1/*
2 * Mesa 3-D graphics library
3 * Version:  7.1
4 *
5 * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26#include "main/glheader.h"
27#include "main/colormac.h"
28#include "main/feedback.h"
29#include "main/light.h"
30#include "main/macros.h"
31#include "main/simple_list.h"
32#include "main/mtypes.h"
33
34#include "math/m_matrix.h"
35#include "tnl/tnl.h"
36
37
38
39/**
40 * Clip a point against the view volume.
41 *
42 * \param v vertex vector describing the point to clip.
43 *
44 * \return zero if outside view volume, or one if inside.
45 */
46static GLuint
47viewclip_point_xy( const GLfloat v[] )
48{
49   if (   v[0] > v[3] || v[0] < -v[3]
50       || v[1] > v[3] || v[1] < -v[3] ) {
51      return 0;
52   }
53   else {
54      return 1;
55   }
56}
57
58
59/**
60 * Clip a point against the far/near Z clipping planes.
61 *
62 * \param v vertex vector describing the point to clip.
63 *
64 * \return zero if outside view volume, or one if inside.
65 */
66static GLuint
67viewclip_point_z( const GLfloat v[] )
68{
69   if (v[2] > v[3] || v[2] < -v[3] ) {
70      return 0;
71   }
72   else {
73      return 1;
74   }
75}
76
77
78/**
79 * Clip a point against the user clipping planes.
80 *
81 * \param ctx GL context.
82 * \param v vertex vector describing the point to clip.
83 *
84 * \return zero if the point was clipped, or one otherwise.
85 */
86static GLuint
87userclip_point( struct gl_context *ctx, const GLfloat v[] )
88{
89   GLuint p;
90
91   for (p = 0; p < ctx->Const.MaxClipPlanes; p++) {
92      if (ctx->Transform.ClipPlanesEnabled & (1 << p)) {
93	 GLfloat dot = v[0] * ctx->Transform._ClipUserPlane[p][0]
94		     + v[1] * ctx->Transform._ClipUserPlane[p][1]
95		     + v[2] * ctx->Transform._ClipUserPlane[p][2]
96		     + v[3] * ctx->Transform._ClipUserPlane[p][3];
97         if (dot < 0.0F) {
98            return 0;
99         }
100      }
101   }
102
103   return 1;
104}
105
106
107/**
108 * Compute lighting for the raster position.  RGB modes computed.
109 * \param ctx the context
110 * \param vertex vertex location
111 * \param normal normal vector
112 * \param Rcolor returned color
113 * \param Rspec returned specular color (if separate specular enabled)
114 */
115static void
116shade_rastpos(struct gl_context *ctx,
117              const GLfloat vertex[4],
118              const GLfloat normal[3],
119              GLfloat Rcolor[4],
120              GLfloat Rspec[4])
121{
122   /*const*/ GLfloat (*base)[3] = ctx->Light._BaseColor;
123   const struct gl_light *light;
124   GLfloat diffuseColor[4], specularColor[4];  /* for RGB mode only */
125
126   COPY_3V(diffuseColor, base[0]);
127   diffuseColor[3] = CLAMP(
128      ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3], 0.0F, 1.0F );
129   ASSIGN_4V(specularColor, 0.0, 0.0, 0.0, 1.0);
130
131   foreach (light, &ctx->Light.EnabledList) {
132      GLfloat attenuation = 1.0;
133      GLfloat VP[3]; /* vector from vertex to light pos */
134      GLfloat n_dot_VP;
135      GLfloat diffuseContrib[3], specularContrib[3];
136
137      if (!(light->_Flags & LIGHT_POSITIONAL)) {
138         /* light at infinity */
139	 COPY_3V(VP, light->_VP_inf_norm);
140	 attenuation = light->_VP_inf_spot_attenuation;
141      }
142      else {
143         /* local/positional light */
144	 GLfloat d;
145
146         /* VP = vector from vertex pos to light[i].pos */
147	 SUB_3V(VP, light->_Position, vertex);
148         /* d = length(VP) */
149	 d = (GLfloat) LEN_3FV( VP );
150	 if (d > 1.0e-6) {
151            /* normalize VP */
152	    GLfloat invd = 1.0F / d;
153	    SELF_SCALE_SCALAR_3V(VP, invd);
154	 }
155
156         /* atti */
157	 attenuation = 1.0F / (light->ConstantAttenuation + d *
158			       (light->LinearAttenuation + d *
159				light->QuadraticAttenuation));
160
161	 if (light->_Flags & LIGHT_SPOT) {
162	    GLfloat PV_dot_dir = - DOT3(VP, light->_NormSpotDirection);
163
164	    if (PV_dot_dir<light->_CosCutoff) {
165	       continue;
166	    }
167	    else {
168               GLfloat spot = powf(PV_dot_dir, light->SpotExponent);
169	       attenuation *= spot;
170	    }
171	 }
172      }
173
174      if (attenuation < 1e-3)
175	 continue;
176
177      n_dot_VP = DOT3( normal, VP );
178
179      if (n_dot_VP < 0.0F) {
180	 ACC_SCALE_SCALAR_3V(diffuseColor, attenuation, light->_MatAmbient[0]);
181	 continue;
182      }
183
184      /* Ambient + diffuse */
185      COPY_3V(diffuseContrib, light->_MatAmbient[0]);
186      ACC_SCALE_SCALAR_3V(diffuseContrib, n_dot_VP, light->_MatDiffuse[0]);
187
188      /* Specular */
189      {
190         const GLfloat *h;
191         GLfloat n_dot_h;
192
193         ASSIGN_3V(specularContrib, 0.0, 0.0, 0.0);
194
195	 if (ctx->Light.Model.LocalViewer) {
196	    GLfloat v[3];
197	    COPY_3V(v, vertex);
198	    NORMALIZE_3FV(v);
199	    SUB_3V(VP, VP, v);
200            NORMALIZE_3FV(VP);
201	    h = VP;
202	 }
203	 else if (light->_Flags & LIGHT_POSITIONAL) {
204	    ACC_3V(VP, ctx->_EyeZDir);
205            NORMALIZE_3FV(VP);
206	    h = VP;
207	 }
208         else {
209	    h = light->_h_inf_norm;
210	 }
211
212	 n_dot_h = DOT3(normal, h);
213
214	 if (n_dot_h > 0.0F) {
215	    GLfloat shine;
216	    GLfloat spec_coef;
217
218	    shine = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SHININESS][0];
219	    spec_coef = powf(n_dot_h, shine);
220
221	    if (spec_coef > 1.0e-10) {
222               if (ctx->Light.Model.ColorControl==GL_SEPARATE_SPECULAR_COLOR) {
223                  ACC_SCALE_SCALAR_3V( specularContrib, spec_coef,
224                                       light->_MatSpecular[0]);
225               }
226               else {
227                  ACC_SCALE_SCALAR_3V( diffuseContrib, spec_coef,
228                                       light->_MatSpecular[0]);
229               }
230	    }
231	 }
232      }
233
234      ACC_SCALE_SCALAR_3V( diffuseColor, attenuation, diffuseContrib );
235      ACC_SCALE_SCALAR_3V( specularColor, attenuation, specularContrib );
236   }
237
238   Rcolor[0] = CLAMP(diffuseColor[0], 0.0F, 1.0F);
239   Rcolor[1] = CLAMP(diffuseColor[1], 0.0F, 1.0F);
240   Rcolor[2] = CLAMP(diffuseColor[2], 0.0F, 1.0F);
241   Rcolor[3] = CLAMP(diffuseColor[3], 0.0F, 1.0F);
242   Rspec[0] = CLAMP(specularColor[0], 0.0F, 1.0F);
243   Rspec[1] = CLAMP(specularColor[1], 0.0F, 1.0F);
244   Rspec[2] = CLAMP(specularColor[2], 0.0F, 1.0F);
245   Rspec[3] = CLAMP(specularColor[3], 0.0F, 1.0F);
246}
247
248
249/**
250 * Do texgen needed for glRasterPos.
251 * \param ctx  rendering context
252 * \param vObj  object-space vertex coordinate
253 * \param vEye  eye-space vertex coordinate
254 * \param normal  vertex normal
255 * \param unit  texture unit number
256 * \param texcoord  incoming texcoord and resulting texcoord
257 */
258static void
259compute_texgen(struct gl_context *ctx, const GLfloat vObj[4], const GLfloat vEye[4],
260               const GLfloat normal[3], GLuint unit, GLfloat texcoord[4])
261{
262   const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
263
264   /* always compute sphere map terms, just in case */
265   GLfloat u[3], two_nu, rx, ry, rz, m, mInv;
266   COPY_3V(u, vEye);
267   NORMALIZE_3FV(u);
268   two_nu = 2.0F * DOT3(normal, u);
269   rx = u[0] - normal[0] * two_nu;
270   ry = u[1] - normal[1] * two_nu;
271   rz = u[2] - normal[2] * two_nu;
272   m = rx * rx + ry * ry + (rz + 1.0F) * (rz + 1.0F);
273   if (m > 0.0F)
274      mInv = 0.5F * INV_SQRTF(m);
275   else
276      mInv = 0.0F;
277
278   if (texUnit->TexGenEnabled & S_BIT) {
279      switch (texUnit->GenS.Mode) {
280         case GL_OBJECT_LINEAR:
281            texcoord[0] = DOT4(vObj, texUnit->GenS.ObjectPlane);
282            break;
283         case GL_EYE_LINEAR:
284            texcoord[0] = DOT4(vEye, texUnit->GenS.EyePlane);
285            break;
286         case GL_SPHERE_MAP:
287            texcoord[0] = rx * mInv + 0.5F;
288            break;
289         case GL_REFLECTION_MAP:
290            texcoord[0] = rx;
291            break;
292         case GL_NORMAL_MAP:
293            texcoord[0] = normal[0];
294            break;
295         default:
296            _mesa_problem(ctx, "Bad S texgen in compute_texgen()");
297            return;
298      }
299   }
300
301   if (texUnit->TexGenEnabled & T_BIT) {
302      switch (texUnit->GenT.Mode) {
303         case GL_OBJECT_LINEAR:
304            texcoord[1] = DOT4(vObj, texUnit->GenT.ObjectPlane);
305            break;
306         case GL_EYE_LINEAR:
307            texcoord[1] = DOT4(vEye, texUnit->GenT.EyePlane);
308            break;
309         case GL_SPHERE_MAP:
310            texcoord[1] = ry * mInv + 0.5F;
311            break;
312         case GL_REFLECTION_MAP:
313            texcoord[1] = ry;
314            break;
315         case GL_NORMAL_MAP:
316            texcoord[1] = normal[1];
317            break;
318         default:
319            _mesa_problem(ctx, "Bad T texgen in compute_texgen()");
320            return;
321      }
322   }
323
324   if (texUnit->TexGenEnabled & R_BIT) {
325      switch (texUnit->GenR.Mode) {
326         case GL_OBJECT_LINEAR:
327            texcoord[2] = DOT4(vObj, texUnit->GenR.ObjectPlane);
328            break;
329         case GL_EYE_LINEAR:
330            texcoord[2] = DOT4(vEye, texUnit->GenR.EyePlane);
331            break;
332         case GL_REFLECTION_MAP:
333            texcoord[2] = rz;
334            break;
335         case GL_NORMAL_MAP:
336            texcoord[2] = normal[2];
337            break;
338         default:
339            _mesa_problem(ctx, "Bad R texgen in compute_texgen()");
340            return;
341      }
342   }
343
344   if (texUnit->TexGenEnabled & Q_BIT) {
345      switch (texUnit->GenQ.Mode) {
346         case GL_OBJECT_LINEAR:
347            texcoord[3] = DOT4(vObj, texUnit->GenQ.ObjectPlane);
348            break;
349         case GL_EYE_LINEAR:
350            texcoord[3] = DOT4(vEye, texUnit->GenQ.EyePlane);
351            break;
352         default:
353            _mesa_problem(ctx, "Bad Q texgen in compute_texgen()");
354            return;
355      }
356   }
357}
358
359
360/**
361 * glRasterPos transformation.  Typically called via ctx->Driver.RasterPos().
362 * XXX some of this code (such as viewport xform, clip testing and setting
363 * of ctx->Current.Raster* fields) could get lifted up into the
364 * main/rasterpos.c code.
365 *
366 * \param vObj  vertex position in object space
367 */
368void
369_tnl_RasterPos(struct gl_context *ctx, const GLfloat vObj[4])
370{
371   if (ctx->VertexProgram._Enabled) {
372      /* XXX implement this */
373      _mesa_problem(ctx, "Vertex programs not implemented for glRasterPos");
374      return;
375   }
376   else {
377      GLfloat eye[4], clip[4], ndc[3], d;
378      GLfloat *norm, eyenorm[3];
379      GLfloat *objnorm = ctx->Current.Attrib[VERT_ATTRIB_NORMAL];
380
381      /* apply modelview matrix:  eye = MV * obj */
382      TRANSFORM_POINT( eye, ctx->ModelviewMatrixStack.Top->m, vObj );
383      /* apply projection matrix:  clip = Proj * eye */
384      TRANSFORM_POINT( clip, ctx->ProjectionMatrixStack.Top->m, eye );
385
386      /* clip to view volume. */
387      if (!ctx->Transform.DepthClamp) {
388         if (viewclip_point_z(clip) == 0) {
389            ctx->Current.RasterPosValid = GL_FALSE;
390            return;
391         }
392      }
393      if (!ctx->Transform.RasterPositionUnclipped) {
394         if (viewclip_point_xy(clip) == 0) {
395            ctx->Current.RasterPosValid = GL_FALSE;
396            return;
397         }
398      }
399
400      /* clip to user clipping planes */
401      if (ctx->Transform.ClipPlanesEnabled && !userclip_point(ctx, clip)) {
402         ctx->Current.RasterPosValid = GL_FALSE;
403         return;
404      }
405
406      /* ndc = clip / W */
407      d = (clip[3] == 0.0F) ? 1.0F : 1.0F / clip[3];
408      ndc[0] = clip[0] * d;
409      ndc[1] = clip[1] * d;
410      ndc[2] = clip[2] * d;
411      /* wincoord = viewport_mapping(ndc) */
412      ctx->Current.RasterPos[0] = (ndc[0] * ctx->Viewport._WindowMap.m[MAT_SX]
413                                   + ctx->Viewport._WindowMap.m[MAT_TX]);
414      ctx->Current.RasterPos[1] = (ndc[1] * ctx->Viewport._WindowMap.m[MAT_SY]
415                                   + ctx->Viewport._WindowMap.m[MAT_TY]);
416      ctx->Current.RasterPos[2] = (ndc[2] * ctx->Viewport._WindowMap.m[MAT_SZ]
417                                   + ctx->Viewport._WindowMap.m[MAT_TZ])
418                                  / ctx->DrawBuffer->_DepthMaxF;
419      ctx->Current.RasterPos[3] = clip[3];
420
421      if (ctx->Transform.DepthClamp) {
422	 ctx->Current.RasterPos[3] = CLAMP(ctx->Current.RasterPos[3],
423					   ctx->Viewport.Near,
424					   ctx->Viewport.Far);
425      }
426
427      /* compute raster distance */
428      if (ctx->Fog.FogCoordinateSource == GL_FOG_COORDINATE_EXT)
429         ctx->Current.RasterDistance = ctx->Current.Attrib[VERT_ATTRIB_FOG][0];
430      else
431         ctx->Current.RasterDistance =
432                        SQRTF( eye[0]*eye[0] + eye[1]*eye[1] + eye[2]*eye[2] );
433
434      /* compute transformed normal vector (for lighting or texgen) */
435      if (ctx->_NeedEyeCoords) {
436         const GLfloat *inv = ctx->ModelviewMatrixStack.Top->inv;
437         TRANSFORM_NORMAL( eyenorm, objnorm, inv );
438         norm = eyenorm;
439      }
440      else {
441         norm = objnorm;
442      }
443
444      /* update raster color */
445      if (ctx->Light.Enabled) {
446         /* lighting */
447         shade_rastpos( ctx, vObj, norm,
448                        ctx->Current.RasterColor,
449                        ctx->Current.RasterSecondaryColor );
450      }
451      else {
452         /* use current color */
453	 COPY_4FV(ctx->Current.RasterColor,
454		  ctx->Current.Attrib[VERT_ATTRIB_COLOR0]);
455	 COPY_4FV(ctx->Current.RasterSecondaryColor,
456		  ctx->Current.Attrib[VERT_ATTRIB_COLOR1]);
457      }
458
459      /* texture coords */
460      {
461         GLuint u;
462         for (u = 0; u < ctx->Const.MaxTextureCoordUnits; u++) {
463            GLfloat tc[4];
464            COPY_4V(tc, ctx->Current.Attrib[VERT_ATTRIB_TEX0 + u]);
465            if (ctx->Texture.Unit[u].TexGenEnabled) {
466               compute_texgen(ctx, vObj, eye, norm, u, tc);
467            }
468            TRANSFORM_POINT(ctx->Current.RasterTexCoords[u],
469                            ctx->TextureMatrixStack[u].Top->m, tc);
470         }
471      }
472
473      ctx->Current.RasterPosValid = GL_TRUE;
474   }
475
476   if (ctx->RenderMode == GL_SELECT) {
477      _mesa_update_hitflag( ctx, ctx->Current.RasterPos[2] );
478   }
479}
480