1//===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which will find  instructions  which
11// can be re-written as LEA instructions in order to reduce pipeline
12// delays for some models of the Intel Atom family.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86InstrInfo.h"
18#include "X86Subtarget.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/CodeGen/LiveVariables.h"
21#include "llvm/CodeGen/MachineFunctionPass.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/CodeGen/Passes.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/raw_ostream.h"
27#include "llvm/Target/TargetInstrInfo.h"
28using namespace llvm;
29
30#define DEBUG_TYPE "x86-fixup-LEAs"
31
32STATISTIC(NumLEAs, "Number of LEA instructions created");
33
34namespace {
35class FixupLEAPass : public MachineFunctionPass {
36  enum RegUsageState { RU_NotUsed, RU_Write, RU_Read };
37  static char ID;
38  /// \brief Loop over all of the instructions in the basic block
39  /// replacing applicable instructions with LEA instructions,
40  /// where appropriate.
41  bool processBasicBlock(MachineFunction &MF, MachineFunction::iterator MFI);
42
43  const char *getPassName() const override { return "X86 Atom LEA Fixup"; }
44
45  /// \brief Given a machine register, look for the instruction
46  /// which writes it in the current basic block. If found,
47  /// try to replace it with an equivalent LEA instruction.
48  /// If replacement succeeds, then also process the the newly created
49  /// instruction.
50  void seekLEAFixup(MachineOperand &p, MachineBasicBlock::iterator &I,
51                    MachineFunction::iterator MFI);
52
53  /// \brief Given a memory access or LEA instruction
54  /// whose address mode uses a base and/or index register, look for
55  /// an opportunity to replace the instruction which sets the base or index
56  /// register with an equivalent LEA instruction.
57  void processInstruction(MachineBasicBlock::iterator &I,
58                          MachineFunction::iterator MFI);
59
60  /// \brief Given a LEA instruction which is unprofitable
61  /// on Silvermont try to replace it with an equivalent ADD instruction
62  void processInstructionForSLM(MachineBasicBlock::iterator &I,
63                                MachineFunction::iterator MFI);
64
65  /// \brief Determine if an instruction references a machine register
66  /// and, if so, whether it reads or writes the register.
67  RegUsageState usesRegister(MachineOperand &p, MachineBasicBlock::iterator I);
68
69  /// \brief Step backwards through a basic block, looking
70  /// for an instruction which writes a register within
71  /// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles.
72  MachineBasicBlock::iterator searchBackwards(MachineOperand &p,
73                                              MachineBasicBlock::iterator &I,
74                                              MachineFunction::iterator MFI);
75
76  /// \brief if an instruction can be converted to an
77  /// equivalent LEA, insert the new instruction into the basic block
78  /// and return a pointer to it. Otherwise, return zero.
79  MachineInstr *postRAConvertToLEA(MachineFunction::iterator &MFI,
80                                   MachineBasicBlock::iterator &MBBI) const;
81
82public:
83  FixupLEAPass() : MachineFunctionPass(ID) {}
84
85  /// \brief Loop over all of the basic blocks,
86  /// replacing instructions by equivalent LEA instructions
87  /// if needed and when possible.
88  bool runOnMachineFunction(MachineFunction &MF) override;
89
90private:
91  MachineFunction *MF;
92  const TargetMachine *TM;
93  const X86InstrInfo *TII; // Machine instruction info.
94};
95char FixupLEAPass::ID = 0;
96}
97
98MachineInstr *
99FixupLEAPass::postRAConvertToLEA(MachineFunction::iterator &MFI,
100                                 MachineBasicBlock::iterator &MBBI) const {
101  MachineInstr *MI = MBBI;
102  MachineInstr *NewMI;
103  switch (MI->getOpcode()) {
104  case X86::MOV32rr:
105  case X86::MOV64rr: {
106    const MachineOperand &Src = MI->getOperand(1);
107    const MachineOperand &Dest = MI->getOperand(0);
108    NewMI = BuildMI(*MF, MI->getDebugLoc(),
109                    TII->get(MI->getOpcode() == X86::MOV32rr ? X86::LEA32r
110                                                             : X86::LEA64r))
111                .addOperand(Dest)
112                .addOperand(Src)
113                .addImm(1)
114                .addReg(0)
115                .addImm(0)
116                .addReg(0);
117    MFI->insert(MBBI, NewMI); // Insert the new inst
118    return NewMI;
119  }
120  case X86::ADD64ri32:
121  case X86::ADD64ri8:
122  case X86::ADD64ri32_DB:
123  case X86::ADD64ri8_DB:
124  case X86::ADD32ri:
125  case X86::ADD32ri8:
126  case X86::ADD32ri_DB:
127  case X86::ADD32ri8_DB:
128  case X86::ADD16ri:
129  case X86::ADD16ri8:
130  case X86::ADD16ri_DB:
131  case X86::ADD16ri8_DB:
132    if (!MI->getOperand(2).isImm()) {
133      // convertToThreeAddress will call getImm()
134      // which requires isImm() to be true
135      return nullptr;
136    }
137    break;
138  case X86::ADD16rr:
139  case X86::ADD16rr_DB:
140    if (MI->getOperand(1).getReg() != MI->getOperand(2).getReg()) {
141      // if src1 != src2, then convertToThreeAddress will
142      // need to create a Virtual register, which we cannot do
143      // after register allocation.
144      return nullptr;
145    }
146  }
147  return TII->convertToThreeAddress(MFI, MBBI, nullptr);
148}
149
150FunctionPass *llvm::createX86FixupLEAs() { return new FixupLEAPass(); }
151
152bool FixupLEAPass::runOnMachineFunction(MachineFunction &Func) {
153  MF = &Func;
154  TM = &Func.getTarget();
155  const X86Subtarget &ST = TM->getSubtarget<X86Subtarget>();
156  if (!ST.LEAusesAG() && !ST.slowLEA())
157    return false;
158
159  TII = static_cast<const X86InstrInfo *>(TM->getInstrInfo());
160
161  DEBUG(dbgs() << "Start X86FixupLEAs\n";);
162  // Process all basic blocks.
163  for (MachineFunction::iterator I = Func.begin(), E = Func.end(); I != E; ++I)
164    processBasicBlock(Func, I);
165  DEBUG(dbgs() << "End X86FixupLEAs\n";);
166
167  return true;
168}
169
170FixupLEAPass::RegUsageState
171FixupLEAPass::usesRegister(MachineOperand &p, MachineBasicBlock::iterator I) {
172  RegUsageState RegUsage = RU_NotUsed;
173  MachineInstr *MI = I;
174
175  for (unsigned int i = 0; i < MI->getNumOperands(); ++i) {
176    MachineOperand &opnd = MI->getOperand(i);
177    if (opnd.isReg() && opnd.getReg() == p.getReg()) {
178      if (opnd.isDef())
179        return RU_Write;
180      RegUsage = RU_Read;
181    }
182  }
183  return RegUsage;
184}
185
186/// getPreviousInstr - Given a reference to an instruction in a basic
187/// block, return a reference to the previous instruction in the block,
188/// wrapping around to the last instruction of the block if the block
189/// branches to itself.
190static inline bool getPreviousInstr(MachineBasicBlock::iterator &I,
191                                    MachineFunction::iterator MFI) {
192  if (I == MFI->begin()) {
193    if (MFI->isPredecessor(MFI)) {
194      I = --MFI->end();
195      return true;
196    } else
197      return false;
198  }
199  --I;
200  return true;
201}
202
203MachineBasicBlock::iterator
204FixupLEAPass::searchBackwards(MachineOperand &p, MachineBasicBlock::iterator &I,
205                              MachineFunction::iterator MFI) {
206  int InstrDistance = 1;
207  MachineBasicBlock::iterator CurInst;
208  static const int INSTR_DISTANCE_THRESHOLD = 5;
209
210  CurInst = I;
211  bool Found;
212  Found = getPreviousInstr(CurInst, MFI);
213  while (Found && I != CurInst) {
214    if (CurInst->isCall() || CurInst->isInlineAsm())
215      break;
216    if (InstrDistance > INSTR_DISTANCE_THRESHOLD)
217      break; // too far back to make a difference
218    if (usesRegister(p, CurInst) == RU_Write) {
219      return CurInst;
220    }
221    InstrDistance += TII->getInstrLatency(TM->getInstrItineraryData(), CurInst);
222    Found = getPreviousInstr(CurInst, MFI);
223  }
224  return nullptr;
225}
226
227void FixupLEAPass::processInstruction(MachineBasicBlock::iterator &I,
228                                      MachineFunction::iterator MFI) {
229  // Process a load, store, or LEA instruction.
230  MachineInstr *MI = I;
231  int opcode = MI->getOpcode();
232  const MCInstrDesc &Desc = MI->getDesc();
233  int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags, opcode);
234  if (AddrOffset >= 0) {
235    AddrOffset += X86II::getOperandBias(Desc);
236    MachineOperand &p = MI->getOperand(AddrOffset + X86::AddrBaseReg);
237    if (p.isReg() && p.getReg() != X86::ESP) {
238      seekLEAFixup(p, I, MFI);
239    }
240    MachineOperand &q = MI->getOperand(AddrOffset + X86::AddrIndexReg);
241    if (q.isReg() && q.getReg() != X86::ESP) {
242      seekLEAFixup(q, I, MFI);
243    }
244  }
245}
246
247void FixupLEAPass::seekLEAFixup(MachineOperand &p,
248                                MachineBasicBlock::iterator &I,
249                                MachineFunction::iterator MFI) {
250  MachineBasicBlock::iterator MBI = searchBackwards(p, I, MFI);
251  if (MBI) {
252    MachineInstr *NewMI = postRAConvertToLEA(MFI, MBI);
253    if (NewMI) {
254      ++NumLEAs;
255      DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MBI->dump(););
256      // now to replace with an equivalent LEA...
257      DEBUG(dbgs() << "FixLEA: Replaced by: "; NewMI->dump(););
258      MFI->erase(MBI);
259      MachineBasicBlock::iterator J =
260          static_cast<MachineBasicBlock::iterator>(NewMI);
261      processInstruction(J, MFI);
262    }
263  }
264}
265
266void FixupLEAPass::processInstructionForSLM(MachineBasicBlock::iterator &I,
267                                            MachineFunction::iterator MFI) {
268  MachineInstr *MI = I;
269  const int opcode = MI->getOpcode();
270  if (opcode != X86::LEA16r && opcode != X86::LEA32r && opcode != X86::LEA64r &&
271      opcode != X86::LEA64_32r)
272    return;
273  if (MI->getOperand(5).getReg() != 0 || !MI->getOperand(4).isImm() ||
274      !TII->isSafeToClobberEFLAGS(*MFI, I))
275    return;
276  const unsigned DstR = MI->getOperand(0).getReg();
277  const unsigned SrcR1 = MI->getOperand(1).getReg();
278  const unsigned SrcR2 = MI->getOperand(3).getReg();
279  if ((SrcR1 == 0 || SrcR1 != DstR) && (SrcR2 == 0 || SrcR2 != DstR))
280    return;
281  if (MI->getOperand(2).getImm() > 1)
282    return;
283  int addrr_opcode, addri_opcode;
284  switch (opcode) {
285  case X86::LEA16r:
286    addrr_opcode = X86::ADD16rr;
287    addri_opcode = X86::ADD16ri;
288    break;
289  case X86::LEA32r:
290    addrr_opcode = X86::ADD32rr;
291    addri_opcode = X86::ADD32ri;
292    break;
293  case X86::LEA64_32r:
294  case X86::LEA64r:
295    addrr_opcode = X86::ADD64rr;
296    addri_opcode = X86::ADD64ri32;
297    break;
298  default:
299    assert(false && "Unexpected LEA instruction");
300  }
301  DEBUG(dbgs() << "FixLEA: Candidate to replace:"; I->dump(););
302  DEBUG(dbgs() << "FixLEA: Replaced by: ";);
303  MachineInstr *NewMI = nullptr;
304  const MachineOperand &Dst = MI->getOperand(0);
305  // Make ADD instruction for two registers writing to LEA's destination
306  if (SrcR1 != 0 && SrcR2 != 0) {
307    const MachineOperand &Src1 = MI->getOperand(SrcR1 == DstR ? 1 : 3);
308    const MachineOperand &Src2 = MI->getOperand(SrcR1 == DstR ? 3 : 1);
309    NewMI = BuildMI(*MF, MI->getDebugLoc(), TII->get(addrr_opcode))
310                .addOperand(Dst)
311                .addOperand(Src1)
312                .addOperand(Src2);
313    MFI->insert(I, NewMI);
314    DEBUG(NewMI->dump(););
315  }
316  // Make ADD instruction for immediate
317  if (MI->getOperand(4).getImm() != 0) {
318    const MachineOperand &SrcR = MI->getOperand(SrcR1 == DstR ? 1 : 3);
319    NewMI = BuildMI(*MF, MI->getDebugLoc(), TII->get(addri_opcode))
320                .addOperand(Dst)
321                .addOperand(SrcR)
322                .addImm(MI->getOperand(4).getImm());
323    MFI->insert(I, NewMI);
324    DEBUG(NewMI->dump(););
325  }
326  if (NewMI) {
327    MFI->erase(I);
328    I = static_cast<MachineBasicBlock::iterator>(NewMI);
329  }
330}
331
332bool FixupLEAPass::processBasicBlock(MachineFunction &MF,
333                                     MachineFunction::iterator MFI) {
334
335  for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) {
336    if (TM->getSubtarget<X86Subtarget>().isSLM())
337      processInstructionForSLM(I, MFI);
338    else
339      processInstruction(I, MFI);
340  }
341  return false;
342}
343