1/* 2 * jmemmgr.c 3 * 4 * Copyright (C) 1991-1997, Thomas G. Lane. 5 * This file is part of the Independent JPEG Group's software. 6 * For conditions of distribution and use, see the accompanying README file. 7 * 8 * This file contains the JPEG system-independent memory management 9 * routines. This code is usable across a wide variety of machines; most 10 * of the system dependencies have been isolated in a separate file. 11 * The major functions provided here are: 12 * * pool-based allocation and freeing of memory; 13 * * policy decisions about how to divide available memory among the 14 * virtual arrays; 15 * * control logic for swapping virtual arrays between main memory and 16 * backing storage. 17 * The separate system-dependent file provides the actual backing-storage 18 * access code, and it contains the policy decision about how much total 19 * main memory to use. 20 * This file is system-dependent in the sense that some of its functions 21 * are unnecessary in some systems. For example, if there is enough virtual 22 * memory so that backing storage will never be used, much of the virtual 23 * array control logic could be removed. (Of course, if you have that much 24 * memory then you shouldn't care about a little bit of unused code...) 25 */ 26 27#define JPEG_INTERNALS 28#define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */ 29#include "jinclude.h" 30#include "jpeglib.h" 31#include "jmemsys.h" /* import the system-dependent declarations */ 32 33#ifndef NO_GETENV 34#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */ 35extern char * getenv JPP((const char * name)); 36#endif 37#endif 38 39 40/* 41 * Some important notes: 42 * The allocation routines provided here must never return NULL. 43 * They should exit to error_exit if unsuccessful. 44 * 45 * It's not a good idea to try to merge the sarray and barray routines, 46 * even though they are textually almost the same, because samples are 47 * usually stored as bytes while coefficients are shorts or ints. Thus, 48 * in machines where byte pointers have a different representation from 49 * word pointers, the resulting machine code could not be the same. 50 */ 51 52 53/* 54 * Many machines require storage alignment: longs must start on 4-byte 55 * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc() 56 * always returns pointers that are multiples of the worst-case alignment 57 * requirement, and we had better do so too. 58 * There isn't any really portable way to determine the worst-case alignment 59 * requirement. This module assumes that the alignment requirement is 60 * multiples of sizeof(ALIGN_TYPE). 61 * By default, we define ALIGN_TYPE as double. This is necessary on some 62 * workstations (where doubles really do need 8-byte alignment) and will work 63 * fine on nearly everything. If your machine has lesser alignment needs, 64 * you can save a few bytes by making ALIGN_TYPE smaller. 65 * The only place I know of where this will NOT work is certain Macintosh 66 * 680x0 compilers that define double as a 10-byte IEEE extended float. 67 * Doing 10-byte alignment is counterproductive because longwords won't be 68 * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have 69 * such a compiler. 70 */ 71 72#ifndef ALIGN_TYPE /* so can override from jconfig.h */ 73#define ALIGN_TYPE double 74#endif 75 76 77/* 78 * We allocate objects from "pools", where each pool is gotten with a single 79 * request to jpeg_get_small() or jpeg_get_large(). There is no per-object 80 * overhead within a pool, except for alignment padding. Each pool has a 81 * header with a link to the next pool of the same class. 82 * Small and large pool headers are identical except that the latter's 83 * link pointer must be FAR on 80x86 machines. 84 * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE 85 * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple 86 * of the alignment requirement of ALIGN_TYPE. 87 */ 88 89typedef union small_pool_struct * small_pool_ptr; 90 91typedef union small_pool_struct { 92 struct { 93 small_pool_ptr next; /* next in list of pools */ 94 size_t bytes_used; /* how many bytes already used within pool */ 95 size_t bytes_left; /* bytes still available in this pool */ 96 } hdr; 97 ALIGN_TYPE dummy; /* included in union to ensure alignment */ 98} small_pool_hdr; 99 100typedef union large_pool_struct FAR * large_pool_ptr; 101 102typedef union large_pool_struct { 103 struct { 104 large_pool_ptr next; /* next in list of pools */ 105 size_t bytes_used; /* how many bytes already used within pool */ 106 size_t bytes_left; /* bytes still available in this pool */ 107 } hdr; 108 ALIGN_TYPE dummy; /* included in union to ensure alignment */ 109} large_pool_hdr; 110 111 112/* 113 * Here is the full definition of a memory manager object. 114 */ 115 116typedef struct { 117 struct jpeg_memory_mgr pub; /* public fields */ 118 119 /* Each pool identifier (lifetime class) names a linked list of pools. */ 120 small_pool_ptr small_list[JPOOL_NUMPOOLS]; 121 large_pool_ptr large_list[JPOOL_NUMPOOLS]; 122 123 /* Since we only have one lifetime class of virtual arrays, only one 124 * linked list is necessary (for each datatype). Note that the virtual 125 * array control blocks being linked together are actually stored somewhere 126 * in the small-pool list. 127 */ 128 jvirt_sarray_ptr virt_sarray_list; 129 jvirt_barray_ptr virt_barray_list; 130 131 /* This counts total space obtained from jpeg_get_small/large */ 132 long total_space_allocated; 133 134 /* alloc_sarray and alloc_barray set this value for use by virtual 135 * array routines. 136 */ 137 JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */ 138} my_memory_mgr; 139 140typedef my_memory_mgr * my_mem_ptr; 141 142 143/* 144 * The control blocks for virtual arrays. 145 * Note that these blocks are allocated in the "small" pool area. 146 * System-dependent info for the associated backing store (if any) is hidden 147 * inside the backing_store_info struct. 148 */ 149 150struct jvirt_sarray_control { 151 JSAMPARRAY mem_buffer; /* => the in-memory buffer */ 152 JDIMENSION rows_in_array; /* total virtual array height */ 153 JDIMENSION samplesperrow; /* width of array (and of memory buffer) */ 154 JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */ 155 JDIMENSION rows_in_mem; /* height of memory buffer */ 156 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ 157 JDIMENSION cur_start_row; /* first logical row # in the buffer */ 158 JDIMENSION first_undef_row; /* row # of first uninitialized row */ 159 boolean pre_zero; /* pre-zero mode requested? */ 160 boolean dirty; /* do current buffer contents need written? */ 161 boolean b_s_open; /* is backing-store data valid? */ 162 jvirt_sarray_ptr next; /* link to next virtual sarray control block */ 163 backing_store_info b_s_info; /* System-dependent control info */ 164}; 165 166struct jvirt_barray_control { 167 JBLOCKARRAY mem_buffer; /* => the in-memory buffer */ 168 JDIMENSION rows_in_array; /* total virtual array height */ 169 JDIMENSION blocksperrow; /* width of array (and of memory buffer) */ 170 JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */ 171 JDIMENSION rows_in_mem; /* height of memory buffer */ 172 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ 173 JDIMENSION cur_start_row; /* first logical row # in the buffer */ 174 JDIMENSION first_undef_row; /* row # of first uninitialized row */ 175 boolean pre_zero; /* pre-zero mode requested? */ 176 boolean dirty; /* do current buffer contents need written? */ 177 boolean b_s_open; /* is backing-store data valid? */ 178 jvirt_barray_ptr next; /* link to next virtual barray control block */ 179 backing_store_info b_s_info; /* System-dependent control info */ 180}; 181 182 183#ifdef MEM_STATS /* optional extra stuff for statistics */ 184 185LOCAL(void) 186print_mem_stats (j_common_ptr cinfo, int pool_id) 187{ 188 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; 189 small_pool_ptr shdr_ptr; 190 large_pool_ptr lhdr_ptr; 191 192 /* Since this is only a debugging stub, we can cheat a little by using 193 * fprintf directly rather than going through the trace message code. 194 * This is helpful because message parm array can't handle longs. 195 */ 196 fprintf(stderr, "Freeing pool %d, total space = %ld\n", 197 pool_id, mem->total_space_allocated); 198 199 for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL; 200 lhdr_ptr = lhdr_ptr->hdr.next) { 201 fprintf(stderr, " Large chunk used %ld\n", 202 (long) lhdr_ptr->hdr.bytes_used); 203 } 204 205 for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL; 206 shdr_ptr = shdr_ptr->hdr.next) { 207 fprintf(stderr, " Small chunk used %ld free %ld\n", 208 (long) shdr_ptr->hdr.bytes_used, 209 (long) shdr_ptr->hdr.bytes_left); 210 } 211} 212 213#endif /* MEM_STATS */ 214 215 216LOCAL(void) 217out_of_memory (j_common_ptr cinfo, int which) 218/* Report an out-of-memory error and stop execution */ 219/* If we compiled MEM_STATS support, report alloc requests before dying */ 220{ 221#ifdef MEM_STATS 222 cinfo->err->trace_level = 2; /* force self_destruct to report stats */ 223#endif 224 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which); 225} 226 227 228/* 229 * Allocation of "small" objects. 230 * 231 * For these, we use pooled storage. When a new pool must be created, 232 * we try to get enough space for the current request plus a "slop" factor, 233 * where the slop will be the amount of leftover space in the new pool. 234 * The speed vs. space tradeoff is largely determined by the slop values. 235 * A different slop value is provided for each pool class (lifetime), 236 * and we also distinguish the first pool of a class from later ones. 237 * NOTE: the values given work fairly well on both 16- and 32-bit-int 238 * machines, but may be too small if longs are 64 bits or more. 239 */ 240 241static const size_t first_pool_slop[JPOOL_NUMPOOLS] = 242{ 243 1600, /* first PERMANENT pool */ 244 16000 /* first IMAGE pool */ 245}; 246 247static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = 248{ 249 0, /* additional PERMANENT pools */ 250 5000 /* additional IMAGE pools */ 251}; 252 253#define MIN_SLOP 50 /* greater than 0 to avoid futile looping */ 254 255 256METHODDEF(void *) 257alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject) 258/* Allocate a "small" object */ 259{ 260 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; 261 small_pool_ptr hdr_ptr, prev_hdr_ptr; 262 char * data_ptr; 263 size_t odd_bytes, min_request, slop; 264 265 /* Check for unsatisfiable request (do now to ensure no overflow below) */ 266 if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr))) 267 out_of_memory(cinfo, 1); /* request exceeds malloc's ability */ 268 269 /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ 270 odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); 271 if (odd_bytes > 0) 272 sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; 273 274 /* See if space is available in any existing pool */ 275 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) 276 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ 277 prev_hdr_ptr = NULL; 278 hdr_ptr = mem->small_list[pool_id]; 279 while (hdr_ptr != NULL) { 280 if (hdr_ptr->hdr.bytes_left >= sizeofobject) 281 break; /* found pool with enough space */ 282 prev_hdr_ptr = hdr_ptr; 283 hdr_ptr = hdr_ptr->hdr.next; 284 } 285 286 /* Time to make a new pool? */ 287 if (hdr_ptr == NULL) { 288 /* min_request is what we need now, slop is what will be leftover */ 289 min_request = sizeofobject + SIZEOF(small_pool_hdr); 290 if (prev_hdr_ptr == NULL) /* first pool in class? */ 291 slop = first_pool_slop[pool_id]; 292 else 293 slop = extra_pool_slop[pool_id]; 294 /* Don't ask for more than MAX_ALLOC_CHUNK */ 295 if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request)) 296 slop = (size_t) (MAX_ALLOC_CHUNK-min_request); 297 /* Try to get space, if fail reduce slop and try again */ 298 for (;;) { 299 hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop); 300 if (hdr_ptr != NULL) 301 break; 302 slop /= 2; 303 if (slop < MIN_SLOP) /* give up when it gets real small */ 304 out_of_memory(cinfo, 2); /* jpeg_get_small failed */ 305 } 306 mem->total_space_allocated += min_request + slop; 307 /* Success, initialize the new pool header and add to end of list */ 308 hdr_ptr->hdr.next = NULL; 309 hdr_ptr->hdr.bytes_used = 0; 310 hdr_ptr->hdr.bytes_left = sizeofobject + slop; 311 if (prev_hdr_ptr == NULL) /* first pool in class? */ 312 mem->small_list[pool_id] = hdr_ptr; 313 else 314 prev_hdr_ptr->hdr.next = hdr_ptr; 315 } 316 317 /* OK, allocate the object from the current pool */ 318 data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */ 319 data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */ 320 hdr_ptr->hdr.bytes_used += sizeofobject; 321 hdr_ptr->hdr.bytes_left -= sizeofobject; 322 323 return (void *) data_ptr; 324} 325 326 327/* 328 * Allocation of "large" objects. 329 * 330 * The external semantics of these are the same as "small" objects, 331 * except that FAR pointers are used on 80x86. However the pool 332 * management heuristics are quite different. We assume that each 333 * request is large enough that it may as well be passed directly to 334 * jpeg_get_large; the pool management just links everything together 335 * so that we can free it all on demand. 336 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY 337 * structures. The routines that create these structures (see below) 338 * deliberately bunch rows together to ensure a large request size. 339 */ 340 341METHODDEF(void FAR *) 342alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject) 343/* Allocate a "large" object */ 344{ 345 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; 346 large_pool_ptr hdr_ptr; 347 size_t odd_bytes; 348 349 /* Check for unsatisfiable request (do now to ensure no overflow below) */ 350 if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr))) 351 out_of_memory(cinfo, 3); /* request exceeds malloc's ability */ 352 353 /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ 354 odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); 355 if (odd_bytes > 0) 356 sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; 357 358 /* Always make a new pool */ 359 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) 360 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ 361 362 hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject + 363 SIZEOF(large_pool_hdr)); 364 if (hdr_ptr == NULL) 365 out_of_memory(cinfo, 4); /* jpeg_get_large failed */ 366 mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr); 367 368 /* Success, initialize the new pool header and add to list */ 369 hdr_ptr->hdr.next = mem->large_list[pool_id]; 370 /* We maintain space counts in each pool header for statistical purposes, 371 * even though they are not needed for allocation. 372 */ 373 hdr_ptr->hdr.bytes_used = sizeofobject; 374 hdr_ptr->hdr.bytes_left = 0; 375 mem->large_list[pool_id] = hdr_ptr; 376 377 return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */ 378} 379 380 381/* 382 * Creation of 2-D sample arrays. 383 * The pointers are in near heap, the samples themselves in FAR heap. 384 * 385 * To minimize allocation overhead and to allow I/O of large contiguous 386 * blocks, we allocate the sample rows in groups of as many rows as possible 387 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. 388 * NB: the virtual array control routines, later in this file, know about 389 * this chunking of rows. The rowsperchunk value is left in the mem manager 390 * object so that it can be saved away if this sarray is the workspace for 391 * a virtual array. 392 */ 393 394METHODDEF(JSAMPARRAY) 395alloc_sarray (j_common_ptr cinfo, int pool_id, 396 JDIMENSION samplesperrow, JDIMENSION numrows) 397/* Allocate a 2-D sample array */ 398{ 399 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; 400 JSAMPARRAY result; 401 JSAMPROW workspace; 402 JDIMENSION rowsperchunk, currow, i; 403 long ltemp; 404 405 /* Calculate max # of rows allowed in one allocation chunk */ 406 ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / 407 ((long) samplesperrow * SIZEOF(JSAMPLE)); 408 if (ltemp <= 0) 409 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); 410 if (ltemp < (long) numrows) 411 rowsperchunk = (JDIMENSION) ltemp; 412 else 413 rowsperchunk = numrows; 414 mem->last_rowsperchunk = rowsperchunk; 415 416 /* Get space for row pointers (small object) */ 417 result = (JSAMPARRAY) alloc_small(cinfo, pool_id, 418 (size_t) (numrows * SIZEOF(JSAMPROW))); 419 420 /* Get the rows themselves (large objects) */ 421 currow = 0; 422 while (currow < numrows) { 423 rowsperchunk = MIN(rowsperchunk, numrows - currow); 424 workspace = (JSAMPROW) alloc_large(cinfo, pool_id, 425 (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow 426 * SIZEOF(JSAMPLE))); 427 for (i = rowsperchunk; i > 0; i--) { 428 result[currow++] = workspace; 429 workspace += samplesperrow; 430 } 431 } 432 433 return result; 434} 435 436 437/* 438 * Creation of 2-D coefficient-block arrays. 439 * This is essentially the same as the code for sample arrays, above. 440 */ 441 442METHODDEF(JBLOCKARRAY) 443alloc_barray (j_common_ptr cinfo, int pool_id, 444 JDIMENSION blocksperrow, JDIMENSION numrows) 445/* Allocate a 2-D coefficient-block array */ 446{ 447 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; 448 JBLOCKARRAY result; 449 JBLOCKROW workspace; 450 JDIMENSION rowsperchunk, currow, i; 451 long ltemp; 452 453 /* Calculate max # of rows allowed in one allocation chunk */ 454 ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / 455 ((long) blocksperrow * SIZEOF(JBLOCK)); 456 if (ltemp <= 0) 457 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); 458 if (ltemp < (long) numrows) 459 rowsperchunk = (JDIMENSION) ltemp; 460 else 461 rowsperchunk = numrows; 462 mem->last_rowsperchunk = rowsperchunk; 463 464 /* Get space for row pointers (small object) */ 465 result = (JBLOCKARRAY) alloc_small(cinfo, pool_id, 466 (size_t) (numrows * SIZEOF(JBLOCKROW))); 467 468 /* Get the rows themselves (large objects) */ 469 currow = 0; 470 while (currow < numrows) { 471 rowsperchunk = MIN(rowsperchunk, numrows - currow); 472 workspace = (JBLOCKROW) alloc_large(cinfo, pool_id, 473 (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow 474 * SIZEOF(JBLOCK))); 475 for (i = rowsperchunk; i > 0; i--) { 476 result[currow++] = workspace; 477 workspace += blocksperrow; 478 } 479 } 480 481 return result; 482} 483 484 485/* 486 * About virtual array management: 487 * 488 * The above "normal" array routines are only used to allocate strip buffers 489 * (as wide as the image, but just a few rows high). Full-image-sized buffers 490 * are handled as "virtual" arrays. The array is still accessed a strip at a 491 * time, but the memory manager must save the whole array for repeated 492 * accesses. The intended implementation is that there is a strip buffer in 493 * memory (as high as is possible given the desired memory limit), plus a 494 * backing file that holds the rest of the array. 495 * 496 * The request_virt_array routines are told the total size of the image and 497 * the maximum number of rows that will be accessed at once. The in-memory 498 * buffer must be at least as large as the maxaccess value. 499 * 500 * The request routines create control blocks but not the in-memory buffers. 501 * That is postponed until realize_virt_arrays is called. At that time the 502 * total amount of space needed is known (approximately, anyway), so free 503 * memory can be divided up fairly. 504 * 505 * The access_virt_array routines are responsible for making a specific strip 506 * area accessible (after reading or writing the backing file, if necessary). 507 * Note that the access routines are told whether the caller intends to modify 508 * the accessed strip; during a read-only pass this saves having to rewrite 509 * data to disk. The access routines are also responsible for pre-zeroing 510 * any newly accessed rows, if pre-zeroing was requested. 511 * 512 * In current usage, the access requests are usually for nonoverlapping 513 * strips; that is, successive access start_row numbers differ by exactly 514 * num_rows = maxaccess. This means we can get good performance with simple 515 * buffer dump/reload logic, by making the in-memory buffer be a multiple 516 * of the access height; then there will never be accesses across bufferload 517 * boundaries. The code will still work with overlapping access requests, 518 * but it doesn't handle bufferload overlaps very efficiently. 519 */ 520 521 522METHODDEF(jvirt_sarray_ptr) 523request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero, 524 JDIMENSION samplesperrow, JDIMENSION numrows, 525 JDIMENSION maxaccess) 526/* Request a virtual 2-D sample array */ 527{ 528 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; 529 jvirt_sarray_ptr result; 530 531 /* Only IMAGE-lifetime virtual arrays are currently supported */ 532 if (pool_id != JPOOL_IMAGE) 533 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ 534 535 /* get control block */ 536 result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id, 537 SIZEOF(struct jvirt_sarray_control)); 538 539 result->mem_buffer = NULL; /* marks array not yet realized */ 540 result->rows_in_array = numrows; 541 result->samplesperrow = samplesperrow; 542 result->maxaccess = maxaccess; 543 result->pre_zero = pre_zero; 544 result->b_s_open = FALSE; /* no associated backing-store object */ 545 result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ 546 mem->virt_sarray_list = result; 547 548 return result; 549} 550 551 552METHODDEF(jvirt_barray_ptr) 553request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero, 554 JDIMENSION blocksperrow, JDIMENSION numrows, 555 JDIMENSION maxaccess) 556/* Request a virtual 2-D coefficient-block array */ 557{ 558 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; 559 jvirt_barray_ptr result; 560 561 /* Only IMAGE-lifetime virtual arrays are currently supported */ 562 if (pool_id != JPOOL_IMAGE) 563 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ 564 565 /* get control block */ 566 result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id, 567 SIZEOF(struct jvirt_barray_control)); 568 569 result->mem_buffer = NULL; /* marks array not yet realized */ 570 result->rows_in_array = numrows; 571 result->blocksperrow = blocksperrow; 572 result->maxaccess = maxaccess; 573 result->pre_zero = pre_zero; 574 result->b_s_open = FALSE; /* no associated backing-store object */ 575 result->next = mem->virt_barray_list; /* add to list of virtual arrays */ 576 mem->virt_barray_list = result; 577 578 return result; 579} 580 581 582METHODDEF(void) 583realize_virt_arrays (j_common_ptr cinfo) 584/* Allocate the in-memory buffers for any unrealized virtual arrays */ 585{ 586 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; 587 long space_per_minheight, maximum_space, avail_mem; 588 long minheights, max_minheights; 589 jvirt_sarray_ptr sptr; 590 jvirt_barray_ptr bptr; 591 592 /* Compute the minimum space needed (maxaccess rows in each buffer) 593 * and the maximum space needed (full image height in each buffer). 594 * These may be of use to the system-dependent jpeg_mem_available routine. 595 */ 596 space_per_minheight = 0; 597 maximum_space = 0; 598 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { 599 if (sptr->mem_buffer == NULL) { /* if not realized yet */ 600 space_per_minheight += (long) sptr->maxaccess * 601 (long) sptr->samplesperrow * SIZEOF(JSAMPLE); 602 maximum_space += (long) sptr->rows_in_array * 603 (long) sptr->samplesperrow * SIZEOF(JSAMPLE); 604 } 605 } 606 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { 607 if (bptr->mem_buffer == NULL) { /* if not realized yet */ 608 space_per_minheight += (long) bptr->maxaccess * 609 (long) bptr->blocksperrow * SIZEOF(JBLOCK); 610 maximum_space += (long) bptr->rows_in_array * 611 (long) bptr->blocksperrow * SIZEOF(JBLOCK); 612 } 613 } 614 615 if (space_per_minheight <= 0) 616 return; /* no unrealized arrays, no work */ 617 618 /* Determine amount of memory to actually use; this is system-dependent. */ 619 avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space, 620 mem->total_space_allocated); 621 622 /* If the maximum space needed is available, make all the buffers full 623 * height; otherwise parcel it out with the same number of minheights 624 * in each buffer. 625 */ 626 if (avail_mem >= maximum_space) 627 max_minheights = 1000000000L; 628 else { 629 max_minheights = avail_mem / space_per_minheight; 630 /* If there doesn't seem to be enough space, try to get the minimum 631 * anyway. This allows a "stub" implementation of jpeg_mem_available(). 632 */ 633 if (max_minheights <= 0) 634 max_minheights = 1; 635 } 636 637 /* Allocate the in-memory buffers and initialize backing store as needed. */ 638 639 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { 640 if (sptr->mem_buffer == NULL) { /* if not realized yet */ 641 minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; 642 if (minheights <= max_minheights) { 643 /* This buffer fits in memory */ 644 sptr->rows_in_mem = sptr->rows_in_array; 645 } else { 646 /* It doesn't fit in memory, create backing store. */ 647 sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess); 648 jpeg_open_backing_store(cinfo, & sptr->b_s_info, 649 (long) sptr->rows_in_array * 650 (long) sptr->samplesperrow * 651 (long) SIZEOF(JSAMPLE)); 652 sptr->b_s_open = TRUE; 653 } 654 sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE, 655 sptr->samplesperrow, sptr->rows_in_mem); 656 sptr->rowsperchunk = mem->last_rowsperchunk; 657 sptr->cur_start_row = 0; 658 sptr->first_undef_row = 0; 659 sptr->dirty = FALSE; 660 } 661 } 662 663 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { 664 if (bptr->mem_buffer == NULL) { /* if not realized yet */ 665 minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; 666 if (minheights <= max_minheights) { 667 /* This buffer fits in memory */ 668 bptr->rows_in_mem = bptr->rows_in_array; 669 } else { 670 /* It doesn't fit in memory, create backing store. */ 671 bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess); 672 jpeg_open_backing_store(cinfo, & bptr->b_s_info, 673 (long) bptr->rows_in_array * 674 (long) bptr->blocksperrow * 675 (long) SIZEOF(JBLOCK)); 676 bptr->b_s_open = TRUE; 677 } 678 bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE, 679 bptr->blocksperrow, bptr->rows_in_mem); 680 bptr->rowsperchunk = mem->last_rowsperchunk; 681 bptr->cur_start_row = 0; 682 bptr->first_undef_row = 0; 683 bptr->dirty = FALSE; 684 } 685 } 686} 687 688 689LOCAL(void) 690do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) 691/* Do backing store read or write of a virtual sample array */ 692{ 693 long bytesperrow, file_offset, byte_count, rows, thisrow, i; 694 695 bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE); 696 file_offset = ptr->cur_start_row * bytesperrow; 697 /* Loop to read or write each allocation chunk in mem_buffer */ 698 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { 699 /* One chunk, but check for short chunk at end of buffer */ 700 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); 701 /* Transfer no more than is currently defined */ 702 thisrow = (long) ptr->cur_start_row + i; 703 rows = MIN(rows, (long) ptr->first_undef_row - thisrow); 704 /* Transfer no more than fits in file */ 705 rows = MIN(rows, (long) ptr->rows_in_array - thisrow); 706 if (rows <= 0) /* this chunk might be past end of file! */ 707 break; 708 byte_count = rows * bytesperrow; 709 if (writing) 710 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, 711 (void FAR *) ptr->mem_buffer[i], 712 file_offset, byte_count); 713 else 714 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, 715 (void FAR *) ptr->mem_buffer[i], 716 file_offset, byte_count); 717 file_offset += byte_count; 718 } 719} 720 721 722LOCAL(void) 723do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) 724/* Do backing store read or write of a virtual coefficient-block array */ 725{ 726 long bytesperrow, file_offset, byte_count, rows, thisrow, i; 727 728 bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK); 729 file_offset = ptr->cur_start_row * bytesperrow; 730 /* Loop to read or write each allocation chunk in mem_buffer */ 731 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { 732 /* One chunk, but check for short chunk at end of buffer */ 733 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); 734 /* Transfer no more than is currently defined */ 735 thisrow = (long) ptr->cur_start_row + i; 736 rows = MIN(rows, (long) ptr->first_undef_row - thisrow); 737 /* Transfer no more than fits in file */ 738 rows = MIN(rows, (long) ptr->rows_in_array - thisrow); 739 if (rows <= 0) /* this chunk might be past end of file! */ 740 break; 741 byte_count = rows * bytesperrow; 742 if (writing) 743 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, 744 (void FAR *) ptr->mem_buffer[i], 745 file_offset, byte_count); 746 else 747 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, 748 (void FAR *) ptr->mem_buffer[i], 749 file_offset, byte_count); 750 file_offset += byte_count; 751 } 752} 753 754 755METHODDEF(JSAMPARRAY) 756access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr, 757 JDIMENSION start_row, JDIMENSION num_rows, 758 boolean writable) 759/* Access the part of a virtual sample array starting at start_row */ 760/* and extending for num_rows rows. writable is true if */ 761/* caller intends to modify the accessed area. */ 762{ 763 JDIMENSION end_row = start_row + num_rows; 764 JDIMENSION undef_row; 765 766 /* debugging check */ 767 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || 768 ptr->mem_buffer == NULL) 769 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); 770 771 /* Make the desired part of the virtual array accessible */ 772 if (start_row < ptr->cur_start_row || 773 end_row > ptr->cur_start_row+ptr->rows_in_mem) { 774 if (! ptr->b_s_open) 775 ERREXIT(cinfo, JERR_VIRTUAL_BUG); 776 /* Flush old buffer contents if necessary */ 777 if (ptr->dirty) { 778 do_sarray_io(cinfo, ptr, TRUE); 779 ptr->dirty = FALSE; 780 } 781 /* Decide what part of virtual array to access. 782 * Algorithm: if target address > current window, assume forward scan, 783 * load starting at target address. If target address < current window, 784 * assume backward scan, load so that target area is top of window. 785 * Note that when switching from forward write to forward read, will have 786 * start_row = 0, so the limiting case applies and we load from 0 anyway. 787 */ 788 if (start_row > ptr->cur_start_row) { 789 ptr->cur_start_row = start_row; 790 } else { 791 /* use long arithmetic here to avoid overflow & unsigned problems */ 792 long ltemp; 793 794 ltemp = (long) end_row - (long) ptr->rows_in_mem; 795 if (ltemp < 0) 796 ltemp = 0; /* don't fall off front end of file */ 797 ptr->cur_start_row = (JDIMENSION) ltemp; 798 } 799 /* Read in the selected part of the array. 800 * During the initial write pass, we will do no actual read 801 * because the selected part is all undefined. 802 */ 803 do_sarray_io(cinfo, ptr, FALSE); 804 } 805 /* Ensure the accessed part of the array is defined; prezero if needed. 806 * To improve locality of access, we only prezero the part of the array 807 * that the caller is about to access, not the entire in-memory array. 808 */ 809 if (ptr->first_undef_row < end_row) { 810 if (ptr->first_undef_row < start_row) { 811 if (writable) /* writer skipped over a section of array */ 812 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); 813 undef_row = start_row; /* but reader is allowed to read ahead */ 814 } else { 815 undef_row = ptr->first_undef_row; 816 } 817 if (writable) 818 ptr->first_undef_row = end_row; 819 if (ptr->pre_zero) { 820 size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE); 821 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ 822 end_row -= ptr->cur_start_row; 823 while (undef_row < end_row) { 824 jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); 825 undef_row++; 826 } 827 } else { 828 if (! writable) /* reader looking at undefined data */ 829 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); 830 } 831 } 832 /* Flag the buffer dirty if caller will write in it */ 833 if (writable) 834 ptr->dirty = TRUE; 835 /* Return address of proper part of the buffer */ 836 return ptr->mem_buffer + (start_row - ptr->cur_start_row); 837} 838 839 840METHODDEF(JBLOCKARRAY) 841access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr, 842 JDIMENSION start_row, JDIMENSION num_rows, 843 boolean writable) 844/* Access the part of a virtual block array starting at start_row */ 845/* and extending for num_rows rows. writable is true if */ 846/* caller intends to modify the accessed area. */ 847{ 848 JDIMENSION end_row = start_row + num_rows; 849 JDIMENSION undef_row; 850 851 /* debugging check */ 852 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || 853 ptr->mem_buffer == NULL) 854 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); 855 856 /* Make the desired part of the virtual array accessible */ 857 if (start_row < ptr->cur_start_row || 858 end_row > ptr->cur_start_row+ptr->rows_in_mem) { 859 if (! ptr->b_s_open) 860 ERREXIT(cinfo, JERR_VIRTUAL_BUG); 861 /* Flush old buffer contents if necessary */ 862 if (ptr->dirty) { 863 do_barray_io(cinfo, ptr, TRUE); 864 ptr->dirty = FALSE; 865 } 866 /* Decide what part of virtual array to access. 867 * Algorithm: if target address > current window, assume forward scan, 868 * load starting at target address. If target address < current window, 869 * assume backward scan, load so that target area is top of window. 870 * Note that when switching from forward write to forward read, will have 871 * start_row = 0, so the limiting case applies and we load from 0 anyway. 872 */ 873 if (start_row > ptr->cur_start_row) { 874 ptr->cur_start_row = start_row; 875 } else { 876 /* use long arithmetic here to avoid overflow & unsigned problems */ 877 long ltemp; 878 879 ltemp = (long) end_row - (long) ptr->rows_in_mem; 880 if (ltemp < 0) 881 ltemp = 0; /* don't fall off front end of file */ 882 ptr->cur_start_row = (JDIMENSION) ltemp; 883 } 884 /* Read in the selected part of the array. 885 * During the initial write pass, we will do no actual read 886 * because the selected part is all undefined. 887 */ 888 do_barray_io(cinfo, ptr, FALSE); 889 } 890 /* Ensure the accessed part of the array is defined; prezero if needed. 891 * To improve locality of access, we only prezero the part of the array 892 * that the caller is about to access, not the entire in-memory array. 893 */ 894 if (ptr->first_undef_row < end_row) { 895 if (ptr->first_undef_row < start_row) { 896 if (writable) /* writer skipped over a section of array */ 897 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); 898 undef_row = start_row; /* but reader is allowed to read ahead */ 899 } else { 900 undef_row = ptr->first_undef_row; 901 } 902 if (writable) 903 ptr->first_undef_row = end_row; 904 if (ptr->pre_zero) { 905 size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK); 906 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ 907 end_row -= ptr->cur_start_row; 908 while (undef_row < end_row) { 909 jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); 910 undef_row++; 911 } 912 } else { 913 if (! writable) /* reader looking at undefined data */ 914 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); 915 } 916 } 917 /* Flag the buffer dirty if caller will write in it */ 918 if (writable) 919 ptr->dirty = TRUE; 920 /* Return address of proper part of the buffer */ 921 return ptr->mem_buffer + (start_row - ptr->cur_start_row); 922} 923 924 925/* 926 * Release all objects belonging to a specified pool. 927 */ 928 929METHODDEF(void) 930free_pool (j_common_ptr cinfo, int pool_id) 931{ 932 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; 933 small_pool_ptr shdr_ptr; 934 large_pool_ptr lhdr_ptr; 935 size_t space_freed; 936 937 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) 938 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ 939 940#ifdef MEM_STATS 941 if (cinfo->err->trace_level > 1) 942 print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ 943#endif 944 945 /* If freeing IMAGE pool, close any virtual arrays first */ 946 if (pool_id == JPOOL_IMAGE) { 947 jvirt_sarray_ptr sptr; 948 jvirt_barray_ptr bptr; 949 950 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { 951 if (sptr->b_s_open) { /* there may be no backing store */ 952 sptr->b_s_open = FALSE; /* prevent recursive close if error */ 953 (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info); 954 } 955 } 956 mem->virt_sarray_list = NULL; 957 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { 958 if (bptr->b_s_open) { /* there may be no backing store */ 959 bptr->b_s_open = FALSE; /* prevent recursive close if error */ 960 (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info); 961 } 962 } 963 mem->virt_barray_list = NULL; 964 } 965 966 /* Release large objects */ 967 lhdr_ptr = mem->large_list[pool_id]; 968 mem->large_list[pool_id] = NULL; 969 970 while (lhdr_ptr != NULL) { 971 large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next; 972 space_freed = lhdr_ptr->hdr.bytes_used + 973 lhdr_ptr->hdr.bytes_left + 974 SIZEOF(large_pool_hdr); 975 jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed); 976 mem->total_space_allocated -= space_freed; 977 lhdr_ptr = next_lhdr_ptr; 978 } 979 980 /* Release small objects */ 981 shdr_ptr = mem->small_list[pool_id]; 982 mem->small_list[pool_id] = NULL; 983 984 while (shdr_ptr != NULL) { 985 small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next; 986 space_freed = shdr_ptr->hdr.bytes_used + 987 shdr_ptr->hdr.bytes_left + 988 SIZEOF(small_pool_hdr); 989 jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed); 990 mem->total_space_allocated -= space_freed; 991 shdr_ptr = next_shdr_ptr; 992 } 993} 994 995 996/* 997 * Close up shop entirely. 998 * Note that this cannot be called unless cinfo->mem is non-NULL. 999 */ 1000 1001METHODDEF(void) 1002self_destruct (j_common_ptr cinfo) 1003{ 1004 int pool; 1005 1006 /* Close all backing store, release all memory. 1007 * Releasing pools in reverse order might help avoid fragmentation 1008 * with some (brain-damaged) malloc libraries. 1009 */ 1010 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { 1011 free_pool(cinfo, pool); 1012 } 1013 1014 /* Release the memory manager control block too. */ 1015 jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr)); 1016 cinfo->mem = NULL; /* ensures I will be called only once */ 1017 1018 jpeg_mem_term(cinfo); /* system-dependent cleanup */ 1019} 1020 1021 1022/* 1023 * Memory manager initialization. 1024 * When this is called, only the error manager pointer is valid in cinfo! 1025 */ 1026 1027GLOBAL(void) 1028jinit_memory_mgr (j_common_ptr cinfo) 1029{ 1030 my_mem_ptr mem; 1031 long max_to_use; 1032 int pool; 1033 size_t test_mac; 1034 1035 cinfo->mem = NULL; /* for safety if init fails */ 1036 1037 /* Check for configuration errors. 1038 * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably 1039 * doesn't reflect any real hardware alignment requirement. 1040 * The test is a little tricky: for X>0, X and X-1 have no one-bits 1041 * in common if and only if X is a power of 2, ie has only one one-bit. 1042 * Some compilers may give an "unreachable code" warning here; ignore it. 1043 */ 1044 if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0) 1045 ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE); 1046 /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be 1047 * a multiple of SIZEOF(ALIGN_TYPE). 1048 * Again, an "unreachable code" warning may be ignored here. 1049 * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. 1050 */ 1051 test_mac = (size_t) MAX_ALLOC_CHUNK; 1052 if ((long) test_mac != MAX_ALLOC_CHUNK || 1053 (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0) 1054 ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); 1055 1056 max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */ 1057 1058 /* Attempt to allocate memory manager's control block */ 1059 mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr)); 1060 1061 if (mem == NULL) { 1062 jpeg_mem_term(cinfo); /* system-dependent cleanup */ 1063 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0); 1064 } 1065 1066 /* OK, fill in the method pointers */ 1067 mem->pub.alloc_small = alloc_small; 1068 mem->pub.alloc_large = alloc_large; 1069 mem->pub.alloc_sarray = alloc_sarray; 1070 mem->pub.alloc_barray = alloc_barray; 1071 mem->pub.request_virt_sarray = request_virt_sarray; 1072 mem->pub.request_virt_barray = request_virt_barray; 1073 mem->pub.realize_virt_arrays = realize_virt_arrays; 1074 mem->pub.access_virt_sarray = access_virt_sarray; 1075 mem->pub.access_virt_barray = access_virt_barray; 1076 mem->pub.free_pool = free_pool; 1077 mem->pub.self_destruct = self_destruct; 1078 1079 /* Make MAX_ALLOC_CHUNK accessible to other modules */ 1080 mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK; 1081 1082 /* Initialize working state */ 1083 mem->pub.max_memory_to_use = max_to_use; 1084 1085 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { 1086 mem->small_list[pool] = NULL; 1087 mem->large_list[pool] = NULL; 1088 } 1089 mem->virt_sarray_list = NULL; 1090 mem->virt_barray_list = NULL; 1091 1092 mem->total_space_allocated = SIZEOF(my_memory_mgr); 1093 1094 /* Declare ourselves open for business */ 1095 cinfo->mem = & mem->pub; 1096 1097 /* Check for an environment variable JPEGMEM; if found, override the 1098 * default max_memory setting from jpeg_mem_init. Note that the 1099 * surrounding application may again override this value. 1100 * If your system doesn't support getenv(), define NO_GETENV to disable 1101 * this feature. 1102 */ 1103#ifndef NO_GETENV 1104 { char * memenv; 1105 1106 if ((memenv = getenv("JPEGMEM")) != NULL) { 1107 char ch = 'x'; 1108 1109 if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) { 1110 if (ch == 'm' || ch == 'M') 1111 max_to_use *= 1000L; 1112 mem->pub.max_memory_to_use = max_to_use * 1000L; 1113 } 1114 } 1115 } 1116#endif 1117 1118} 1119