMap() {
125      return FunctionToLazyStubMap;
126    }
127
128    GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap() {
129      return GlobalToIndirectSymMap;
130    }
131
132    std::pair<void *, Function *> LookupFunctionFromCallSite(
133        void *CallSite) const {
134      // The address given to us for the stub may not be exactly right, it
135      // might be a little bit after the stub.  As such, use upper_bound to
136      // find it.
137      CallSiteToFunctionMapTy::const_iterator I =
138        CallSiteToFunctionMap.upper_bound(CallSite);
139      assert(I != CallSiteToFunctionMap.begin() &&
140             "This is not a known call site!");
141      --I;
142      return *I;
143    }
144
145    void AddCallSite(void *CallSite, Function *F) {
146      bool Inserted = CallSiteToFunctionMap.insert(
147          std::make_pair(CallSite, F)).second;
148      (void)Inserted;
149      assert(Inserted && "Pair was already in CallSiteToFunctionMap");
150      FunctionToCallSitesMap[F].insert(CallSite);
151    }
152
153    void EraseAllCallSitesForPrelocked(Function *F);
154
155    // Erases _all_ call sites regardless of their function.  This is used to
156    // unregister the stub addresses from the StubToResolverMap in
157    // ~JITResolver().
158    void EraseAllCallSitesPrelocked();
159  };
160
161  /// JITResolver - Keep track of, and resolve, call sites for functions that
162  /// have not yet been compiled.
163  class JITResolver {
164    typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy;
165    typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy;
166    typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy;
167
168    /// LazyResolverFn - The target lazy resolver function that we actually
169    /// rewrite instructions to use.
170    TargetJITInfo::LazyResolverFn LazyResolverFn;
171
172    JITResolverState state;
173
174    /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap
175    /// for external functions.  TODO: Of course, external functions don't need
176    /// a lazy stub.  It's actually here to make it more likely that far calls
177    /// succeed, but no single stub can guarantee that.  I'll remove this in a
178    /// subsequent checkin when I actually fix far calls.
179    std::map<void*, void*> ExternalFnToStubMap;
180
181    /// revGOTMap - map addresses to indexes in the GOT
182    std::map<void*, unsigned> revGOTMap;
183    unsigned nextGOTIndex;
184
185    JITEmitter &JE;
186
187    /// Instance of JIT corresponding to this Resolver.
188    JIT *TheJIT;
189
190  public:
191    explicit JITResolver(JIT &jit, JITEmitter &je)
192      : state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) {
193      LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
194    }
195
196    ~JITResolver();
197
198    /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's
199    /// lazy-compilation stub if it has already been created.
200    void *getLazyFunctionStubIfAvailable(Function *F);
201
202    /// getLazyFunctionStub - This returns a pointer to a function's
203    /// lazy-compilation stub, creating one on demand as needed.
204    void *getLazyFunctionStub(Function *F);
205
206    /// getExternalFunctionStub - Return a stub for the function at the
207    /// specified address, created lazily on demand.
208    void *getExternalFunctionStub(void *FnAddr);
209
210    /// getGlobalValueIndirectSym - Return an indirect symbol containing the
211    /// specified GV address.
212    void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress);
213
214    /// getGOTIndexForAddress - Return a new or existing index in the GOT for
215    /// an address.  This function only manages slots, it does not manage the
216    /// contents of the slots or the memory associated with the GOT.
217    unsigned getGOTIndexForAddr(void *addr);
218
219    /// JITCompilerFn - This function is called to resolve a stub to a compiled
220    /// address.  If the LLVM Function corresponding to the stub has not yet
221    /// been compiled, this function compiles it first.
222    static void *JITCompilerFn(void *Stub);
223  };
224
225  class StubToResolverMapTy {
226    /// Map a stub address to a specific instance of a JITResolver so that
227    /// lazily-compiled functions can find the right resolver to use.
228    ///
229    /// Guarded by Lock.
230    std::map<void*, JITResolver*> Map;
231
232    /// Guards Map from concurrent accesses.
233    mutable sys::Mutex Lock;
234
235  public:
236    /// Registers a Stub to be resolved by Resolver.
237    void RegisterStubResolver(void *Stub, JITResolver *Resolver) {
238      MutexGuard guard(Lock);
239      Map.insert(std::make_pair(Stub, Resolver));
240    }
241    /// Unregisters the Stub when it's invalidated.
242    void UnregisterStubResolver(void *Stub) {
243      MutexGuard guard(Lock);
244      Map.erase(Stub);
245    }
246    /// Returns the JITResolver instance that owns the Stub.
247    JITResolver *getResolverFromStub(void *Stub) const {
248      MutexGuard guard(Lock);
249      // The address given to us for the stub may not be exactly right, it might
250      // be a little bit after the stub.  As such, use upper_bound to find it.
251      // This is the same trick as in LookupFunctionFromCallSite from
252      // JITResolverState.
253      std::map<void*, JITResolver*>::const_iterator I = Map.upper_bound(Stub);
254      assert(I != Map.begin() && "This is not a known stub!");
255      --I;
256      return I->second;
257    }
258    /// True if any stubs refer to the given resolver. Only used in an assert().
259    /// O(N)
260    bool ResolverHasStubs(JITResolver* Resolver) const {
261      MutexGuard guard(Lock);
262      for (std::map<void*, JITResolver*>::const_iterator I = Map.begin(),
263             E = Map.end(); I != E; ++I) {
264        if (I->second == Resolver)
265          return true;
266      }
267      return false;
268    }
269  };
270  /// This needs to be static so that a lazy call stub can access it with no
271  /// context except the address of the stub.
272  ManagedStatic<StubToResolverMapTy> StubToResolverMap;
273
274  /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
275  /// used to output functions to memory for execution.
276  class JITEmitter : public JITCodeEmitter {
277    JITMemoryManager *MemMgr;
278
279    // When outputting a function stub in the context of some other function, we
280    // save BufferBegin/BufferEnd/CurBufferPtr here.
281    uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
282
283    // When reattempting to JIT a function after running out of space, we store
284    // the estimated size of the function we're trying to JIT here, so we can
285    // ask the memory manager for at least this much space.  When we
286    // successfully emit the function, we reset this back to zero.
287    uintptr_t SizeEstimate;
288
289    /// Relocations - These are the relocations that the function needs, as
290    /// emitted.
291    std::vector<MachineRelocation> Relocations;
292
293    /// MBBLocations - This vector is a mapping from MBB ID's to their address.
294    /// It is filled in by the StartMachineBasicBlock callback and queried by
295    /// the getMachineBasicBlockAddress callback.
296    std::vector<uintptr_t> MBBLocations;
297
298    /// ConstantPool - The constant pool for the current function.
299    ///
300    MachineConstantPool *ConstantPool;
301
302    /// ConstantPoolBase - A pointer to the first entry in the constant pool.
303    ///
304    void *ConstantPoolBase;
305
306    /// ConstPoolAddresses - Addresses of individual constant pool entries.
307    ///
308    SmallVector<uintptr_t, 8> ConstPoolAddresses;
309
310    /// JumpTable - The jump tables for the current function.
311    ///
312    MachineJumpTableInfo *JumpTable;
313
314    /// JumpTableBase - A pointer to the first entry in the jump table.
315    ///
316    void *JumpTableBase;
317
318    /// Resolver - This contains info about the currently resolved functions.
319    JITResolver Resolver;
320
321    /// LabelLocations - This vector is a mapping from Label ID's to their
322    /// address.
323    DenseMap<MCSymbol*, uintptr_t> LabelLocations;
324
325    /// MMI - Machine module info for exception informations
326    MachineModuleInfo* MMI;
327
328    // CurFn - The llvm function being emitted.  Only valid during
329    // finishFunction().
330    const Function *CurFn;
331
332    /// Information about emitted code, which is passed to the
333    /// JITEventListeners.  This is reset in startFunction and used in
334    /// finishFunction.
335    JITEvent_EmittedFunctionDetails EmissionDetails;
336
337    struct EmittedCode {
338      void *FunctionBody;  // Beginning of the function's allocation.
339      void *Code;  // The address the function's code actually starts at.
340      void *ExceptionTable;
341      EmittedCode() : FunctionBody(nullptr), Code(nullptr),
342                      ExceptionTable(nullptr) {}
343    };
344    struct EmittedFunctionConfig : public ValueMapConfig<const Function*> {
345      typedef JITEmitter *ExtraData;
346      static void onDelete(JITEmitter *, const Function*);
347      static void onRAUW(JITEmitter *, const Function*, const Function*);
348    };
349    ValueMap<const Function *, EmittedCode,
350             EmittedFunctionConfig> EmittedFunctions;
351
352    DebugLoc PrevDL;
353
354    /// Instance of the JIT
355    JIT *TheJIT;
356
357  public:
358    JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM)
359      : SizeEstimate(0), Resolver(jit, *this), MMI(nullptr), CurFn(nullptr),
360        EmittedFunctions(this), TheJIT(&jit) {
361      MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
362      if (jit.getJITInfo().needsGOT()) {
363        MemMgr->AllocateGOT();
364        DEBUG(dbgs() << "JIT is managing a GOT\n");
365      }
366
367    }
368    ~JITEmitter() {
369      delete MemMgr;
370    }
371
372    JITResolver &getJITResolver() { return Resolver; }
373
374    void startFunction(MachineFunction &F) override;
375    bool finishFunction(MachineFunction &F) override;
376
377    void emitConstantPool(MachineConstantPool *MCP);
378    void initJumpTableInfo(MachineJumpTableInfo *MJTI);
379    void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
380
381    void startGVStub(const GlobalValue* GV,
382                     unsigned StubSize, unsigned Alignment = 1);
383    void startGVStub(void *Buffer, unsigned StubSize);
384    void finishGVStub();
385    void *allocIndirectGV(const GlobalValue *GV, const uint8_t *Buffer,
386                          size_t Size, unsigned Alignment) override;
387
388    /// allocateSpace - Reserves space in the current block if any, or
389    /// allocate a new one of the given size.
390    void *allocateSpace(uintptr_t Size, unsigned Alignment) override;
391
392    /// allocateGlobal - Allocate memory for a global.  Unlike allocateSpace,
393    /// this method does not allocate memory in the current output buffer,
394    /// because a global may live longer than the current function.
395    void *allocateGlobal(uintptr_t Size, unsigned Alignment) override;
396
397    void addRelocation(const MachineRelocation &MR) override {
398      Relocations.push_back(MR);
399    }
400
401    void StartMachineBasicBlock(MachineBasicBlock *MBB) override {
402      if (MBBLocations.size() <= (unsigned)MBB->getNumber())
403        MBBLocations.resize((MBB->getNumber()+1)*2);
404      MBBLocations[MBB->getNumber()] = getCurrentPCValue();
405      if (MBB->hasAddressTaken())
406        TheJIT->addPointerToBasicBlock(MBB->getBasicBlock(),
407                                       (void*)getCurrentPCValue());
408      DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at ["
409                   << (void*) getCurrentPCValue() << "]\n");
410    }
411
412    uintptr_t getConstantPoolEntryAddress(unsigned Entry) const override;
413    uintptr_t getJumpTableEntryAddress(unsigned Entry) const override;
414
415    uintptr_t
416    getMachineBasicBlockAddress(MachineBasicBlock *MBB) const override {
417      assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
418             MBBLocations[MBB->getNumber()] && "MBB not emitted!");
419      return MBBLocations[MBB->getNumber()];
420    }
421
422    /// retryWithMoreMemory - Log a retry and deallocate all memory for the
423    /// given function.  Increase the minimum allocation size so that we get
424    /// more memory next time.
425    void retryWithMoreMemory(MachineFunction &F);
426
427    /// deallocateMemForFunction - Deallocate all memory for the specified
428    /// function body.
429    void deallocateMemForFunction(const Function *F);
430
431    void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) override;
432
433    void emitLabel(MCSymbol *Label) override {
434      LabelLocations[Label] = getCurrentPCValue();
435    }
436
437    DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() override {
438      return &LabelLocations;
439    }
440
441    uintptr_t getLabelAddress(MCSymbol *Label) const override {
442      assert(LabelLocations.count(Label) && "Label not emitted!");
443      return LabelLocations.find(Label)->second;
444    }
445
446    void setModuleInfo(MachineModuleInfo* Info) override {
447      MMI = Info;
448    }
449
450  private:
451    void *getPointerToGlobal(GlobalValue *GV, void *Reference,
452                             bool MayNeedFarStub);
453    void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference);
454  };
455}
456
457void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) {
458  JRS->EraseAllCallSitesForPrelocked(F);
459}
460
461void JITResolverState::EraseAllCallSitesForPrelocked(Function *F) {
462  FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F);
463  if (F2C == FunctionToCallSitesMap.end())
464    return;
465  StubToResolverMapTy &S2RMap = *StubToResolverMap;
466  for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(),
467         E = F2C->second.end(); I != E; ++I) {
468    S2RMap.UnregisterStubResolver(*I);
469    bool Erased = CallSiteToFunctionMap.erase(*I);
470    (void)Erased;
471    assert(Erased && "Missing call site->function mapping");
472  }
473  FunctionToCallSitesMap.erase(F2C);
474}
475
476void JITResolverState::EraseAllCallSitesPrelocked() {
477  StubToResolverMapTy &S2RMap = *StubToResolverMap;
478  for (CallSiteToFunctionMapTy::const_iterator
479         I = CallSiteToFunctionMap.begin(),
480         E = CallSiteToFunctionMap.end(); I != E; ++I) {
481    S2RMap.UnregisterStubResolver(I->first);
482  }
483  CallSiteToFunctionMap.clear();
484  FunctionToCallSitesMap.clear();
485}
486
487JITResolver::~JITResolver() {
488  // No need to lock because we're in the destructor, and state isn't shared.
489  state.EraseAllCallSitesPrelocked();
490  assert(!StubToResolverMap->ResolverHasStubs(this) &&
491         "Resolver destroyed with stubs still alive.");
492}
493
494/// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub
495/// if it has already been created.
496void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) {
497  MutexGuard locked(TheJIT->lock);
498
499  // If we already have a stub for this function, recycle it.
500  return state.getFunctionToLazyStubMap().lookup(F);
501}
502
503/// getFunctionStub - This returns a pointer to a function stub, creating
504/// one on demand as needed.
505void *JITResolver::getLazyFunctionStub(Function *F) {
506  MutexGuard locked(TheJIT->lock);
507
508  // If we already have a lazy stub for this function, recycle it.
509  void *&Stub = state.getFunctionToLazyStubMap()[F];
510  if (Stub) return Stub;
511
512  // Call the lazy resolver function if we are JIT'ing lazily.  Otherwise we
513  // must resolve the symbol now.
514  void *Actual = TheJIT->isCompilingLazily()
515    ? (void *)(intptr_t)LazyResolverFn : (void *)nullptr;
516
517  // If this is an external declaration, attempt to resolve the address now
518  // to place in the stub.
519  if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) {
520    Actual = TheJIT->getPointerToFunction(F);
521
522    // If we resolved the symbol to a null address (eg. a weak external)
523    // don't emit a stub. Return a null pointer to the application.
524    if (!Actual) return nullptr;
525  }
526
527  TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
528  JE.startGVStub(F, SL.Size, SL.Alignment);
529  // Codegen a new stub, calling the lazy resolver or the actual address of the
530  // external function, if it was resolved.
531  Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE);
532  JE.finishGVStub();
533
534  if (Actual != (void*)(intptr_t)LazyResolverFn) {
535    // If we are getting the stub for an external function, we really want the
536    // address of the stub in the GlobalAddressMap for the JIT, not the address
537    // of the external function.
538    TheJIT->updateGlobalMapping(F, Stub);
539  }
540
541  DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '"
542        << F->getName() << "'\n");
543
544  if (TheJIT->isCompilingLazily()) {
545    // Register this JITResolver as the one corresponding to this call site so
546    // JITCompilerFn will be able to find it.
547    StubToResolverMap->RegisterStubResolver(Stub, this);
548
549    // Finally, keep track of the stub-to-Function mapping so that the
550    // JITCompilerFn knows which function to compile!
551    state.AddCallSite(Stub, F);
552  } else if (!Actual) {
553    // If we are JIT'ing non-lazily but need to call a function that does not
554    // exist yet, add it to the JIT's work list so that we can fill in the
555    // stub address later.
556    assert(!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage() &&
557           "'Actual' should have been set above.");
558    TheJIT->addPendingFunction(F);
559  }
560
561  return Stub;
562}
563
564/// getGlobalValueIndirectSym - Return a lazy pointer containing the specified
565/// GV address.
566void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
567  MutexGuard locked(TheJIT->lock);
568
569  // If we already have a stub for this global variable, recycle it.
570  void *&IndirectSym = state.getGlobalToIndirectSymMap()[GV];
571  if (IndirectSym) return IndirectSym;
572
573  // Otherwise, codegen a new indirect symbol.
574  IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
575                                                                JE);
576
577  DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym
578        << "] for GV '" << GV->getName() << "'\n");
579
580  return IndirectSym;
581}
582
583/// getExternalFunctionStub - Return a stub for the function at the
584/// specified address, created lazily on demand.
585void *JITResolver::getExternalFunctionStub(void *FnAddr) {
586  // If we already have a stub for this function, recycle it.
587  void *&Stub = ExternalFnToStubMap[FnAddr];
588  if (Stub) return Stub;
589
590  TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
591  JE.startGVStub(nullptr, SL.Size, SL.Alignment);
592  Stub = TheJIT->getJITInfo().emitFunctionStub(nullptr, FnAddr, JE);
593  JE.finishGVStub();
594
595  DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub
596               << "] for external function at '" << FnAddr << "'\n");
597  return Stub;
598}
599
600unsigned JITResolver::getGOTIndexForAddr(void* addr) {
601  unsigned idx = revGOTMap[addr];
602  if (!idx) {
603    idx = ++nextGOTIndex;
604    revGOTMap[addr] = idx;
605    DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr ["
606                 << addr << "]\n");
607  }
608  return idx;
609}
610
611/// JITCompilerFn - This function is called when a lazy compilation stub has
612/// been entered.  It looks up which function this stub corresponds to, compiles
613/// it if necessary, then returns the resultant function pointer.
614void *JITResolver::JITCompilerFn(void *Stub) {
615  JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub);
616  assert(JR && "Unable to find the corresponding JITResolver to the call site");
617
618  Function* F = nullptr;
619  void* ActualPtr = nullptr;
620
621  {
622    // Only lock for getting the Function. The call getPointerToFunction made
623    // in this function might trigger function materializing, which requires
624    // JIT lock to be unlocked.
625    MutexGuard locked(JR->TheJIT->lock);
626
627    // The address given to us for the stub may not be exactly right, it might
628    // be a little bit after the stub.  As such, use upper_bound to find it.
629    std::pair<void*, Function*> I =
630      JR->state.LookupFunctionFromCallSite(Stub);
631    F = I.second;
632    ActualPtr = I.first;
633  }
634
635  // If we have already code generated the function, just return the address.
636  void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F);
637
638  if (!Result) {
639    // Otherwise we don't have it, do lazy compilation now.
640
641    // If lazy compilation is disabled, emit a useful error message and abort.
642    if (!JR->TheJIT->isCompilingLazily()) {
643      report_fatal_error("LLVM JIT requested to do lazy compilation of"
644                         " function '"
645                        + F->getName() + "' when lazy compiles are disabled!");
646    }
647
648    DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName()
649          << "' In stub ptr = " << Stub << " actual ptr = "
650          << ActualPtr << "\n");
651    (void)ActualPtr;
652
653    Result = JR->TheJIT->getPointerToFunction(F);
654  }
655
656  // Reacquire the lock to update the GOT map.
657  MutexGuard locked(JR->TheJIT->lock);
658
659  // We might like to remove the call site from the CallSiteToFunction map, but
660  // we can't do that! Multiple threads could be stuck, waiting to acquire the
661  // lock above. As soon as the 1st function finishes compiling the function,
662  // the next one will be released, and needs to be able to find the function it
663  // needs to call.
664
665  // FIXME: We could rewrite all references to this stub if we knew them.
666
667  // What we will do is set the compiled function address to map to the
668  // same GOT entry as the stub so that later clients may update the GOT
669  // if they see it still using the stub address.
670  // Note: this is done so the Resolver doesn't have to manage GOT memory
671  // Do this without allocating map space if the target isn't using a GOT
672  if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end())
673    JR->revGOTMap[Result] = JR->revGOTMap[Stub];
674
675  return Result;
676}
677
678//===----------------------------------------------------------------------===//
679// JITEmitter code.
680//
681
682static GlobalObject *getSimpleAliasee(Constant *C) {
683  C = C->stripPointerCasts();
684  return dyn_cast<GlobalObject>(C);
685}
686
687void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
688                                     bool MayNeedFarStub) {
689  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
690    return TheJIT->getOrEmitGlobalVariable(GV);
691
692  if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
693    // We can only handle simple cases.
694    if (GlobalValue *GV = getSimpleAliasee(GA->getAliasee()))
695      return TheJIT->getPointerToGlobal(GV);
696    return nullptr;
697  }
698
699  // If we have already compiled the function, return a pointer to its body.
700  Function *F = cast<Function>(V);
701
702  void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F);
703  if (FnStub) {
704    // Return the function stub if it's already created.  We do this first so
705    // that we're returning the same address for the function as any previous
706    // call.  TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be
707    // close enough to call.
708    return FnStub;
709  }
710
711  // If we know the target can handle arbitrary-distance calls, try to
712  // return a direct pointer.
713  if (!MayNeedFarStub) {
714    // If we have code, go ahead and return that.
715    void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
716    if (ResultPtr) return ResultPtr;
717
718    // If this is an external function pointer, we can force the JIT to
719    // 'compile' it, which really just adds it to the map.
720    if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage())
721      return TheJIT->getPointerToFunction(F);
722  }
723
724  // Otherwise, we may need a to emit a stub, and, conservatively, we always do
725  // so.  Note that it's possible to return null from getLazyFunctionStub in the
726  // case of a weak extern that fails to resolve.
727  return Resolver.getLazyFunctionStub(F);
728}
729
730void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) {
731  // Make sure GV is emitted first, and create a stub containing the fully
732  // resolved address.
733  void *GVAddress = getPointerToGlobal(V, Reference, false);
734  void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress);
735  return StubAddr;
736}
737
738void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) {
739  if (DL.isUnknown()) return;
740  if (!BeforePrintingInsn) return;
741
742  const LLVMContext &Context = EmissionDetails.MF->getFunction()->getContext();
743
744  if (DL.getScope(Context) != nullptr && PrevDL != DL) {
745    JITEvent_EmittedFunctionDetails::LineStart NextLine;
746    NextLine.Address = getCurrentPCValue();
747    NextLine.Loc = DL;
748    EmissionDetails.LineStarts.push_back(NextLine);
749  }
750
751  PrevDL = DL;
752}
753
754static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
755                                           const DataLayout *TD) {
756  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
757  if (Constants.empty()) return 0;
758
759  unsigned Size = 0;
760  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
761    MachineConstantPoolEntry CPE = Constants[i];
762    unsigned AlignMask = CPE.getAlignment() - 1;
763    Size = (Size + AlignMask) & ~AlignMask;
764    Type *Ty = CPE.getType();
765    Size += TD->getTypeAllocSize(Ty);
766  }
767  return Size;
768}
769
770void JITEmitter::startFunction(MachineFunction &F) {
771  DEBUG(dbgs() << "JIT: Starting CodeGen of Function "
772        << F.getName() << "\n");
773
774  uintptr_t ActualSize = 0;
775  // Set the memory writable, if it's not already
776  MemMgr->setMemoryWritable();
777
778  if (SizeEstimate > 0) {
779    // SizeEstimate will be non-zero on reallocation attempts.
780    ActualSize = SizeEstimate;
781  }
782
783  BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
784                                                         ActualSize);
785  BufferEnd = BufferBegin+ActualSize;
786  EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin;
787
788  // Ensure the constant pool/jump table info is at least 4-byte aligned.
789  emitAlignment(16);
790
791  emitConstantPool(F.getConstantPool());
792  if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
793    initJumpTableInfo(MJTI);
794
795  // About to start emitting the machine code for the function.
796  emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
797  TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
798  EmittedFunctions[F.getFunction()].Code = CurBufferPtr;
799
800  MBBLocations.clear();
801
802  EmissionDetails.MF = &F;
803  EmissionDetails.LineStarts.clear();
804}
805
806bool JITEmitter::finishFunction(MachineFunction &F) {
807  if (CurBufferPtr == BufferEnd) {
808    // We must call endFunctionBody before retrying, because
809    // deallocateMemForFunction requires it.
810    MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
811    retryWithMoreMemory(F);
812    return true;
813  }
814
815  if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
816    emitJumpTableInfo(MJTI);
817
818  // FnStart is the start of the text, not the start of the constant pool and
819  // other per-function data.
820  uint8_t *FnStart =
821    (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
822
823  // FnEnd is the end of the function's machine code.
824  uint8_t *FnEnd = CurBufferPtr;
825
826  if (!Relocations.empty()) {
827    CurFn = F.getFunction();
828    NumRelos += Relocations.size();
829
830    // Resolve the relocations to concrete pointers.
831    for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
832      MachineRelocation &MR = Relocations[i];
833      void *ResultPtr = nullptr;
834      if (!MR.letTargetResolve()) {
835        if (MR.isExternalSymbol()) {
836          ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
837                                                        false);
838          DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
839                       << ResultPtr << "]\n");
840
841          // If the target REALLY wants a stub for this function, emit it now.
842          if (MR.mayNeedFarStub()) {
843            ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
844          }
845        } else if (MR.isGlobalValue()) {
846          ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
847                                         BufferBegin+MR.getMachineCodeOffset(),
848                                         MR.mayNeedFarStub());
849        } else if (MR.isIndirectSymbol()) {
850          ResultPtr = getPointerToGVIndirectSym(
851              MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset());
852        } else if (MR.isBasicBlock()) {
853          ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
854        } else if (MR.isConstantPoolIndex()) {
855          ResultPtr =
856            (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
857        } else {
858          assert(MR.isJumpTableIndex());
859          ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
860        }
861
862        MR.setResultPointer(ResultPtr);
863      }
864
865      // if we are managing the GOT and the relocation wants an index,
866      // give it one
867      if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
868        unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
869        MR.setGOTIndex(idx);
870        if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
871          DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr
872                       << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
873                       << "\n");
874          ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
875        }
876      }
877    }
878
879    CurFn = nullptr;
880    TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
881                                  Relocations.size(), MemMgr->getGOTBase());
882  }
883
884  // Update the GOT entry for F to point to the new code.
885  if (MemMgr->isManagingGOT()) {
886    unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
887    if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
888      DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin
889                   << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
890                   << "\n");
891      ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
892    }
893  }
894
895  // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for
896  // global variables that were referenced in the relocations.
897  MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
898
899  if (CurBufferPtr == BufferEnd) {
900    retryWithMoreMemory(F);
901    return true;
902  } else {
903    // Now that we've succeeded in emitting the function, reset the
904    // SizeEstimate back down to zero.
905    SizeEstimate = 0;
906  }
907
908  BufferBegin = CurBufferPtr = nullptr;
909  NumBytes += FnEnd-FnStart;
910
911  // Invalidate the icache if necessary.
912  sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
913
914  TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
915                                EmissionDetails);
916
917  // Reset the previous debug location.
918  PrevDL = DebugLoc();
919
920  DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart
921        << "] Function: " << F.getName()
922        << ": " << (FnEnd-FnStart) << " bytes of text, "
923        << Relocations.size() << " relocations\n");
924
925  Relocations.clear();
926  ConstPoolAddresses.clear();
927
928  // Mark code region readable and executable if it's not so already.
929  MemMgr->setMemoryExecutable();
930
931  DEBUG({
932      if (sys::hasDisassembler()) {
933        dbgs() << "JIT: Disassembled code:\n";
934        dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart,
935                                         (uintptr_t)FnStart);
936      } else {
937        dbgs() << "JIT: Binary code:\n";
938        uint8_t* q = FnStart;
939        for (int i = 0; q < FnEnd; q += 4, ++i) {
940          if (i == 4)
941            i = 0;
942          if (i == 0)
943            dbgs() << "JIT: " << (long)(q - FnStart) << ": ";
944          bool Done = false;
945          for (int j = 3; j >= 0; --j) {
946            if (q + j >= FnEnd)
947              Done = true;
948            else
949              dbgs() << (unsigned short)q[j];
950          }
951          if (Done)
952            break;
953          dbgs() << ' ';
954          if (i == 3)
955            dbgs() << '\n';
956        }
957        dbgs()<< '\n';
958      }
959    });
960
961  if (MMI)
962    MMI->EndFunction();
963
964  return false;
965}
966
967void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
968  DEBUG(dbgs() << "JIT: Ran out of space for native code.  Reattempting.\n");
969  Relocations.clear();  // Clear the old relocations or we'll reapply them.
970  ConstPoolAddresses.clear();
971  ++NumRetries;
972  deallocateMemForFunction(F.getFunction());
973  // Try again with at least twice as much free space.
974  SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin));
975
976  for (MachineFunction::iterator MBB = F.begin(), E = F.end(); MBB != E; ++MBB){
977    if (MBB->hasAddressTaken())
978      TheJIT->clearPointerToBasicBlock(MBB->getBasicBlock());
979  }
980}
981
982/// deallocateMemForFunction - Deallocate all memory for the specified
983/// function body.  Also drop any references the function has to stubs.
984/// May be called while the Function is being destroyed inside ~Value().
985void JITEmitter::deallocateMemForFunction(const Function *F) {
986  ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator
987    Emitted = EmittedFunctions.find(F);
988  if (Emitted != EmittedFunctions.end()) {
989    MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody);
990    TheJIT->NotifyFreeingMachineCode(Emitted->second.Code);
991
992    EmittedFunctions.erase(Emitted);
993  }
994}
995
996
997void *JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
998  if (BufferBegin)
999    return JITCodeEmitter::allocateSpace(Size, Alignment);
1000
1001  // create a new memory block if there is no active one.
1002  // care must be taken so that BufferBegin is invalidated when a
1003  // block is trimmed
1004  BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
1005  BufferEnd = BufferBegin+Size;
1006  return CurBufferPtr;
1007}
1008
1009void *JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) {
1010  // Delegate this call through the memory manager.
1011  return MemMgr->allocateGlobal(Size, Alignment);
1012}
1013
1014void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
1015  if (TheJIT->getJITInfo().hasCustomConstantPool())
1016    return;
1017
1018  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
1019  if (Constants.empty()) return;
1020
1021  unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getDataLayout());
1022  unsigned Align = MCP->getConstantPoolAlignment();
1023  ConstantPoolBase = allocateSpace(Size, Align);
1024  ConstantPool = MCP;
1025
1026  if (!ConstantPoolBase) return;  // Buffer overflow.
1027
1028  DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase
1029               << "] (size: " << Size << ", alignment: " << Align << ")\n");
1030
1031  // Initialize the memory for all of the constant pool entries.
1032  unsigned Offset = 0;
1033  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1034    MachineConstantPoolEntry CPE = Constants[i];
1035    unsigned AlignMask = CPE.getAlignment() - 1;
1036    Offset = (Offset + AlignMask) & ~AlignMask;
1037
1038    uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset;
1039    ConstPoolAddresses.push_back(CAddr);
1040    if (CPE.isMachineConstantPoolEntry()) {
1041      // FIXME: add support to lower machine constant pool values into bytes!
1042      report_fatal_error("Initialize memory with machine specific constant pool"
1043                        "entry has not been implemented!");
1044    }
1045    TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
1046    DEBUG(dbgs() << "JIT:   CP" << i << " at [0x";
1047          dbgs().write_hex(CAddr) << "]\n");
1048
1049    Type *Ty = CPE.Val.ConstVal->getType();
1050    Offset += TheJIT->getDataLayout()->getTypeAllocSize(Ty);
1051  }
1052}
1053
1054void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
1055  if (TheJIT->getJITInfo().hasCustomJumpTables())
1056    return;
1057  if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline)
1058    return;
1059
1060  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1061  if (JT.empty()) return;
1062
1063  unsigned NumEntries = 0;
1064  for (unsigned i = 0, e = JT.size(); i != e; ++i)
1065    NumEntries += JT[i].MBBs.size();
1066
1067  unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getDataLayout());
1068
1069  // Just allocate space for all the jump tables now.  We will fix up the actual
1070  // MBB entries in the tables after we emit the code for each block, since then
1071  // we will know the final locations of the MBBs in memory.
1072  JumpTable = MJTI;
1073  JumpTableBase = allocateSpace(NumEntries * EntrySize,
1074                             MJTI->getEntryAlignment(*TheJIT->getDataLayout()));
1075}
1076
1077void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
1078  if (TheJIT->getJITInfo().hasCustomJumpTables())
1079    return;
1080
1081  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1082  if (JT.empty() || !JumpTableBase) return;
1083
1084
1085  switch (MJTI->getEntryKind()) {
1086  case MachineJumpTableInfo::EK_Inline:
1087    return;
1088  case MachineJumpTableInfo::EK_BlockAddress: {
1089    // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1090    //     .word LBB123
1091    assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == sizeof(void*) &&
1092           "Cross JIT'ing?");
1093
1094    // For each jump table, map each target in the jump table to the address of
1095    // an emitted MachineBasicBlock.
1096    intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
1097
1098    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1099      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1100      // Store the address of the basic block for this jump table slot in the
1101      // memory we allocated for the jump table in 'initJumpTableInfo'
1102      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
1103        *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
1104    }
1105    break;
1106  }
1107
1108  case MachineJumpTableInfo::EK_Custom32:
1109  case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1110  case MachineJumpTableInfo::EK_LabelDifference32: {
1111    assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == 4&&"Cross JIT'ing?");
1112    // For each jump table, place the offset from the beginning of the table
1113    // to the target address.
1114    int *SlotPtr = (int*)JumpTableBase;
1115
1116    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1117      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1118      // Store the offset of the basic block for this jump table slot in the
1119      // memory we allocated for the jump table in 'initJumpTableInfo'
1120      uintptr_t Base = (uintptr_t)SlotPtr;
1121      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
1122        uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
1123        /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook.
1124        *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
1125      }
1126    }
1127    break;
1128  }
1129  case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1130    llvm_unreachable(
1131           "JT Info emission not implemented for GPRel64BlockAddress yet.");
1132  }
1133}
1134
1135void JITEmitter::startGVStub(const GlobalValue* GV,
1136                             unsigned StubSize, unsigned Alignment) {
1137  SavedBufferBegin = BufferBegin;
1138  SavedBufferEnd = BufferEnd;
1139  SavedCurBufferPtr = CurBufferPtr;
1140
1141  BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment);
1142  BufferEnd = BufferBegin+StubSize+1;
1143}
1144
1145void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) {
1146  SavedBufferBegin = BufferBegin;
1147  SavedBufferEnd = BufferEnd;
1148  SavedCurBufferPtr = CurBufferPtr;
1149
1150  BufferBegin = CurBufferPtr = (uint8_t *)Buffer;
1151  BufferEnd = BufferBegin+StubSize+1;
1152}
1153
1154void JITEmitter::finishGVStub() {
1155  assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space.");
1156  NumBytes += getCurrentPCOffset();
1157  BufferBegin = SavedBufferBegin;
1158  BufferEnd = SavedBufferEnd;
1159  CurBufferPtr = SavedCurBufferPtr;
1160}
1161
1162void *JITEmitter::allocIndirectGV(const GlobalValue *GV,
1163                                  const uint8_t *Buffer, size_t Size,
1164                                  unsigned Alignment) {
1165  uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment);
1166  memcpy(IndGV, Buffer, Size);
1167  return IndGV;
1168}
1169
1170// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
1171// in the constant pool that was last emitted with the 'emitConstantPool'
1172// method.
1173//
1174uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
1175  assert(ConstantNum < ConstantPool->getConstants().size() &&
1176         "Invalid ConstantPoolIndex!");
1177  return ConstPoolAddresses[ConstantNum];
1178}
1179
1180// getJumpTableEntryAddress - Return the address of the JumpTable with index
1181// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
1182//
1183uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
1184  const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
1185  assert(Index < JT.size() && "Invalid jump table index!");
1186
1187  unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getDataLayout());
1188
1189  unsigned Offset = 0;
1190  for (unsigned i = 0; i < Index; ++i)
1191    Offset += JT[i].MBBs.size();
1192
1193   Offset *= EntrySize;
1194
1195  return (uintptr_t)((char *)JumpTableBase + Offset);
1196}
1197
1198void JITEmitter::EmittedFunctionConfig::onDelete(
1199  JITEmitter *Emitter, const Function *F) {
1200  Emitter->deallocateMemForFunction(F);
1201}
1202void JITEmitter::EmittedFunctionConfig::onRAUW(
1203  JITEmitter *, const Function*, const Function*) {
1204  llvm_unreachable("The JIT doesn't know how to handle a"
1205                   " RAUW on a value it has emitted.");
1206}
1207
1208
1209//===----------------------------------------------------------------------===//
1210//  Public interface to this file
1211//===----------------------------------------------------------------------===//
1212
1213JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM,
1214                                   TargetMachine &tm) {
1215  return new JITEmitter(jit, JMM, tm);
1216}
1217
1218// getPointerToFunctionOrStub - If the specified function has been
1219// code-gen'd, return a pointer to the function.  If not, compile it, or use
1220// a stub to implement lazy compilation if available.
1221//
1222void *JIT::getPointerToFunctionOrStub(Function *F) {
1223  // If we have already code generated the function, just return the address.
1224  if (void *Addr = getPointerToGlobalIfAvailable(F))
1225    return Addr;
1226
1227  // Get a stub if the target supports it.
1228  JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter());
1229  return JE->getJITResolver().getLazyFunctionStub(F);
1230}
1231
1232void JIT::updateFunctionStubUnlocked(Function *F) {
1233  // Get the empty stub we generated earlier.
1234  JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter());
1235  void *Stub = JE->getJITResolver().getLazyFunctionStub(F);
1236  void *Addr = getPointerToGlobalIfAvailable(F);
1237  assert(Addr != Stub && "Function must have non-stub address to be updated.");
1238
1239  // Tell the target jit info to rewrite the stub at the specified address,
1240  // rather than creating a new one.
1241  TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout();
1242  JE->startGVStub(Stub, layout.Size);
1243  getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter());
1244  JE->finishGVStub();
1245}
1246
1247/// freeMachineCodeForFunction - release machine code memory for given Function.
1248///
1249void JIT::freeMachineCodeForFunction(Function *F) {
1250  // Delete translation for this from the ExecutionEngine, so it will get
1251  // retranslated next time it is used.
1252  updateGlobalMapping(F, nullptr);
1253
1254  // Free the actual memory for the function body and related stuff.
1255  static_cast<JITEmitter*>(JCE)->deallocateMemForFunction(F);
1256}
1257