1#if !defined(_FX_JPEG_TURBO_)
2/*
3 * jcphuff.c
4 *
5 * Copyright (C) 1995-1997, Thomas G. Lane.
6 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file.
8 *
9 * This file contains Huffman entropy encoding routines for progressive JPEG.
10 *
11 * We do not support output suspension in this module, since the library
12 * currently does not allow multiple-scan files to be written with output
13 * suspension.
14 */
15
16#define JPEG_INTERNALS
17#include "jinclude.h"
18#include "jpeglib.h"
19#include "jchuff.h"		/* Declarations shared with jchuff.c */
20
21#ifdef C_PROGRESSIVE_SUPPORTED
22
23/* Expanded entropy encoder object for progressive Huffman encoding. */
24
25typedef struct {
26  struct jpeg_entropy_encoder pub; /* public fields */
27
28  /* Mode flag: TRUE for optimization, FALSE for actual data output */
29  boolean gather_statistics;
30
31  /* Bit-level coding status.
32   * next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
33   */
34  JOCTET * next_output_byte;	/* => next byte to write in buffer */
35  size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
36  INT32 put_buffer;		/* current bit-accumulation buffer */
37  int put_bits;			/* # of bits now in it */
38  j_compress_ptr cinfo;		/* link to cinfo (needed for dump_buffer) */
39
40  /* Coding status for DC components */
41  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
42
43  /* Coding status for AC components */
44  int ac_tbl_no;		/* the table number of the single component */
45  unsigned int EOBRUN;		/* run length of EOBs */
46  unsigned int BE;		/* # of buffered correction bits before MCU */
47  char * bit_buffer;		/* buffer for correction bits (1 per char) */
48  /* packing correction bits tightly would save some space but cost time... */
49
50  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
51  int next_restart_num;		/* next restart number to write (0-7) */
52
53  /* Pointers to derived tables (these workspaces have image lifespan).
54   * Since any one scan codes only DC or only AC, we only need one set
55   * of tables, not one for DC and one for AC.
56   */
57  c_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
58
59  /* Statistics tables for optimization; again, one set is enough */
60  long * count_ptrs[NUM_HUFF_TBLS];
61} phuff_entropy_encoder;
62
63typedef phuff_entropy_encoder * phuff_entropy_ptr;
64
65/* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
66 * buffer can hold.  Larger sizes may slightly improve compression, but
67 * 1000 is already well into the realm of overkill.
68 * The minimum safe size is 64 bits.
69 */
70
71#define MAX_CORR_BITS  1000	/* Max # of correction bits I can buffer */
72
73/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
74 * We assume that int right shift is unsigned if INT32 right shift is,
75 * which should be safe.
76 */
77
78#ifdef RIGHT_SHIFT_IS_UNSIGNED
79#define ISHIFT_TEMPS	int ishift_temp;
80#define IRIGHT_SHIFT(x,shft)  \
81	((ishift_temp = (x)) < 0 ? \
82	 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
83	 (ishift_temp >> (shft)))
84#else
85#define ISHIFT_TEMPS
86#define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
87#endif
88
89/* Forward declarations */
90METHODDEF(boolean) encode_mcu_DC_first JPP((j_compress_ptr cinfo,
91					    JBLOCKROW *MCU_data));
92METHODDEF(boolean) encode_mcu_AC_first JPP((j_compress_ptr cinfo,
93					    JBLOCKROW *MCU_data));
94METHODDEF(boolean) encode_mcu_DC_refine JPP((j_compress_ptr cinfo,
95					     JBLOCKROW *MCU_data));
96METHODDEF(boolean) encode_mcu_AC_refine JPP((j_compress_ptr cinfo,
97					     JBLOCKROW *MCU_data));
98METHODDEF(void) finish_pass_phuff JPP((j_compress_ptr cinfo));
99METHODDEF(void) finish_pass_gather_phuff JPP((j_compress_ptr cinfo));
100
101
102/*
103 * Initialize for a Huffman-compressed scan using progressive JPEG.
104 */
105
106METHODDEF(void)
107start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics)
108{
109  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
110  boolean is_DC_band;
111  int ci, tbl;
112  jpeg_component_info * compptr;
113
114  entropy->cinfo = cinfo;
115  entropy->gather_statistics = gather_statistics;
116
117  is_DC_band = (cinfo->Ss == 0);
118
119  /* We assume jcmaster.c already validated the scan parameters. */
120
121  /* Select execution routines */
122  if (cinfo->Ah == 0) {
123    if (is_DC_band)
124      entropy->pub.encode_mcu = encode_mcu_DC_first;
125    else
126      entropy->pub.encode_mcu = encode_mcu_AC_first;
127  } else {
128    if (is_DC_band)
129      entropy->pub.encode_mcu = encode_mcu_DC_refine;
130    else {
131      entropy->pub.encode_mcu = encode_mcu_AC_refine;
132      /* AC refinement needs a correction bit buffer */
133      if (entropy->bit_buffer == NULL)
134	entropy->bit_buffer = (char *)
135	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
136				      MAX_CORR_BITS * SIZEOF(char));
137    }
138  }
139  if (gather_statistics)
140    entropy->pub.finish_pass = finish_pass_gather_phuff;
141  else
142    entropy->pub.finish_pass = finish_pass_phuff;
143
144  /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1
145   * for AC coefficients.
146   */
147  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
148    compptr = cinfo->cur_comp_info[ci];
149    /* Initialize DC predictions to 0 */
150    entropy->last_dc_val[ci] = 0;
151    /* Get table index */
152    if (is_DC_band) {
153      if (cinfo->Ah != 0)	/* DC refinement needs no table */
154	continue;
155      tbl = compptr->dc_tbl_no;
156    } else {
157      entropy->ac_tbl_no = tbl = compptr->ac_tbl_no;
158    }
159    if (gather_statistics) {
160      /* Check for invalid table index */
161      /* (make_c_derived_tbl does this in the other path) */
162      if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
163        ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
164      /* Allocate and zero the statistics tables */
165      /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
166      if (entropy->count_ptrs[tbl] == NULL)
167	entropy->count_ptrs[tbl] = (long *)
168	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
169				      257 * SIZEOF(long));
170      MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long));
171    } else {
172      /* Compute derived values for Huffman table */
173      /* We may do this more than once for a table, but it's not expensive */
174      jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl,
175			      & entropy->derived_tbls[tbl]);
176    }
177  }
178
179  /* Initialize AC stuff */
180  entropy->EOBRUN = 0;
181  entropy->BE = 0;
182
183  /* Initialize bit buffer to empty */
184  entropy->put_buffer = 0;
185  entropy->put_bits = 0;
186
187  /* Initialize restart stuff */
188  entropy->restarts_to_go = cinfo->restart_interval;
189  entropy->next_restart_num = 0;
190}
191
192
193/* Outputting bytes to the file.
194 * NB: these must be called only when actually outputting,
195 * that is, entropy->gather_statistics == FALSE.
196 */
197
198/* Emit a byte */
199#define emit_byte(entropy,val)  \
200	{ *(entropy)->next_output_byte++ = (JOCTET) (val);  \
201	  if (--(entropy)->free_in_buffer == 0)  \
202	    dump_buffer(entropy); }
203
204
205LOCAL(void)
206dump_buffer (phuff_entropy_ptr entropy)
207/* Empty the output buffer; we do not support suspension in this module. */
208{
209  struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
210
211  if (! (*dest->empty_output_buffer) (entropy->cinfo))
212    ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
213  /* After a successful buffer dump, must reset buffer pointers */
214  entropy->next_output_byte = dest->next_output_byte;
215  entropy->free_in_buffer = dest->free_in_buffer;
216}
217
218
219/* Outputting bits to the file */
220
221/* Only the right 24 bits of put_buffer are used; the valid bits are
222 * left-justified in this part.  At most 16 bits can be passed to emit_bits
223 * in one call, and we never retain more than 7 bits in put_buffer
224 * between calls, so 24 bits are sufficient.
225 */
226
227INLINE
228LOCAL(void)
229emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size)
230/* Emit some bits, unless we are in gather mode */
231{
232  /* This routine is heavily used, so it's worth coding tightly. */
233  register INT32 put_buffer = (INT32) code;
234  register int put_bits = entropy->put_bits;
235
236  /* if size is 0, caller used an invalid Huffman table entry */
237  if (size == 0)
238    ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
239
240  if (entropy->gather_statistics)
241    return;			/* do nothing if we're only getting stats */
242
243  put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
244
245  put_bits += size;		/* new number of bits in buffer */
246
247  put_buffer <<= 24 - put_bits; /* align incoming bits */
248
249  put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */
250
251  while (put_bits >= 8) {
252    int c = (int) ((put_buffer >> 16) & 0xFF);
253
254    emit_byte(entropy, c);
255    if (c == 0xFF) {		/* need to stuff a zero byte? */
256      emit_byte(entropy, 0);
257    }
258    put_buffer <<= 8;
259    put_bits -= 8;
260  }
261
262  entropy->put_buffer = put_buffer; /* update variables */
263  entropy->put_bits = put_bits;
264}
265
266
267LOCAL(void)
268flush_bits (phuff_entropy_ptr entropy)
269{
270  emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */
271  entropy->put_buffer = 0;     /* and reset bit-buffer to empty */
272  entropy->put_bits = 0;
273}
274
275
276/*
277 * Emit (or just count) a Huffman symbol.
278 */
279
280INLINE
281LOCAL(void)
282emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol)
283{
284  if (entropy->gather_statistics)
285    entropy->count_ptrs[tbl_no][symbol]++;
286  else {
287    c_derived_tbl * tbl = entropy->derived_tbls[tbl_no];
288    emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
289  }
290}
291
292
293/*
294 * Emit bits from a correction bit buffer.
295 */
296
297LOCAL(void)
298emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart,
299		    unsigned int nbits)
300{
301  if (entropy->gather_statistics)
302    return;			/* no real work */
303
304  while (nbits > 0) {
305    emit_bits(entropy, (unsigned int) (*bufstart), 1);
306    bufstart++;
307    nbits--;
308  }
309}
310
311
312/*
313 * Emit any pending EOBRUN symbol.
314 */
315
316LOCAL(void)
317emit_eobrun (phuff_entropy_ptr entropy)
318{
319  register int temp, nbits;
320
321  if (entropy->EOBRUN > 0) {	/* if there is any pending EOBRUN */
322    temp = entropy->EOBRUN;
323    nbits = 0;
324    while ((temp >>= 1))
325      nbits++;
326    /* safety check: shouldn't happen given limited correction-bit buffer */
327    if (nbits > 14)
328      ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
329
330    emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
331    if (nbits)
332      emit_bits(entropy, entropy->EOBRUN, nbits);
333
334    entropy->EOBRUN = 0;
335
336    /* Emit any buffered correction bits */
337    emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
338    entropy->BE = 0;
339  }
340}
341
342
343/*
344 * Emit a restart marker & resynchronize predictions.
345 */
346
347LOCAL(void)
348emit_restart (phuff_entropy_ptr entropy, int restart_num)
349{
350  int ci;
351
352  emit_eobrun(entropy);
353
354  if (! entropy->gather_statistics) {
355    flush_bits(entropy);
356    emit_byte(entropy, 0xFF);
357    emit_byte(entropy, JPEG_RST0 + restart_num);
358  }
359
360  if (entropy->cinfo->Ss == 0) {
361    /* Re-initialize DC predictions to 0 */
362    for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
363      entropy->last_dc_val[ci] = 0;
364  } else {
365    /* Re-initialize all AC-related fields to 0 */
366    entropy->EOBRUN = 0;
367    entropy->BE = 0;
368  }
369}
370
371
372/*
373 * MCU encoding for DC initial scan (either spectral selection,
374 * or first pass of successive approximation).
375 */
376
377METHODDEF(boolean)
378encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
379{
380  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
381  register int temp, temp2;
382  register int nbits;
383  int blkn, ci;
384  int Al = cinfo->Al;
385  JBLOCKROW block;
386  jpeg_component_info * compptr;
387  ISHIFT_TEMPS
388
389  entropy->next_output_byte = cinfo->dest->next_output_byte;
390  entropy->free_in_buffer = cinfo->dest->free_in_buffer;
391
392  /* Emit restart marker if needed */
393  if (cinfo->restart_interval)
394    if (entropy->restarts_to_go == 0)
395      emit_restart(entropy, entropy->next_restart_num);
396
397  /* Encode the MCU data blocks */
398  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
399    block = MCU_data[blkn];
400    ci = cinfo->MCU_membership[blkn];
401    compptr = cinfo->cur_comp_info[ci];
402
403    /* Compute the DC value after the required point transform by Al.
404     * This is simply an arithmetic right shift.
405     */
406    temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al);
407
408    /* DC differences are figured on the point-transformed values. */
409    temp = temp2 - entropy->last_dc_val[ci];
410    entropy->last_dc_val[ci] = temp2;
411
412    /* Encode the DC coefficient difference per section G.1.2.1 */
413    temp2 = temp;
414    if (temp < 0) {
415      temp = -temp;		/* temp is abs value of input */
416      /* For a negative input, want temp2 = bitwise complement of abs(input) */
417      /* This code assumes we are on a two's complement machine */
418      temp2--;
419    }
420
421    /* Find the number of bits needed for the magnitude of the coefficient */
422    nbits = 0;
423    while (temp) {
424      nbits++;
425      temp >>= 1;
426    }
427    /* Check for out-of-range coefficient values.
428     * Since we're encoding a difference, the range limit is twice as much.
429     */
430    if (nbits > MAX_COEF_BITS+1)
431      ERREXIT(cinfo, JERR_BAD_DCT_COEF);
432
433    /* Count/emit the Huffman-coded symbol for the number of bits */
434    emit_symbol(entropy, compptr->dc_tbl_no, nbits);
435
436    /* Emit that number of bits of the value, if positive, */
437    /* or the complement of its magnitude, if negative. */
438    if (nbits)			/* emit_bits rejects calls with size 0 */
439      emit_bits(entropy, (unsigned int) temp2, nbits);
440  }
441
442  cinfo->dest->next_output_byte = entropy->next_output_byte;
443  cinfo->dest->free_in_buffer = entropy->free_in_buffer;
444
445  /* Update restart-interval state too */
446  if (cinfo->restart_interval) {
447    if (entropy->restarts_to_go == 0) {
448      entropy->restarts_to_go = cinfo->restart_interval;
449      entropy->next_restart_num++;
450      entropy->next_restart_num &= 7;
451    }
452    entropy->restarts_to_go--;
453  }
454
455  return TRUE;
456}
457
458
459/*
460 * MCU encoding for AC initial scan (either spectral selection,
461 * or first pass of successive approximation).
462 */
463
464METHODDEF(boolean)
465encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
466{
467  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
468  register int temp, temp2;
469  register int nbits;
470  register int r, k;
471  int Se = cinfo->Se;
472  int Al = cinfo->Al;
473  JBLOCKROW block;
474
475  entropy->next_output_byte = cinfo->dest->next_output_byte;
476  entropy->free_in_buffer = cinfo->dest->free_in_buffer;
477
478  /* Emit restart marker if needed */
479  if (cinfo->restart_interval)
480    if (entropy->restarts_to_go == 0)
481      emit_restart(entropy, entropy->next_restart_num);
482
483  /* Encode the MCU data block */
484  block = MCU_data[0];
485
486  /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
487
488  r = 0;			/* r = run length of zeros */
489
490  for (k = cinfo->Ss; k <= Se; k++) {
491    if ((temp = (*block)[jpeg_natural_order[k]]) == 0) {
492      r++;
493      continue;
494    }
495    /* We must apply the point transform by Al.  For AC coefficients this
496     * is an integer division with rounding towards 0.  To do this portably
497     * in C, we shift after obtaining the absolute value; so the code is
498     * interwoven with finding the abs value (temp) and output bits (temp2).
499     */
500    if (temp < 0) {
501      temp = -temp;		/* temp is abs value of input */
502      temp >>= Al;		/* apply the point transform */
503      /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
504      temp2 = ~temp;
505    } else {
506      temp >>= Al;		/* apply the point transform */
507      temp2 = temp;
508    }
509    /* Watch out for case that nonzero coef is zero after point transform */
510    if (temp == 0) {
511      r++;
512      continue;
513    }
514
515    /* Emit any pending EOBRUN */
516    if (entropy->EOBRUN > 0)
517      emit_eobrun(entropy);
518    /* if run length > 15, must emit special run-length-16 codes (0xF0) */
519    while (r > 15) {
520      emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
521      r -= 16;
522    }
523
524    /* Find the number of bits needed for the magnitude of the coefficient */
525    nbits = 1;			/* there must be at least one 1 bit */
526    while ((temp >>= 1))
527      nbits++;
528    /* Check for out-of-range coefficient values */
529    if (nbits > MAX_COEF_BITS)
530      ERREXIT(cinfo, JERR_BAD_DCT_COEF);
531
532    /* Count/emit Huffman symbol for run length / number of bits */
533    emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
534
535    /* Emit that number of bits of the value, if positive, */
536    /* or the complement of its magnitude, if negative. */
537    emit_bits(entropy, (unsigned int) temp2, nbits);
538
539    r = 0;			/* reset zero run length */
540  }
541
542  if (r > 0) {			/* If there are trailing zeroes, */
543    entropy->EOBRUN++;		/* count an EOB */
544    if (entropy->EOBRUN == 0x7FFF)
545      emit_eobrun(entropy);	/* force it out to avoid overflow */
546  }
547
548  cinfo->dest->next_output_byte = entropy->next_output_byte;
549  cinfo->dest->free_in_buffer = entropy->free_in_buffer;
550
551  /* Update restart-interval state too */
552  if (cinfo->restart_interval) {
553    if (entropy->restarts_to_go == 0) {
554      entropy->restarts_to_go = cinfo->restart_interval;
555      entropy->next_restart_num++;
556      entropy->next_restart_num &= 7;
557    }
558    entropy->restarts_to_go--;
559  }
560
561  return TRUE;
562}
563
564
565/*
566 * MCU encoding for DC successive approximation refinement scan.
567 * Note: we assume such scans can be multi-component, although the spec
568 * is not very clear on the point.
569 */
570
571METHODDEF(boolean)
572encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
573{
574  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
575  register int temp;
576  int blkn;
577  int Al = cinfo->Al;
578  JBLOCKROW block;
579
580  entropy->next_output_byte = cinfo->dest->next_output_byte;
581  entropy->free_in_buffer = cinfo->dest->free_in_buffer;
582
583  /* Emit restart marker if needed */
584  if (cinfo->restart_interval)
585    if (entropy->restarts_to_go == 0)
586      emit_restart(entropy, entropy->next_restart_num);
587
588  /* Encode the MCU data blocks */
589  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
590    block = MCU_data[blkn];
591
592    /* We simply emit the Al'th bit of the DC coefficient value. */
593    temp = (*block)[0];
594    emit_bits(entropy, (unsigned int) (temp >> Al), 1);
595  }
596
597  cinfo->dest->next_output_byte = entropy->next_output_byte;
598  cinfo->dest->free_in_buffer = entropy->free_in_buffer;
599
600  /* Update restart-interval state too */
601  if (cinfo->restart_interval) {
602    if (entropy->restarts_to_go == 0) {
603      entropy->restarts_to_go = cinfo->restart_interval;
604      entropy->next_restart_num++;
605      entropy->next_restart_num &= 7;
606    }
607    entropy->restarts_to_go--;
608  }
609
610  return TRUE;
611}
612
613
614/*
615 * MCU encoding for AC successive approximation refinement scan.
616 */
617
618METHODDEF(boolean)
619encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
620{
621  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
622  register int temp;
623  register int r, k;
624  int EOB;
625  char *BR_buffer;
626  unsigned int BR;
627  int Se = cinfo->Se;
628  int Al = cinfo->Al;
629  JBLOCKROW block;
630  int absvalues[DCTSIZE2];
631
632  entropy->next_output_byte = cinfo->dest->next_output_byte;
633  entropy->free_in_buffer = cinfo->dest->free_in_buffer;
634
635  /* Emit restart marker if needed */
636  if (cinfo->restart_interval)
637    if (entropy->restarts_to_go == 0)
638      emit_restart(entropy, entropy->next_restart_num);
639
640  /* Encode the MCU data block */
641  block = MCU_data[0];
642
643  /* It is convenient to make a pre-pass to determine the transformed
644   * coefficients' absolute values and the EOB position.
645   */
646  EOB = 0;
647  for (k = cinfo->Ss; k <= Se; k++) {
648    temp = (*block)[jpeg_natural_order[k]];
649    /* We must apply the point transform by Al.  For AC coefficients this
650     * is an integer division with rounding towards 0.  To do this portably
651     * in C, we shift after obtaining the absolute value.
652     */
653    if (temp < 0)
654      temp = -temp;		/* temp is abs value of input */
655    temp >>= Al;		/* apply the point transform */
656    absvalues[k] = temp;	/* save abs value for main pass */
657    if (temp == 1)
658      EOB = k;			/* EOB = index of last newly-nonzero coef */
659  }
660
661  /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
662
663  r = 0;			/* r = run length of zeros */
664  BR = 0;			/* BR = count of buffered bits added now */
665  BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
666
667  for (k = cinfo->Ss; k <= Se; k++) {
668    if ((temp = absvalues[k]) == 0) {
669      r++;
670      continue;
671    }
672
673    /* Emit any required ZRLs, but not if they can be folded into EOB */
674    while (r > 15 && k <= EOB) {
675      /* emit any pending EOBRUN and the BE correction bits */
676      emit_eobrun(entropy);
677      /* Emit ZRL */
678      emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
679      r -= 16;
680      /* Emit buffered correction bits that must be associated with ZRL */
681      emit_buffered_bits(entropy, BR_buffer, BR);
682      BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
683      BR = 0;
684    }
685
686    /* If the coef was previously nonzero, it only needs a correction bit.
687     * NOTE: a straight translation of the spec's figure G.7 would suggest
688     * that we also need to test r > 15.  But if r > 15, we can only get here
689     * if k > EOB, which implies that this coefficient is not 1.
690     */
691    if (temp > 1) {
692      /* The correction bit is the next bit of the absolute value. */
693      BR_buffer[BR++] = (char) (temp & 1);
694      continue;
695    }
696
697    /* Emit any pending EOBRUN and the BE correction bits */
698    emit_eobrun(entropy);
699
700    /* Count/emit Huffman symbol for run length / number of bits */
701    emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
702
703    /* Emit output bit for newly-nonzero coef */
704    temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1;
705    emit_bits(entropy, (unsigned int) temp, 1);
706
707    /* Emit buffered correction bits that must be associated with this code */
708    emit_buffered_bits(entropy, BR_buffer, BR);
709    BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
710    BR = 0;
711    r = 0;			/* reset zero run length */
712  }
713
714  if (r > 0 || BR > 0) {	/* If there are trailing zeroes, */
715    entropy->EOBRUN++;		/* count an EOB */
716    entropy->BE += BR;		/* concat my correction bits to older ones */
717    /* We force out the EOB if we risk either:
718     * 1. overflow of the EOB counter;
719     * 2. overflow of the correction bit buffer during the next MCU.
720     */
721    if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
722      emit_eobrun(entropy);
723  }
724
725  cinfo->dest->next_output_byte = entropy->next_output_byte;
726  cinfo->dest->free_in_buffer = entropy->free_in_buffer;
727
728  /* Update restart-interval state too */
729  if (cinfo->restart_interval) {
730    if (entropy->restarts_to_go == 0) {
731      entropy->restarts_to_go = cinfo->restart_interval;
732      entropy->next_restart_num++;
733      entropy->next_restart_num &= 7;
734    }
735    entropy->restarts_to_go--;
736  }
737
738  return TRUE;
739}
740
741
742/*
743 * Finish up at the end of a Huffman-compressed progressive scan.
744 */
745
746METHODDEF(void)
747finish_pass_phuff (j_compress_ptr cinfo)
748{
749  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
750
751  entropy->next_output_byte = cinfo->dest->next_output_byte;
752  entropy->free_in_buffer = cinfo->dest->free_in_buffer;
753
754  /* Flush out any buffered data */
755  emit_eobrun(entropy);
756  flush_bits(entropy);
757
758  cinfo->dest->next_output_byte = entropy->next_output_byte;
759  cinfo->dest->free_in_buffer = entropy->free_in_buffer;
760}
761
762
763/*
764 * Finish up a statistics-gathering pass and create the new Huffman tables.
765 */
766
767METHODDEF(void)
768finish_pass_gather_phuff (j_compress_ptr cinfo)
769{
770  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
771  boolean is_DC_band;
772  int ci, tbl;
773  jpeg_component_info * compptr;
774  JHUFF_TBL **htblptr;
775  boolean did[NUM_HUFF_TBLS];
776
777  /* Flush out buffered data (all we care about is counting the EOB symbol) */
778  emit_eobrun(entropy);
779
780  is_DC_band = (cinfo->Ss == 0);
781
782  /* It's important not to apply jpeg_gen_optimal_table more than once
783   * per table, because it clobbers the input frequency counts!
784   */
785  MEMZERO(did, SIZEOF(did));
786
787  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
788    compptr = cinfo->cur_comp_info[ci];
789    if (is_DC_band) {
790      if (cinfo->Ah != 0)	/* DC refinement needs no table */
791	continue;
792      tbl = compptr->dc_tbl_no;
793    } else {
794      tbl = compptr->ac_tbl_no;
795    }
796    if (! did[tbl]) {
797      if (is_DC_band)
798        htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
799      else
800        htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
801      if (*htblptr == NULL)
802        *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
803      jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]);
804      did[tbl] = TRUE;
805    }
806  }
807}
808
809
810/*
811 * Module initialization routine for progressive Huffman entropy encoding.
812 */
813
814GLOBAL(void)
815jinit_phuff_encoder (j_compress_ptr cinfo)
816{
817  phuff_entropy_ptr entropy;
818  int i;
819
820  entropy = (phuff_entropy_ptr)
821    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
822				SIZEOF(phuff_entropy_encoder));
823  cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
824  entropy->pub.start_pass = start_pass_phuff;
825
826  /* Mark tables unallocated */
827  for (i = 0; i < NUM_HUFF_TBLS; i++) {
828    entropy->derived_tbls[i] = NULL;
829    entropy->count_ptrs[i] = NULL;
830  }
831  entropy->bit_buffer = NULL;	/* needed only in AC refinement scan */
832}
833
834#endif /* C_PROGRESSIVE_SUPPORTED */
835
836#endif //_FX_JPEG_TURBO_
837