1/*
2 * ARM NEON vector operations.
3 *
4 * Copyright (c) 2007, 2008 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licensed under the GNU GPL v2.
8 */
9#include <stdlib.h>
10#include <stdio.h>
11
12#include "cpu.h"
13#include "exec/exec-all.h"
14#include "helper.h"
15
16#define SIGNBIT (uint32_t)0x80000000
17#define SIGNBIT64 ((uint64_t)1 << 63)
18
19#define SET_QC() env->vfp.xregs[ARM_VFP_FPSCR] |= CPSR_Q
20
21#define NEON_TYPE1(name, type) \
22typedef struct \
23{ \
24    type v1; \
25} neon_##name;
26#ifdef HOST_WORDS_BIGENDIAN
27#define NEON_TYPE2(name, type) \
28typedef struct \
29{ \
30    type v2; \
31    type v1; \
32} neon_##name;
33#define NEON_TYPE4(name, type) \
34typedef struct \
35{ \
36    type v4; \
37    type v3; \
38    type v2; \
39    type v1; \
40} neon_##name;
41#else
42#define NEON_TYPE2(name, type) \
43typedef struct \
44{ \
45    type v1; \
46    type v2; \
47} neon_##name;
48#define NEON_TYPE4(name, type) \
49typedef struct \
50{ \
51    type v1; \
52    type v2; \
53    type v3; \
54    type v4; \
55} neon_##name;
56#endif
57
58NEON_TYPE4(s8, int8_t)
59NEON_TYPE4(u8, uint8_t)
60NEON_TYPE2(s16, int16_t)
61NEON_TYPE2(u16, uint16_t)
62NEON_TYPE1(s32, int32_t)
63NEON_TYPE1(u32, uint32_t)
64#undef NEON_TYPE4
65#undef NEON_TYPE2
66#undef NEON_TYPE1
67
68/* Copy from a uint32_t to a vector structure type.  */
69#define NEON_UNPACK(vtype, dest, val) do { \
70    union { \
71        vtype v; \
72        uint32_t i; \
73    } conv_u; \
74    conv_u.i = (val); \
75    dest = conv_u.v; \
76    } while(0)
77
78/* Copy from a vector structure type to a uint32_t.  */
79#define NEON_PACK(vtype, dest, val) do { \
80    union { \
81        vtype v; \
82        uint32_t i; \
83    } conv_u; \
84    conv_u.v = (val); \
85    dest = conv_u.i; \
86    } while(0)
87
88#define NEON_DO1 \
89    NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1);
90#define NEON_DO2 \
91    NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
92    NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2);
93#define NEON_DO4 \
94    NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
95    NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); \
96    NEON_FN(vdest.v3, vsrc1.v3, vsrc2.v3); \
97    NEON_FN(vdest.v4, vsrc1.v4, vsrc2.v4);
98
99#define NEON_VOP_BODY(vtype, n) \
100{ \
101    uint32_t res; \
102    vtype vsrc1; \
103    vtype vsrc2; \
104    vtype vdest; \
105    NEON_UNPACK(vtype, vsrc1, arg1); \
106    NEON_UNPACK(vtype, vsrc2, arg2); \
107    NEON_DO##n; \
108    NEON_PACK(vtype, res, vdest); \
109    return res; \
110}
111
112#define NEON_VOP(name, vtype, n) \
113uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
114NEON_VOP_BODY(vtype, n)
115
116#define NEON_VOP_ENV(name, vtype, n) \
117uint32_t HELPER(glue(neon_,name))(CPUARMState *env, uint32_t arg1, uint32_t arg2) \
118NEON_VOP_BODY(vtype, n)
119
120/* Pairwise operations.  */
121/* For 32-bit elements each segment only contains a single element, so
122   the elementwise and pairwise operations are the same.  */
123#define NEON_PDO2 \
124    NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
125    NEON_FN(vdest.v2, vsrc2.v1, vsrc2.v2);
126#define NEON_PDO4 \
127    NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
128    NEON_FN(vdest.v2, vsrc1.v3, vsrc1.v4); \
129    NEON_FN(vdest.v3, vsrc2.v1, vsrc2.v2); \
130    NEON_FN(vdest.v4, vsrc2.v3, vsrc2.v4); \
131
132#define NEON_POP(name, vtype, n) \
133uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
134{ \
135    uint32_t res; \
136    vtype vsrc1; \
137    vtype vsrc2; \
138    vtype vdest; \
139    NEON_UNPACK(vtype, vsrc1, arg1); \
140    NEON_UNPACK(vtype, vsrc2, arg2); \
141    NEON_PDO##n; \
142    NEON_PACK(vtype, res, vdest); \
143    return res; \
144}
145
146/* Unary operators.  */
147#define NEON_VOP1(name, vtype, n) \
148uint32_t HELPER(glue(neon_,name))(uint32_t arg) \
149{ \
150    vtype vsrc1; \
151    vtype vdest; \
152    NEON_UNPACK(vtype, vsrc1, arg); \
153    NEON_DO##n; \
154    NEON_PACK(vtype, arg, vdest); \
155    return arg; \
156}
157
158
159#define NEON_USAT(dest, src1, src2, type) do { \
160    uint32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
161    if (tmp != (type)tmp) { \
162        SET_QC(); \
163        dest = ~0; \
164    } else { \
165        dest = tmp; \
166    }} while(0)
167#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
168NEON_VOP_ENV(qadd_u8, neon_u8, 4)
169#undef NEON_FN
170#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
171NEON_VOP_ENV(qadd_u16, neon_u16, 2)
172#undef NEON_FN
173#undef NEON_USAT
174
175uint32_t HELPER(neon_qadd_u32)(CPUARMState *env, uint32_t a, uint32_t b)
176{
177    uint32_t res = a + b;
178    if (res < a) {
179        SET_QC();
180        res = ~0;
181    }
182    return res;
183}
184
185uint64_t HELPER(neon_qadd_u64)(CPUARMState *env, uint64_t src1, uint64_t src2)
186{
187    uint64_t res;
188
189    res = src1 + src2;
190    if (res < src1) {
191        SET_QC();
192        res = ~(uint64_t)0;
193    }
194    return res;
195}
196
197#define NEON_SSAT(dest, src1, src2, type) do { \
198    int32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
199    if (tmp != (type)tmp) { \
200        SET_QC(); \
201        if (src2 > 0) { \
202            tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
203        } else { \
204            tmp = 1 << (sizeof(type) * 8 - 1); \
205        } \
206    } \
207    dest = tmp; \
208    } while(0)
209#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
210NEON_VOP_ENV(qadd_s8, neon_s8, 4)
211#undef NEON_FN
212#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
213NEON_VOP_ENV(qadd_s16, neon_s16, 2)
214#undef NEON_FN
215#undef NEON_SSAT
216
217uint32_t HELPER(neon_qadd_s32)(CPUARMState *env, uint32_t a, uint32_t b)
218{
219    uint32_t res = a + b;
220    if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
221        SET_QC();
222        res = ~(((int32_t)a >> 31) ^ SIGNBIT);
223    }
224    return res;
225}
226
227uint64_t HELPER(neon_qadd_s64)(CPUARMState *env, uint64_t src1, uint64_t src2)
228{
229    uint64_t res;
230
231    res = src1 + src2;
232    if (((res ^ src1) & SIGNBIT64) && !((src1 ^ src2) & SIGNBIT64)) {
233        SET_QC();
234        res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
235    }
236    return res;
237}
238
239#define NEON_USAT(dest, src1, src2, type) do { \
240    uint32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
241    if (tmp != (type)tmp) { \
242        SET_QC(); \
243        dest = 0; \
244    } else { \
245        dest = tmp; \
246    }} while(0)
247#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
248NEON_VOP_ENV(qsub_u8, neon_u8, 4)
249#undef NEON_FN
250#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
251NEON_VOP_ENV(qsub_u16, neon_u16, 2)
252#undef NEON_FN
253#undef NEON_USAT
254
255uint32_t HELPER(neon_qsub_u32)(CPUARMState *env, uint32_t a, uint32_t b)
256{
257    uint32_t res = a - b;
258    if (res > a) {
259        SET_QC();
260        res = 0;
261    }
262    return res;
263}
264
265uint64_t HELPER(neon_qsub_u64)(CPUARMState *env, uint64_t src1, uint64_t src2)
266{
267    uint64_t res;
268
269    if (src1 < src2) {
270        SET_QC();
271        res = 0;
272    } else {
273        res = src1 - src2;
274    }
275    return res;
276}
277
278#define NEON_SSAT(dest, src1, src2, type) do { \
279    int32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
280    if (tmp != (type)tmp) { \
281        SET_QC(); \
282        if (src2 < 0) { \
283            tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
284        } else { \
285            tmp = 1 << (sizeof(type) * 8 - 1); \
286        } \
287    } \
288    dest = tmp; \
289    } while(0)
290#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
291NEON_VOP_ENV(qsub_s8, neon_s8, 4)
292#undef NEON_FN
293#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
294NEON_VOP_ENV(qsub_s16, neon_s16, 2)
295#undef NEON_FN
296#undef NEON_SSAT
297
298uint32_t HELPER(neon_qsub_s32)(CPUARMState *env, uint32_t a, uint32_t b)
299{
300    uint32_t res = a - b;
301    if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
302        SET_QC();
303        res = ~(((int32_t)a >> 31) ^ SIGNBIT);
304    }
305    return res;
306}
307
308uint64_t HELPER(neon_qsub_s64)(CPUARMState *env, uint64_t src1, uint64_t src2)
309{
310    uint64_t res;
311
312    res = src1 - src2;
313    if (((res ^ src1) & SIGNBIT64) && ((src1 ^ src2) & SIGNBIT64)) {
314        SET_QC();
315        res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
316    }
317    return res;
318}
319
320#define NEON_FN(dest, src1, src2) dest = (src1 + src2) >> 1
321NEON_VOP(hadd_s8, neon_s8, 4)
322NEON_VOP(hadd_u8, neon_u8, 4)
323NEON_VOP(hadd_s16, neon_s16, 2)
324NEON_VOP(hadd_u16, neon_u16, 2)
325#undef NEON_FN
326
327int32_t HELPER(neon_hadd_s32)(int32_t src1, int32_t src2)
328{
329    int32_t dest;
330
331    dest = (src1 >> 1) + (src2 >> 1);
332    if (src1 & src2 & 1)
333        dest++;
334    return dest;
335}
336
337uint32_t HELPER(neon_hadd_u32)(uint32_t src1, uint32_t src2)
338{
339    uint32_t dest;
340
341    dest = (src1 >> 1) + (src2 >> 1);
342    if (src1 & src2 & 1)
343        dest++;
344    return dest;
345}
346
347#define NEON_FN(dest, src1, src2) dest = (src1 + src2 + 1) >> 1
348NEON_VOP(rhadd_s8, neon_s8, 4)
349NEON_VOP(rhadd_u8, neon_u8, 4)
350NEON_VOP(rhadd_s16, neon_s16, 2)
351NEON_VOP(rhadd_u16, neon_u16, 2)
352#undef NEON_FN
353
354int32_t HELPER(neon_rhadd_s32)(int32_t src1, int32_t src2)
355{
356    int32_t dest;
357
358    dest = (src1 >> 1) + (src2 >> 1);
359    if ((src1 | src2) & 1)
360        dest++;
361    return dest;
362}
363
364uint32_t HELPER(neon_rhadd_u32)(uint32_t src1, uint32_t src2)
365{
366    uint32_t dest;
367
368    dest = (src1 >> 1) + (src2 >> 1);
369    if ((src1 | src2) & 1)
370        dest++;
371    return dest;
372}
373
374#define NEON_FN(dest, src1, src2) dest = (src1 - src2) >> 1
375NEON_VOP(hsub_s8, neon_s8, 4)
376NEON_VOP(hsub_u8, neon_u8, 4)
377NEON_VOP(hsub_s16, neon_s16, 2)
378NEON_VOP(hsub_u16, neon_u16, 2)
379#undef NEON_FN
380
381int32_t HELPER(neon_hsub_s32)(int32_t src1, int32_t src2)
382{
383    int32_t dest;
384
385    dest = (src1 >> 1) - (src2 >> 1);
386    if ((~src1) & src2 & 1)
387        dest--;
388    return dest;
389}
390
391uint32_t HELPER(neon_hsub_u32)(uint32_t src1, uint32_t src2)
392{
393    uint32_t dest;
394
395    dest = (src1 >> 1) - (src2 >> 1);
396    if ((~src1) & src2 & 1)
397        dest--;
398    return dest;
399}
400
401#define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? ~0 : 0
402NEON_VOP(cgt_s8, neon_s8, 4)
403NEON_VOP(cgt_u8, neon_u8, 4)
404NEON_VOP(cgt_s16, neon_s16, 2)
405NEON_VOP(cgt_u16, neon_u16, 2)
406NEON_VOP(cgt_s32, neon_s32, 1)
407NEON_VOP(cgt_u32, neon_u32, 1)
408#undef NEON_FN
409
410#define NEON_FN(dest, src1, src2) dest = (src1 >= src2) ? ~0 : 0
411NEON_VOP(cge_s8, neon_s8, 4)
412NEON_VOP(cge_u8, neon_u8, 4)
413NEON_VOP(cge_s16, neon_s16, 2)
414NEON_VOP(cge_u16, neon_u16, 2)
415NEON_VOP(cge_s32, neon_s32, 1)
416NEON_VOP(cge_u32, neon_u32, 1)
417#undef NEON_FN
418
419#define NEON_FN(dest, src1, src2) dest = (src1 < src2) ? src1 : src2
420NEON_VOP(min_s8, neon_s8, 4)
421NEON_VOP(min_u8, neon_u8, 4)
422NEON_VOP(min_s16, neon_s16, 2)
423NEON_VOP(min_u16, neon_u16, 2)
424NEON_VOP(min_s32, neon_s32, 1)
425NEON_VOP(min_u32, neon_u32, 1)
426NEON_POP(pmin_s8, neon_s8, 4)
427NEON_POP(pmin_u8, neon_u8, 4)
428NEON_POP(pmin_s16, neon_s16, 2)
429NEON_POP(pmin_u16, neon_u16, 2)
430#undef NEON_FN
431
432#define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? src1 : src2
433NEON_VOP(max_s8, neon_s8, 4)
434NEON_VOP(max_u8, neon_u8, 4)
435NEON_VOP(max_s16, neon_s16, 2)
436NEON_VOP(max_u16, neon_u16, 2)
437NEON_VOP(max_s32, neon_s32, 1)
438NEON_VOP(max_u32, neon_u32, 1)
439NEON_POP(pmax_s8, neon_s8, 4)
440NEON_POP(pmax_u8, neon_u8, 4)
441NEON_POP(pmax_s16, neon_s16, 2)
442NEON_POP(pmax_u16, neon_u16, 2)
443#undef NEON_FN
444
445#define NEON_FN(dest, src1, src2) \
446    dest = (src1 > src2) ? (src1 - src2) : (src2 - src1)
447NEON_VOP(abd_s8, neon_s8, 4)
448NEON_VOP(abd_u8, neon_u8, 4)
449NEON_VOP(abd_s16, neon_s16, 2)
450NEON_VOP(abd_u16, neon_u16, 2)
451NEON_VOP(abd_s32, neon_s32, 1)
452NEON_VOP(abd_u32, neon_u32, 1)
453#undef NEON_FN
454
455#define NEON_FN(dest, src1, src2) do { \
456    int8_t tmp; \
457    tmp = (int8_t)src2; \
458    if (tmp >= (ssize_t)sizeof(src1) * 8 || \
459        tmp <= -(ssize_t)sizeof(src1) * 8) { \
460        dest = 0; \
461    } else if (tmp < 0) { \
462        dest = src1 >> -tmp; \
463    } else { \
464        dest = src1 << tmp; \
465    }} while (0)
466NEON_VOP(shl_u8, neon_u8, 4)
467NEON_VOP(shl_u16, neon_u16, 2)
468NEON_VOP(shl_u32, neon_u32, 1)
469#undef NEON_FN
470
471uint64_t HELPER(neon_shl_u64)(uint64_t val, uint64_t shiftop)
472{
473    int8_t shift = (int8_t)shiftop;
474    if (shift >= 64 || shift <= -64) {
475        val = 0;
476    } else if (shift < 0) {
477        val >>= -shift;
478    } else {
479        val <<= shift;
480    }
481    return val;
482}
483
484#define NEON_FN(dest, src1, src2) do { \
485    int8_t tmp; \
486    tmp = (int8_t)src2; \
487    if (tmp >= (ssize_t)sizeof(src1) * 8) { \
488        dest = 0; \
489    } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
490        dest = src1 >> (sizeof(src1) * 8 - 1); \
491    } else if (tmp < 0) { \
492        dest = src1 >> -tmp; \
493    } else { \
494        dest = src1 << tmp; \
495    }} while (0)
496NEON_VOP(shl_s8, neon_s8, 4)
497NEON_VOP(shl_s16, neon_s16, 2)
498NEON_VOP(shl_s32, neon_s32, 1)
499#undef NEON_FN
500
501uint64_t HELPER(neon_shl_s64)(uint64_t valop, uint64_t shiftop)
502{
503    int8_t shift = (int8_t)shiftop;
504    int64_t val = valop;
505    if (shift >= 64) {
506        val = 0;
507    } else if (shift <= -64) {
508        val >>= 63;
509    } else if (shift < 0) {
510        val >>= -shift;
511    } else {
512        val <<= shift;
513    }
514    return val;
515}
516
517#define NEON_FN(dest, src1, src2) do { \
518    int8_t tmp; \
519    tmp = (int8_t)src2; \
520    if ((tmp >= (ssize_t)sizeof(src1) * 8) \
521        || (tmp <= -(ssize_t)sizeof(src1) * 8)) { \
522        dest = 0; \
523    } else if (tmp < 0) { \
524        dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
525    } else { \
526        dest = src1 << tmp; \
527    }} while (0)
528NEON_VOP(rshl_s8, neon_s8, 4)
529NEON_VOP(rshl_s16, neon_s16, 2)
530#undef NEON_FN
531
532/* The addition of the rounding constant may overflow, so we use an
533 * intermediate 64 bit accumulator.  */
534uint32_t HELPER(neon_rshl_s32)(uint32_t valop, uint32_t shiftop)
535{
536    int32_t dest;
537    int32_t val = (int32_t)valop;
538    int8_t shift = (int8_t)shiftop;
539    if ((shift >= 32) || (shift <= -32)) {
540        dest = 0;
541    } else if (shift < 0) {
542        int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
543        dest = big_dest >> -shift;
544    } else {
545        dest = val << shift;
546    }
547    return dest;
548}
549
550/* Handling addition overflow with 64 bit input values is more
551 * tricky than with 32 bit values.  */
552uint64_t HELPER(neon_rshl_s64)(uint64_t valop, uint64_t shiftop)
553{
554    int8_t shift = (int8_t)shiftop;
555    int64_t val = valop;
556    if ((shift >= 64) || (shift <= -64)) {
557        val = 0;
558    } else if (shift < 0) {
559        val >>= (-shift - 1);
560        if (val == INT64_MAX) {
561            /* In this case, it means that the rounding constant is 1,
562             * and the addition would overflow. Return the actual
563             * result directly.  */
564            val = 0x4000000000000000LL;
565        } else {
566            val++;
567            val >>= 1;
568        }
569    } else {
570        val <<= shift;
571    }
572    return val;
573}
574
575#define NEON_FN(dest, src1, src2) do { \
576    int8_t tmp; \
577    tmp = (int8_t)src2; \
578    if (tmp >= (ssize_t)sizeof(src1) * 8 || \
579        tmp < -(ssize_t)sizeof(src1) * 8) { \
580        dest = 0; \
581    } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
582        dest = src1 >> (-tmp - 1); \
583    } else if (tmp < 0) { \
584        dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
585    } else { \
586        dest = src1 << tmp; \
587    }} while (0)
588NEON_VOP(rshl_u8, neon_u8, 4)
589NEON_VOP(rshl_u16, neon_u16, 2)
590#undef NEON_FN
591
592/* The addition of the rounding constant may overflow, so we use an
593 * intermediate 64 bit accumulator.  */
594uint32_t HELPER(neon_rshl_u32)(uint32_t val, uint32_t shiftop)
595{
596    uint32_t dest;
597    int8_t shift = (int8_t)shiftop;
598    if (shift >= 32 || shift < -32) {
599        dest = 0;
600    } else if (shift == -32) {
601        dest = val >> 31;
602    } else if (shift < 0) {
603        uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
604        dest = big_dest >> -shift;
605    } else {
606        dest = val << shift;
607    }
608    return dest;
609}
610
611/* Handling addition overflow with 64 bit input values is more
612 * tricky than with 32 bit values.  */
613uint64_t HELPER(neon_rshl_u64)(uint64_t val, uint64_t shiftop)
614{
615    int8_t shift = (uint8_t)shiftop;
616    if (shift >= 64 || shift < -64) {
617        val = 0;
618    } else if (shift == -64) {
619        /* Rounding a 1-bit result just preserves that bit.  */
620        val >>= 63;
621    } else if (shift < 0) {
622        val >>= (-shift - 1);
623        if (val == UINT64_MAX) {
624            /* In this case, it means that the rounding constant is 1,
625             * and the addition would overflow. Return the actual
626             * result directly.  */
627            val = 0x8000000000000000ULL;
628        } else {
629            val++;
630            val >>= 1;
631        }
632    } else {
633        val <<= shift;
634    }
635    return val;
636}
637
638#define NEON_FN(dest, src1, src2) do { \
639    int8_t tmp; \
640    tmp = (int8_t)src2; \
641    if (tmp >= (ssize_t)sizeof(src1) * 8) { \
642        if (src1) { \
643            SET_QC(); \
644            dest = ~0; \
645        } else { \
646            dest = 0; \
647        } \
648    } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
649        dest = 0; \
650    } else if (tmp < 0) { \
651        dest = src1 >> -tmp; \
652    } else { \
653        dest = src1 << tmp; \
654        if ((dest >> tmp) != src1) { \
655            SET_QC(); \
656            dest = ~0; \
657        } \
658    }} while (0)
659NEON_VOP_ENV(qshl_u8, neon_u8, 4)
660NEON_VOP_ENV(qshl_u16, neon_u16, 2)
661NEON_VOP_ENV(qshl_u32, neon_u32, 1)
662#undef NEON_FN
663
664uint64_t HELPER(neon_qshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop)
665{
666    int8_t shift = (int8_t)shiftop;
667    if (shift >= 64) {
668        if (val) {
669            val = ~(uint64_t)0;
670            SET_QC();
671        }
672    } else if (shift <= -64) {
673        val = 0;
674    } else if (shift < 0) {
675        val >>= -shift;
676    } else {
677        uint64_t tmp = val;
678        val <<= shift;
679        if ((val >> shift) != tmp) {
680            SET_QC();
681            val = ~(uint64_t)0;
682        }
683    }
684    return val;
685}
686
687#define NEON_FN(dest, src1, src2) do { \
688    int8_t tmp; \
689    tmp = (int8_t)src2; \
690    if (tmp >= (ssize_t)sizeof(src1) * 8) { \
691        if (src1) { \
692            SET_QC(); \
693            dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
694            if (src1 > 0) { \
695                dest--; \
696            } \
697        } else { \
698            dest = src1; \
699        } \
700    } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
701        dest = src1 >> 31; \
702    } else if (tmp < 0) { \
703        dest = src1 >> -tmp; \
704    } else { \
705        dest = src1 << tmp; \
706        if ((dest >> tmp) != src1) { \
707            SET_QC(); \
708            dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
709            if (src1 > 0) { \
710                dest--; \
711            } \
712        } \
713    }} while (0)
714NEON_VOP_ENV(qshl_s8, neon_s8, 4)
715NEON_VOP_ENV(qshl_s16, neon_s16, 2)
716NEON_VOP_ENV(qshl_s32, neon_s32, 1)
717#undef NEON_FN
718
719uint64_t HELPER(neon_qshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
720{
721    int8_t shift = (uint8_t)shiftop;
722    int64_t val = valop;
723    if (shift >= 64) {
724        if (val) {
725            SET_QC();
726            val = (val >> 63) ^ ~SIGNBIT64;
727        }
728    } else if (shift <= -64) {
729        val >>= 63;
730    } else if (shift < 0) {
731        val >>= -shift;
732    } else {
733        int64_t tmp = val;
734        val <<= shift;
735        if ((val >> shift) != tmp) {
736            SET_QC();
737            val = (tmp >> 63) ^ ~SIGNBIT64;
738        }
739    }
740    return val;
741}
742
743#define NEON_FN(dest, src1, src2) do { \
744    if (src1 & (1 << (sizeof(src1) * 8 - 1))) { \
745        SET_QC(); \
746        dest = 0; \
747    } else { \
748        int8_t tmp; \
749        tmp = (int8_t)src2; \
750        if (tmp >= (ssize_t)sizeof(src1) * 8) { \
751            if (src1) { \
752                SET_QC(); \
753                dest = ~0; \
754            } else { \
755                dest = 0; \
756            } \
757        } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
758            dest = 0; \
759        } else if (tmp < 0) { \
760            dest = src1 >> -tmp; \
761        } else { \
762            dest = src1 << tmp; \
763            if ((dest >> tmp) != src1) { \
764                SET_QC(); \
765                dest = ~0; \
766            } \
767        } \
768    }} while (0)
769NEON_VOP_ENV(qshlu_s8, neon_u8, 4)
770NEON_VOP_ENV(qshlu_s16, neon_u16, 2)
771#undef NEON_FN
772
773uint32_t HELPER(neon_qshlu_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop)
774{
775    if ((int32_t)valop < 0) {
776        SET_QC();
777        return 0;
778    }
779    return helper_neon_qshl_u32(env, valop, shiftop);
780}
781
782uint64_t HELPER(neon_qshlu_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
783{
784    if ((int64_t)valop < 0) {
785        SET_QC();
786        return 0;
787    }
788    return helper_neon_qshl_u64(env, valop, shiftop);
789}
790
791#define NEON_FN(dest, src1, src2) do { \
792    int8_t tmp; \
793    tmp = (int8_t)src2; \
794    if (tmp >= (ssize_t)sizeof(src1) * 8) { \
795        if (src1) { \
796            SET_QC(); \
797            dest = ~0; \
798        } else { \
799            dest = 0; \
800        } \
801    } else if (tmp < -(ssize_t)sizeof(src1) * 8) { \
802        dest = 0; \
803    } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
804        dest = src1 >> (sizeof(src1) * 8 - 1); \
805    } else if (tmp < 0) { \
806        dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
807    } else { \
808        dest = src1 << tmp; \
809        if ((dest >> tmp) != src1) { \
810            SET_QC(); \
811            dest = ~0; \
812        } \
813    }} while (0)
814NEON_VOP_ENV(qrshl_u8, neon_u8, 4)
815NEON_VOP_ENV(qrshl_u16, neon_u16, 2)
816#undef NEON_FN
817
818/* The addition of the rounding constant may overflow, so we use an
819 * intermediate 64 bit accumulator.  */
820uint32_t HELPER(neon_qrshl_u32)(CPUARMState *env, uint32_t val, uint32_t shiftop)
821{
822    uint32_t dest;
823    int8_t shift = (int8_t)shiftop;
824    if (shift >= 32) {
825        if (val) {
826            SET_QC();
827            dest = ~0;
828        } else {
829            dest = 0;
830        }
831    } else if (shift < -32) {
832        dest = 0;
833    } else if (shift == -32) {
834        dest = val >> 31;
835    } else if (shift < 0) {
836        uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
837        dest = big_dest >> -shift;
838    } else {
839        dest = val << shift;
840        if ((dest >> shift) != val) {
841            SET_QC();
842            dest = ~0;
843        }
844    }
845    return dest;
846}
847
848/* Handling addition overflow with 64 bit input values is more
849 * tricky than with 32 bit values.  */
850uint64_t HELPER(neon_qrshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop)
851{
852    int8_t shift = (int8_t)shiftop;
853    if (shift >= 64) {
854        if (val) {
855            SET_QC();
856            val = ~0;
857        }
858    } else if (shift < -64) {
859        val = 0;
860    } else if (shift == -64) {
861        val >>= 63;
862    } else if (shift < 0) {
863        val >>= (-shift - 1);
864        if (val == UINT64_MAX) {
865            /* In this case, it means that the rounding constant is 1,
866             * and the addition would overflow. Return the actual
867             * result directly.  */
868            val = 0x8000000000000000ULL;
869        } else {
870            val++;
871            val >>= 1;
872        }
873    } else { \
874        uint64_t tmp = val;
875        val <<= shift;
876        if ((val >> shift) != tmp) {
877            SET_QC();
878            val = ~0;
879        }
880    }
881    return val;
882}
883
884#define NEON_FN(dest, src1, src2) do { \
885    int8_t tmp; \
886    tmp = (int8_t)src2; \
887    if (tmp >= (ssize_t)sizeof(src1) * 8) { \
888        if (src1) { \
889            SET_QC(); \
890            dest = (1 << (sizeof(src1) * 8 - 1)); \
891            if (src1 > 0) { \
892                dest--; \
893            } \
894        } else { \
895            dest = 0; \
896        } \
897    } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
898        dest = 0; \
899    } else if (tmp < 0) { \
900        dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
901    } else { \
902        dest = src1 << tmp; \
903        if ((dest >> tmp) != src1) { \
904            SET_QC(); \
905            dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
906            if (src1 > 0) { \
907                dest--; \
908            } \
909        } \
910    }} while (0)
911NEON_VOP_ENV(qrshl_s8, neon_s8, 4)
912NEON_VOP_ENV(qrshl_s16, neon_s16, 2)
913#undef NEON_FN
914
915/* The addition of the rounding constant may overflow, so we use an
916 * intermediate 64 bit accumulator.  */
917uint32_t HELPER(neon_qrshl_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop)
918{
919    int32_t dest;
920    int32_t val = (int32_t)valop;
921    int8_t shift = (int8_t)shiftop;
922    if (shift >= 32) {
923        if (val) {
924            SET_QC();
925            dest = (val >> 31) ^ ~SIGNBIT;
926        } else {
927            dest = 0;
928        }
929    } else if (shift <= -32) {
930        dest = 0;
931    } else if (shift < 0) {
932        int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
933        dest = big_dest >> -shift;
934    } else {
935        dest = val << shift;
936        if ((dest >> shift) != val) {
937            SET_QC();
938            dest = (val >> 31) ^ ~SIGNBIT;
939        }
940    }
941    return dest;
942}
943
944/* Handling addition overflow with 64 bit input values is more
945 * tricky than with 32 bit values.  */
946uint64_t HELPER(neon_qrshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
947{
948    int8_t shift = (uint8_t)shiftop;
949    int64_t val = valop;
950
951    if (shift >= 64) {
952        if (val) {
953            SET_QC();
954            val = (val >> 63) ^ ~SIGNBIT64;
955        }
956    } else if (shift <= -64) {
957        val = 0;
958    } else if (shift < 0) {
959        val >>= (-shift - 1);
960        if (val == INT64_MAX) {
961            /* In this case, it means that the rounding constant is 1,
962             * and the addition would overflow. Return the actual
963             * result directly.  */
964            val = 0x4000000000000000ULL;
965        } else {
966            val++;
967            val >>= 1;
968        }
969    } else {
970        int64_t tmp = val;
971        val <<= shift;
972        if ((val >> shift) != tmp) {
973            SET_QC();
974            val = (tmp >> 63) ^ ~SIGNBIT64;
975        }
976    }
977    return val;
978}
979
980uint32_t HELPER(neon_add_u8)(uint32_t a, uint32_t b)
981{
982    uint32_t mask;
983    mask = (a ^ b) & 0x80808080u;
984    a &= ~0x80808080u;
985    b &= ~0x80808080u;
986    return (a + b) ^ mask;
987}
988
989uint32_t HELPER(neon_add_u16)(uint32_t a, uint32_t b)
990{
991    uint32_t mask;
992    mask = (a ^ b) & 0x80008000u;
993    a &= ~0x80008000u;
994    b &= ~0x80008000u;
995    return (a + b) ^ mask;
996}
997
998#define NEON_FN(dest, src1, src2) dest = src1 + src2
999NEON_POP(padd_u8, neon_u8, 4)
1000NEON_POP(padd_u16, neon_u16, 2)
1001#undef NEON_FN
1002
1003#define NEON_FN(dest, src1, src2) dest = src1 - src2
1004NEON_VOP(sub_u8, neon_u8, 4)
1005NEON_VOP(sub_u16, neon_u16, 2)
1006#undef NEON_FN
1007
1008#define NEON_FN(dest, src1, src2) dest = src1 * src2
1009NEON_VOP(mul_u8, neon_u8, 4)
1010NEON_VOP(mul_u16, neon_u16, 2)
1011#undef NEON_FN
1012
1013/* Polynomial multiplication is like integer multiplication except the
1014   partial products are XORed, not added.  */
1015uint32_t HELPER(neon_mul_p8)(uint32_t op1, uint32_t op2)
1016{
1017    uint32_t mask;
1018    uint32_t result;
1019    result = 0;
1020    while (op1) {
1021        mask = 0;
1022        if (op1 & 1)
1023            mask |= 0xff;
1024        if (op1 & (1 << 8))
1025            mask |= (0xff << 8);
1026        if (op1 & (1 << 16))
1027            mask |= (0xff << 16);
1028        if (op1 & (1 << 24))
1029            mask |= (0xff << 24);
1030        result ^= op2 & mask;
1031        op1 = (op1 >> 1) & 0x7f7f7f7f;
1032        op2 = (op2 << 1) & 0xfefefefe;
1033    }
1034    return result;
1035}
1036
1037uint64_t HELPER(neon_mull_p8)(uint32_t op1, uint32_t op2)
1038{
1039    uint64_t result = 0;
1040    uint64_t mask;
1041    uint64_t op2ex = op2;
1042    op2ex = (op2ex & 0xff) |
1043        ((op2ex & 0xff00) << 8) |
1044        ((op2ex & 0xff0000) << 16) |
1045        ((op2ex & 0xff000000) << 24);
1046    while (op1) {
1047        mask = 0;
1048        if (op1 & 1) {
1049            mask |= 0xffff;
1050        }
1051        if (op1 & (1 << 8)) {
1052            mask |= (0xffffU << 16);
1053        }
1054        if (op1 & (1 << 16)) {
1055            mask |= (0xffffULL << 32);
1056        }
1057        if (op1 & (1 << 24)) {
1058            mask |= (0xffffULL << 48);
1059        }
1060        result ^= op2ex & mask;
1061        op1 = (op1 >> 1) & 0x7f7f7f7f;
1062        op2ex <<= 1;
1063    }
1064    return result;
1065}
1066
1067#define NEON_FN(dest, src1, src2) dest = (src1 & src2) ? -1 : 0
1068NEON_VOP(tst_u8, neon_u8, 4)
1069NEON_VOP(tst_u16, neon_u16, 2)
1070NEON_VOP(tst_u32, neon_u32, 1)
1071#undef NEON_FN
1072
1073#define NEON_FN(dest, src1, src2) dest = (src1 == src2) ? -1 : 0
1074NEON_VOP(ceq_u8, neon_u8, 4)
1075NEON_VOP(ceq_u16, neon_u16, 2)
1076NEON_VOP(ceq_u32, neon_u32, 1)
1077#undef NEON_FN
1078
1079#define NEON_FN(dest, src, dummy) dest = (src < 0) ? -src : src
1080NEON_VOP1(abs_s8, neon_s8, 4)
1081NEON_VOP1(abs_s16, neon_s16, 2)
1082#undef NEON_FN
1083
1084/* Count Leading Sign/Zero Bits.  */
1085static inline int do_clz8(uint8_t x)
1086{
1087    int n;
1088    for (n = 8; x; n--)
1089        x >>= 1;
1090    return n;
1091}
1092
1093static inline int do_clz16(uint16_t x)
1094{
1095    int n;
1096    for (n = 16; x; n--)
1097        x >>= 1;
1098    return n;
1099}
1100
1101#define NEON_FN(dest, src, dummy) dest = do_clz8(src)
1102NEON_VOP1(clz_u8, neon_u8, 4)
1103#undef NEON_FN
1104
1105#define NEON_FN(dest, src, dummy) dest = do_clz16(src)
1106NEON_VOP1(clz_u16, neon_u16, 2)
1107#undef NEON_FN
1108
1109#define NEON_FN(dest, src, dummy) dest = do_clz8((src < 0) ? ~src : src) - 1
1110NEON_VOP1(cls_s8, neon_s8, 4)
1111#undef NEON_FN
1112
1113#define NEON_FN(dest, src, dummy) dest = do_clz16((src < 0) ? ~src : src) - 1
1114NEON_VOP1(cls_s16, neon_s16, 2)
1115#undef NEON_FN
1116
1117uint32_t HELPER(neon_cls_s32)(uint32_t x)
1118{
1119    int count;
1120    if ((int32_t)x < 0)
1121        x = ~x;
1122    for (count = 32; x; count--)
1123        x = x >> 1;
1124    return count - 1;
1125}
1126
1127/* Bit count.  */
1128uint32_t HELPER(neon_cnt_u8)(uint32_t x)
1129{
1130    x = (x & 0x55555555) + ((x >>  1) & 0x55555555);
1131    x = (x & 0x33333333) + ((x >>  2) & 0x33333333);
1132    x = (x & 0x0f0f0f0f) + ((x >>  4) & 0x0f0f0f0f);
1133    return x;
1134}
1135
1136#define NEON_QDMULH16(dest, src1, src2, round) do { \
1137    uint32_t tmp = (int32_t)(int16_t) src1 * (int16_t) src2; \
1138    if ((tmp ^ (tmp << 1)) & SIGNBIT) { \
1139        SET_QC(); \
1140        tmp = (tmp >> 31) ^ ~SIGNBIT; \
1141    } else { \
1142        tmp <<= 1; \
1143    } \
1144    if (round) { \
1145        int32_t old = tmp; \
1146        tmp += 1 << 15; \
1147        if ((int32_t)tmp < old) { \
1148            SET_QC(); \
1149            tmp = SIGNBIT - 1; \
1150        } \
1151    } \
1152    dest = tmp >> 16; \
1153    } while(0)
1154#define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 0)
1155NEON_VOP_ENV(qdmulh_s16, neon_s16, 2)
1156#undef NEON_FN
1157#define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 1)
1158NEON_VOP_ENV(qrdmulh_s16, neon_s16, 2)
1159#undef NEON_FN
1160#undef NEON_QDMULH16
1161
1162#define NEON_QDMULH32(dest, src1, src2, round) do { \
1163    uint64_t tmp = (int64_t)(int32_t) src1 * (int32_t) src2; \
1164    if ((tmp ^ (tmp << 1)) & SIGNBIT64) { \
1165        SET_QC(); \
1166        tmp = (tmp >> 63) ^ ~SIGNBIT64; \
1167    } else { \
1168        tmp <<= 1; \
1169    } \
1170    if (round) { \
1171        int64_t old = tmp; \
1172        tmp += (int64_t)1 << 31; \
1173        if ((int64_t)tmp < old) { \
1174            SET_QC(); \
1175            tmp = SIGNBIT64 - 1; \
1176        } \
1177    } \
1178    dest = tmp >> 32; \
1179    } while(0)
1180#define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 0)
1181NEON_VOP_ENV(qdmulh_s32, neon_s32, 1)
1182#undef NEON_FN
1183#define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 1)
1184NEON_VOP_ENV(qrdmulh_s32, neon_s32, 1)
1185#undef NEON_FN
1186#undef NEON_QDMULH32
1187
1188uint32_t HELPER(neon_narrow_u8)(uint64_t x)
1189{
1190    return (x & 0xffu) | ((x >> 8) & 0xff00u) | ((x >> 16) & 0xff0000u)
1191           | ((x >> 24) & 0xff000000u);
1192}
1193
1194uint32_t HELPER(neon_narrow_u16)(uint64_t x)
1195{
1196    return (x & 0xffffu) | ((x >> 16) & 0xffff0000u);
1197}
1198
1199uint32_t HELPER(neon_narrow_high_u8)(uint64_t x)
1200{
1201    return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
1202            | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
1203}
1204
1205uint32_t HELPER(neon_narrow_high_u16)(uint64_t x)
1206{
1207    return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
1208}
1209
1210uint32_t HELPER(neon_narrow_round_high_u8)(uint64_t x)
1211{
1212    x &= 0xff80ff80ff80ff80ull;
1213    x += 0x0080008000800080ull;
1214    return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
1215            | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
1216}
1217
1218uint32_t HELPER(neon_narrow_round_high_u16)(uint64_t x)
1219{
1220    x &= 0xffff8000ffff8000ull;
1221    x += 0x0000800000008000ull;
1222    return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
1223}
1224
1225uint32_t HELPER(neon_unarrow_sat8)(CPUARMState *env, uint64_t x)
1226{
1227    uint16_t s;
1228    uint8_t d;
1229    uint32_t res = 0;
1230#define SAT8(n) \
1231    s = x >> n; \
1232    if (s & 0x8000) { \
1233        SET_QC(); \
1234    } else { \
1235        if (s > 0xff) { \
1236            d = 0xff; \
1237            SET_QC(); \
1238        } else  { \
1239            d = s; \
1240        } \
1241        res |= (uint32_t)d << (n / 2); \
1242    }
1243
1244    SAT8(0);
1245    SAT8(16);
1246    SAT8(32);
1247    SAT8(48);
1248#undef SAT8
1249    return res;
1250}
1251
1252uint32_t HELPER(neon_narrow_sat_u8)(CPUARMState *env, uint64_t x)
1253{
1254    uint16_t s;
1255    uint8_t d;
1256    uint32_t res = 0;
1257#define SAT8(n) \
1258    s = x >> n; \
1259    if (s > 0xff) { \
1260        d = 0xff; \
1261        SET_QC(); \
1262    } else  { \
1263        d = s; \
1264    } \
1265    res |= (uint32_t)d << (n / 2);
1266
1267    SAT8(0);
1268    SAT8(16);
1269    SAT8(32);
1270    SAT8(48);
1271#undef SAT8
1272    return res;
1273}
1274
1275uint32_t HELPER(neon_narrow_sat_s8)(CPUARMState *env, uint64_t x)
1276{
1277    int16_t s;
1278    uint8_t d;
1279    uint32_t res = 0;
1280#define SAT8(n) \
1281    s = x >> n; \
1282    if (s != (int8_t)s) { \
1283        d = (s >> 15) ^ 0x7f; \
1284        SET_QC(); \
1285    } else  { \
1286        d = s; \
1287    } \
1288    res |= (uint32_t)d << (n / 2);
1289
1290    SAT8(0);
1291    SAT8(16);
1292    SAT8(32);
1293    SAT8(48);
1294#undef SAT8
1295    return res;
1296}
1297
1298uint32_t HELPER(neon_unarrow_sat16)(CPUARMState *env, uint64_t x)
1299{
1300    uint32_t high;
1301    uint32_t low;
1302    low = x;
1303    if (low & 0x80000000) {
1304        low = 0;
1305        SET_QC();
1306    } else if (low > 0xffff) {
1307        low = 0xffff;
1308        SET_QC();
1309    }
1310    high = x >> 32;
1311    if (high & 0x80000000) {
1312        high = 0;
1313        SET_QC();
1314    } else if (high > 0xffff) {
1315        high = 0xffff;
1316        SET_QC();
1317    }
1318    return low | (high << 16);
1319}
1320
1321uint32_t HELPER(neon_narrow_sat_u16)(CPUARMState *env, uint64_t x)
1322{
1323    uint32_t high;
1324    uint32_t low;
1325    low = x;
1326    if (low > 0xffff) {
1327        low = 0xffff;
1328        SET_QC();
1329    }
1330    high = x >> 32;
1331    if (high > 0xffff) {
1332        high = 0xffff;
1333        SET_QC();
1334    }
1335    return low | (high << 16);
1336}
1337
1338uint32_t HELPER(neon_narrow_sat_s16)(CPUARMState *env, uint64_t x)
1339{
1340    int32_t low;
1341    int32_t high;
1342    low = x;
1343    if (low != (int16_t)low) {
1344        low = (low >> 31) ^ 0x7fff;
1345        SET_QC();
1346    }
1347    high = x >> 32;
1348    if (high != (int16_t)high) {
1349        high = (high >> 31) ^ 0x7fff;
1350        SET_QC();
1351    }
1352    return (uint16_t)low | (high << 16);
1353}
1354
1355uint32_t HELPER(neon_unarrow_sat32)(CPUARMState *env, uint64_t x)
1356{
1357    if (x & 0x8000000000000000ull) {
1358        SET_QC();
1359        return 0;
1360    }
1361    if (x > 0xffffffffu) {
1362        SET_QC();
1363        return 0xffffffffu;
1364    }
1365    return x;
1366}
1367
1368uint32_t HELPER(neon_narrow_sat_u32)(CPUARMState *env, uint64_t x)
1369{
1370    if (x > 0xffffffffu) {
1371        SET_QC();
1372        return 0xffffffffu;
1373    }
1374    return x;
1375}
1376
1377uint32_t HELPER(neon_narrow_sat_s32)(CPUARMState *env, uint64_t x)
1378{
1379    if ((int64_t)x != (int32_t)x) {
1380        SET_QC();
1381        return ((int64_t)x >> 63) ^ 0x7fffffff;
1382    }
1383    return x;
1384}
1385
1386uint64_t HELPER(neon_widen_u8)(uint32_t x)
1387{
1388    uint64_t tmp;
1389    uint64_t ret;
1390    ret = (uint8_t)x;
1391    tmp = (uint8_t)(x >> 8);
1392    ret |= tmp << 16;
1393    tmp = (uint8_t)(x >> 16);
1394    ret |= tmp << 32;
1395    tmp = (uint8_t)(x >> 24);
1396    ret |= tmp << 48;
1397    return ret;
1398}
1399
1400uint64_t HELPER(neon_widen_s8)(uint32_t x)
1401{
1402    uint64_t tmp;
1403    uint64_t ret;
1404    ret = (uint16_t)(int8_t)x;
1405    tmp = (uint16_t)(int8_t)(x >> 8);
1406    ret |= tmp << 16;
1407    tmp = (uint16_t)(int8_t)(x >> 16);
1408    ret |= tmp << 32;
1409    tmp = (uint16_t)(int8_t)(x >> 24);
1410    ret |= tmp << 48;
1411    return ret;
1412}
1413
1414uint64_t HELPER(neon_widen_u16)(uint32_t x)
1415{
1416    uint64_t high = (uint16_t)(x >> 16);
1417    return ((uint16_t)x) | (high << 32);
1418}
1419
1420uint64_t HELPER(neon_widen_s16)(uint32_t x)
1421{
1422    uint64_t high = (int16_t)(x >> 16);
1423    return ((uint32_t)(int16_t)x) | (high << 32);
1424}
1425
1426uint64_t HELPER(neon_addl_u16)(uint64_t a, uint64_t b)
1427{
1428    uint64_t mask;
1429    mask = (a ^ b) & 0x8000800080008000ull;
1430    a &= ~0x8000800080008000ull;
1431    b &= ~0x8000800080008000ull;
1432    return (a + b) ^ mask;
1433}
1434
1435uint64_t HELPER(neon_addl_u32)(uint64_t a, uint64_t b)
1436{
1437    uint64_t mask;
1438    mask = (a ^ b) & 0x8000000080000000ull;
1439    a &= ~0x8000000080000000ull;
1440    b &= ~0x8000000080000000ull;
1441    return (a + b) ^ mask;
1442}
1443
1444uint64_t HELPER(neon_paddl_u16)(uint64_t a, uint64_t b)
1445{
1446    uint64_t tmp;
1447    uint64_t tmp2;
1448
1449    tmp = a & 0x0000ffff0000ffffull;
1450    tmp += (a >> 16) & 0x0000ffff0000ffffull;
1451    tmp2 = b & 0xffff0000ffff0000ull;
1452    tmp2 += (b << 16) & 0xffff0000ffff0000ull;
1453    return    ( tmp         & 0xffff)
1454            | ((tmp  >> 16) & 0xffff0000ull)
1455            | ((tmp2 << 16) & 0xffff00000000ull)
1456            | ( tmp2        & 0xffff000000000000ull);
1457}
1458
1459uint64_t HELPER(neon_paddl_u32)(uint64_t a, uint64_t b)
1460{
1461    uint32_t low = a + (a >> 32);
1462    uint32_t high = b + (b >> 32);
1463    return low + ((uint64_t)high << 32);
1464}
1465
1466uint64_t HELPER(neon_subl_u16)(uint64_t a, uint64_t b)
1467{
1468    uint64_t mask;
1469    mask = (a ^ ~b) & 0x8000800080008000ull;
1470    a |= 0x8000800080008000ull;
1471    b &= ~0x8000800080008000ull;
1472    return (a - b) ^ mask;
1473}
1474
1475uint64_t HELPER(neon_subl_u32)(uint64_t a, uint64_t b)
1476{
1477    uint64_t mask;
1478    mask = (a ^ ~b) & 0x8000000080000000ull;
1479    a |= 0x8000000080000000ull;
1480    b &= ~0x8000000080000000ull;
1481    return (a - b) ^ mask;
1482}
1483
1484uint64_t HELPER(neon_addl_saturate_s32)(CPUARMState *env, uint64_t a, uint64_t b)
1485{
1486    uint32_t x, y;
1487    uint32_t low, high;
1488
1489    x = a;
1490    y = b;
1491    low = x + y;
1492    if (((low ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
1493        SET_QC();
1494        low = ((int32_t)x >> 31) ^ ~SIGNBIT;
1495    }
1496    x = a >> 32;
1497    y = b >> 32;
1498    high = x + y;
1499    if (((high ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
1500        SET_QC();
1501        high = ((int32_t)x >> 31) ^ ~SIGNBIT;
1502    }
1503    return low | ((uint64_t)high << 32);
1504}
1505
1506uint64_t HELPER(neon_addl_saturate_s64)(CPUARMState *env, uint64_t a, uint64_t b)
1507{
1508    uint64_t result;
1509
1510    result = a + b;
1511    if (((result ^ a) & SIGNBIT64) && !((a ^ b) & SIGNBIT64)) {
1512        SET_QC();
1513        result = ((int64_t)a >> 63) ^ ~SIGNBIT64;
1514    }
1515    return result;
1516}
1517
1518/* We have to do the arithmetic in a larger type than
1519 * the input type, because for example with a signed 32 bit
1520 * op the absolute difference can overflow a signed 32 bit value.
1521 */
1522#define DO_ABD(dest, x, y, intype, arithtype) do {            \
1523    arithtype tmp_x = (intype)(x);                            \
1524    arithtype tmp_y = (intype)(y);                            \
1525    dest = ((tmp_x > tmp_y) ? tmp_x - tmp_y : tmp_y - tmp_x); \
1526    } while(0)
1527
1528uint64_t HELPER(neon_abdl_u16)(uint32_t a, uint32_t b)
1529{
1530    uint64_t tmp;
1531    uint64_t result;
1532    DO_ABD(result, a, b, uint8_t, uint32_t);
1533    DO_ABD(tmp, a >> 8, b >> 8, uint8_t, uint32_t);
1534    result |= tmp << 16;
1535    DO_ABD(tmp, a >> 16, b >> 16, uint8_t, uint32_t);
1536    result |= tmp << 32;
1537    DO_ABD(tmp, a >> 24, b >> 24, uint8_t, uint32_t);
1538    result |= tmp << 48;
1539    return result;
1540}
1541
1542uint64_t HELPER(neon_abdl_s16)(uint32_t a, uint32_t b)
1543{
1544    uint64_t tmp;
1545    uint64_t result;
1546    DO_ABD(result, a, b, int8_t, int32_t);
1547    DO_ABD(tmp, a >> 8, b >> 8, int8_t, int32_t);
1548    result |= tmp << 16;
1549    DO_ABD(tmp, a >> 16, b >> 16, int8_t, int32_t);
1550    result |= tmp << 32;
1551    DO_ABD(tmp, a >> 24, b >> 24, int8_t, int32_t);
1552    result |= tmp << 48;
1553    return result;
1554}
1555
1556uint64_t HELPER(neon_abdl_u32)(uint32_t a, uint32_t b)
1557{
1558    uint64_t tmp;
1559    uint64_t result;
1560    DO_ABD(result, a, b, uint16_t, uint32_t);
1561    DO_ABD(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
1562    return result | (tmp << 32);
1563}
1564
1565uint64_t HELPER(neon_abdl_s32)(uint32_t a, uint32_t b)
1566{
1567    uint64_t tmp;
1568    uint64_t result;
1569    DO_ABD(result, a, b, int16_t, int32_t);
1570    DO_ABD(tmp, a >> 16, b >> 16, int16_t, int32_t);
1571    return result | (tmp << 32);
1572}
1573
1574uint64_t HELPER(neon_abdl_u64)(uint32_t a, uint32_t b)
1575{
1576    uint64_t result;
1577    DO_ABD(result, a, b, uint32_t, uint64_t);
1578    return result;
1579}
1580
1581uint64_t HELPER(neon_abdl_s64)(uint32_t a, uint32_t b)
1582{
1583    uint64_t result;
1584    DO_ABD(result, a, b, int32_t, int64_t);
1585    return result;
1586}
1587#undef DO_ABD
1588
1589/* Widening multiply. Named type is the source type.  */
1590#define DO_MULL(dest, x, y, type1, type2) do { \
1591    type1 tmp_x = x; \
1592    type1 tmp_y = y; \
1593    dest = (type2)((type2)tmp_x * (type2)tmp_y); \
1594    } while(0)
1595
1596uint64_t HELPER(neon_mull_u8)(uint32_t a, uint32_t b)
1597{
1598    uint64_t tmp;
1599    uint64_t result;
1600
1601    DO_MULL(result, a, b, uint8_t, uint16_t);
1602    DO_MULL(tmp, a >> 8, b >> 8, uint8_t, uint16_t);
1603    result |= tmp << 16;
1604    DO_MULL(tmp, a >> 16, b >> 16, uint8_t, uint16_t);
1605    result |= tmp << 32;
1606    DO_MULL(tmp, a >> 24, b >> 24, uint8_t, uint16_t);
1607    result |= tmp << 48;
1608    return result;
1609}
1610
1611uint64_t HELPER(neon_mull_s8)(uint32_t a, uint32_t b)
1612{
1613    uint64_t tmp;
1614    uint64_t result;
1615
1616    DO_MULL(result, a, b, int8_t, uint16_t);
1617    DO_MULL(tmp, a >> 8, b >> 8, int8_t, uint16_t);
1618    result |= tmp << 16;
1619    DO_MULL(tmp, a >> 16, b >> 16, int8_t, uint16_t);
1620    result |= tmp << 32;
1621    DO_MULL(tmp, a >> 24, b >> 24, int8_t, uint16_t);
1622    result |= tmp << 48;
1623    return result;
1624}
1625
1626uint64_t HELPER(neon_mull_u16)(uint32_t a, uint32_t b)
1627{
1628    uint64_t tmp;
1629    uint64_t result;
1630
1631    DO_MULL(result, a, b, uint16_t, uint32_t);
1632    DO_MULL(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
1633    return result | (tmp << 32);
1634}
1635
1636uint64_t HELPER(neon_mull_s16)(uint32_t a, uint32_t b)
1637{
1638    uint64_t tmp;
1639    uint64_t result;
1640
1641    DO_MULL(result, a, b, int16_t, uint32_t);
1642    DO_MULL(tmp, a >> 16, b >> 16, int16_t, uint32_t);
1643    return result | (tmp << 32);
1644}
1645
1646uint64_t HELPER(neon_negl_u16)(uint64_t x)
1647{
1648    uint16_t tmp;
1649    uint64_t result;
1650    result = (uint16_t)-x;
1651    tmp = -(x >> 16);
1652    result |= (uint64_t)tmp << 16;
1653    tmp = -(x >> 32);
1654    result |= (uint64_t)tmp << 32;
1655    tmp = -(x >> 48);
1656    result |= (uint64_t)tmp << 48;
1657    return result;
1658}
1659
1660uint64_t HELPER(neon_negl_u32)(uint64_t x)
1661{
1662    uint32_t low = -x;
1663    uint32_t high = -(x >> 32);
1664    return low | ((uint64_t)high << 32);
1665}
1666
1667/* FIXME:  There should be a native op for this.  */
1668uint64_t HELPER(neon_negl_u64)(uint64_t x)
1669{
1670    return -x;
1671}
1672
1673/* Saturating sign manipulation.  */
1674/* ??? Make these use NEON_VOP1 */
1675#define DO_QABS8(x) do { \
1676    if (x == (int8_t)0x80) { \
1677        x = 0x7f; \
1678        SET_QC(); \
1679    } else if (x < 0) { \
1680        x = -x; \
1681    }} while (0)
1682uint32_t HELPER(neon_qabs_s8)(CPUARMState *env, uint32_t x)
1683{
1684    neon_s8 vec;
1685    NEON_UNPACK(neon_s8, vec, x);
1686    DO_QABS8(vec.v1);
1687    DO_QABS8(vec.v2);
1688    DO_QABS8(vec.v3);
1689    DO_QABS8(vec.v4);
1690    NEON_PACK(neon_s8, x, vec);
1691    return x;
1692}
1693#undef DO_QABS8
1694
1695#define DO_QNEG8(x) do { \
1696    if (x == (int8_t)0x80) { \
1697        x = 0x7f; \
1698        SET_QC(); \
1699    } else { \
1700        x = -x; \
1701    }} while (0)
1702uint32_t HELPER(neon_qneg_s8)(CPUARMState *env, uint32_t x)
1703{
1704    neon_s8 vec;
1705    NEON_UNPACK(neon_s8, vec, x);
1706    DO_QNEG8(vec.v1);
1707    DO_QNEG8(vec.v2);
1708    DO_QNEG8(vec.v3);
1709    DO_QNEG8(vec.v4);
1710    NEON_PACK(neon_s8, x, vec);
1711    return x;
1712}
1713#undef DO_QNEG8
1714
1715#define DO_QABS16(x) do { \
1716    if (x == (int16_t)0x8000) { \
1717        x = 0x7fff; \
1718        SET_QC(); \
1719    } else if (x < 0) { \
1720        x = -x; \
1721    }} while (0)
1722uint32_t HELPER(neon_qabs_s16)(CPUARMState *env, uint32_t x)
1723{
1724    neon_s16 vec;
1725    NEON_UNPACK(neon_s16, vec, x);
1726    DO_QABS16(vec.v1);
1727    DO_QABS16(vec.v2);
1728    NEON_PACK(neon_s16, x, vec);
1729    return x;
1730}
1731#undef DO_QABS16
1732
1733#define DO_QNEG16(x) do { \
1734    if (x == (int16_t)0x8000) { \
1735        x = 0x7fff; \
1736        SET_QC(); \
1737    } else { \
1738        x = -x; \
1739    }} while (0)
1740uint32_t HELPER(neon_qneg_s16)(CPUARMState *env, uint32_t x)
1741{
1742    neon_s16 vec;
1743    NEON_UNPACK(neon_s16, vec, x);
1744    DO_QNEG16(vec.v1);
1745    DO_QNEG16(vec.v2);
1746    NEON_PACK(neon_s16, x, vec);
1747    return x;
1748}
1749#undef DO_QNEG16
1750
1751uint32_t HELPER(neon_qabs_s32)(CPUARMState *env, uint32_t x)
1752{
1753    if (x == SIGNBIT) {
1754        SET_QC();
1755        x = ~SIGNBIT;
1756    } else if ((int32_t)x < 0) {
1757        x = -x;
1758    }
1759    return x;
1760}
1761
1762uint32_t HELPER(neon_qneg_s32)(CPUARMState *env, uint32_t x)
1763{
1764    if (x == SIGNBIT) {
1765        SET_QC();
1766        x = ~SIGNBIT;
1767    } else {
1768        x = -x;
1769    }
1770    return x;
1771}
1772
1773/* NEON Float helpers.  */
1774uint32_t HELPER(neon_min_f32)(uint32_t a, uint32_t b, void *fpstp)
1775{
1776    float_status *fpst = fpstp;
1777    return float32_val(float32_min(make_float32(a), make_float32(b), fpst));
1778}
1779
1780uint32_t HELPER(neon_max_f32)(uint32_t a, uint32_t b, void *fpstp)
1781{
1782    float_status *fpst = fpstp;
1783    return float32_val(float32_max(make_float32(a), make_float32(b), fpst));
1784}
1785
1786uint32_t HELPER(neon_abd_f32)(uint32_t a, uint32_t b, void *fpstp)
1787{
1788    float_status *fpst = fpstp;
1789    float32 f0 = make_float32(a);
1790    float32 f1 = make_float32(b);
1791    return float32_val(float32_abs(float32_sub(f0, f1, fpst)));
1792}
1793
1794/* Floating point comparisons produce an integer result.
1795 * Note that EQ doesn't signal InvalidOp for QNaNs but GE and GT do.
1796 * Softfloat routines return 0/1, which we convert to the 0/-1 Neon requires.
1797 */
1798uint32_t HELPER(neon_ceq_f32)(uint32_t a, uint32_t b, void *fpstp)
1799{
1800    float_status *fpst = fpstp;
1801    return -float32_eq_quiet(make_float32(a), make_float32(b), fpst);
1802}
1803
1804uint32_t HELPER(neon_cge_f32)(uint32_t a, uint32_t b, void *fpstp)
1805{
1806    float_status *fpst = fpstp;
1807    return -float32_le(make_float32(b), make_float32(a), fpst);
1808}
1809
1810uint32_t HELPER(neon_cgt_f32)(uint32_t a, uint32_t b, void *fpstp)
1811{
1812    float_status *fpst = fpstp;
1813    return -float32_lt(make_float32(b), make_float32(a), fpst);
1814}
1815
1816uint32_t HELPER(neon_acge_f32)(uint32_t a, uint32_t b, void *fpstp)
1817{
1818    float_status *fpst = fpstp;
1819    float32 f0 = float32_abs(make_float32(a));
1820    float32 f1 = float32_abs(make_float32(b));
1821    return -float32_le(f1, f0, fpst);
1822}
1823
1824uint32_t HELPER(neon_acgt_f32)(uint32_t a, uint32_t b, void *fpstp)
1825{
1826    float_status *fpst = fpstp;
1827    float32 f0 = float32_abs(make_float32(a));
1828    float32 f1 = float32_abs(make_float32(b));
1829    return -float32_lt(f1, f0, fpst);
1830}
1831
1832#define ELEM(V, N, SIZE) (((V) >> ((N) * (SIZE))) & ((1ull << (SIZE)) - 1))
1833
1834void HELPER(neon_qunzip8)(CPUARMState *env, uint32_t rd, uint32_t rm)
1835{
1836    uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1837    uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1838    uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1839    uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1840    uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zd0, 2, 8) << 8)
1841        | (ELEM(zd0, 4, 8) << 16) | (ELEM(zd0, 6, 8) << 24)
1842        | (ELEM(zd1, 0, 8) << 32) | (ELEM(zd1, 2, 8) << 40)
1843        | (ELEM(zd1, 4, 8) << 48) | (ELEM(zd1, 6, 8) << 56);
1844    uint64_t d1 = ELEM(zm0, 0, 8) | (ELEM(zm0, 2, 8) << 8)
1845        | (ELEM(zm0, 4, 8) << 16) | (ELEM(zm0, 6, 8) << 24)
1846        | (ELEM(zm1, 0, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
1847        | (ELEM(zm1, 4, 8) << 48) | (ELEM(zm1, 6, 8) << 56);
1848    uint64_t m0 = ELEM(zd0, 1, 8) | (ELEM(zd0, 3, 8) << 8)
1849        | (ELEM(zd0, 5, 8) << 16) | (ELEM(zd0, 7, 8) << 24)
1850        | (ELEM(zd1, 1, 8) << 32) | (ELEM(zd1, 3, 8) << 40)
1851        | (ELEM(zd1, 5, 8) << 48) | (ELEM(zd1, 7, 8) << 56);
1852    uint64_t m1 = ELEM(zm0, 1, 8) | (ELEM(zm0, 3, 8) << 8)
1853        | (ELEM(zm0, 5, 8) << 16) | (ELEM(zm0, 7, 8) << 24)
1854        | (ELEM(zm1, 1, 8) << 32) | (ELEM(zm1, 3, 8) << 40)
1855        | (ELEM(zm1, 5, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
1856    env->vfp.regs[rm] = make_float64(m0);
1857    env->vfp.regs[rm + 1] = make_float64(m1);
1858    env->vfp.regs[rd] = make_float64(d0);
1859    env->vfp.regs[rd + 1] = make_float64(d1);
1860}
1861
1862void HELPER(neon_qunzip16)(CPUARMState *env, uint32_t rd, uint32_t rm)
1863{
1864    uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1865    uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1866    uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1867    uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1868    uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zd0, 2, 16) << 16)
1869        | (ELEM(zd1, 0, 16) << 32) | (ELEM(zd1, 2, 16) << 48);
1870    uint64_t d1 = ELEM(zm0, 0, 16) | (ELEM(zm0, 2, 16) << 16)
1871        | (ELEM(zm1, 0, 16) << 32) | (ELEM(zm1, 2, 16) << 48);
1872    uint64_t m0 = ELEM(zd0, 1, 16) | (ELEM(zd0, 3, 16) << 16)
1873        | (ELEM(zd1, 1, 16) << 32) | (ELEM(zd1, 3, 16) << 48);
1874    uint64_t m1 = ELEM(zm0, 1, 16) | (ELEM(zm0, 3, 16) << 16)
1875        | (ELEM(zm1, 1, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
1876    env->vfp.regs[rm] = make_float64(m0);
1877    env->vfp.regs[rm + 1] = make_float64(m1);
1878    env->vfp.regs[rd] = make_float64(d0);
1879    env->vfp.regs[rd + 1] = make_float64(d1);
1880}
1881
1882void HELPER(neon_qunzip32)(CPUARMState *env, uint32_t rd, uint32_t rm)
1883{
1884    uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1885    uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1886    uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1887    uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1888    uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zd1, 0, 32) << 32);
1889    uint64_t d1 = ELEM(zm0, 0, 32) | (ELEM(zm1, 0, 32) << 32);
1890    uint64_t m0 = ELEM(zd0, 1, 32) | (ELEM(zd1, 1, 32) << 32);
1891    uint64_t m1 = ELEM(zm0, 1, 32) | (ELEM(zm1, 1, 32) << 32);
1892    env->vfp.regs[rm] = make_float64(m0);
1893    env->vfp.regs[rm + 1] = make_float64(m1);
1894    env->vfp.regs[rd] = make_float64(d0);
1895    env->vfp.regs[rd + 1] = make_float64(d1);
1896}
1897
1898void HELPER(neon_unzip8)(CPUARMState *env, uint32_t rd, uint32_t rm)
1899{
1900    uint64_t zm = float64_val(env->vfp.regs[rm]);
1901    uint64_t zd = float64_val(env->vfp.regs[rd]);
1902    uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zd, 2, 8) << 8)
1903        | (ELEM(zd, 4, 8) << 16) | (ELEM(zd, 6, 8) << 24)
1904        | (ELEM(zm, 0, 8) << 32) | (ELEM(zm, 2, 8) << 40)
1905        | (ELEM(zm, 4, 8) << 48) | (ELEM(zm, 6, 8) << 56);
1906    uint64_t m0 = ELEM(zd, 1, 8) | (ELEM(zd, 3, 8) << 8)
1907        | (ELEM(zd, 5, 8) << 16) | (ELEM(zd, 7, 8) << 24)
1908        | (ELEM(zm, 1, 8) << 32) | (ELEM(zm, 3, 8) << 40)
1909        | (ELEM(zm, 5, 8) << 48) | (ELEM(zm, 7, 8) << 56);
1910    env->vfp.regs[rm] = make_float64(m0);
1911    env->vfp.regs[rd] = make_float64(d0);
1912}
1913
1914void HELPER(neon_unzip16)(CPUARMState *env, uint32_t rd, uint32_t rm)
1915{
1916    uint64_t zm = float64_val(env->vfp.regs[rm]);
1917    uint64_t zd = float64_val(env->vfp.regs[rd]);
1918    uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zd, 2, 16) << 16)
1919        | (ELEM(zm, 0, 16) << 32) | (ELEM(zm, 2, 16) << 48);
1920    uint64_t m0 = ELEM(zd, 1, 16) | (ELEM(zd, 3, 16) << 16)
1921        | (ELEM(zm, 1, 16) << 32) | (ELEM(zm, 3, 16) << 48);
1922    env->vfp.regs[rm] = make_float64(m0);
1923    env->vfp.regs[rd] = make_float64(d0);
1924}
1925
1926void HELPER(neon_qzip8)(CPUARMState *env, uint32_t rd, uint32_t rm)
1927{
1928    uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1929    uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1930    uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1931    uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1932    uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zm0, 0, 8) << 8)
1933        | (ELEM(zd0, 1, 8) << 16) | (ELEM(zm0, 1, 8) << 24)
1934        | (ELEM(zd0, 2, 8) << 32) | (ELEM(zm0, 2, 8) << 40)
1935        | (ELEM(zd0, 3, 8) << 48) | (ELEM(zm0, 3, 8) << 56);
1936    uint64_t d1 = ELEM(zd0, 4, 8) | (ELEM(zm0, 4, 8) << 8)
1937        | (ELEM(zd0, 5, 8) << 16) | (ELEM(zm0, 5, 8) << 24)
1938        | (ELEM(zd0, 6, 8) << 32) | (ELEM(zm0, 6, 8) << 40)
1939        | (ELEM(zd0, 7, 8) << 48) | (ELEM(zm0, 7, 8) << 56);
1940    uint64_t m0 = ELEM(zd1, 0, 8) | (ELEM(zm1, 0, 8) << 8)
1941        | (ELEM(zd1, 1, 8) << 16) | (ELEM(zm1, 1, 8) << 24)
1942        | (ELEM(zd1, 2, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
1943        | (ELEM(zd1, 3, 8) << 48) | (ELEM(zm1, 3, 8) << 56);
1944    uint64_t m1 = ELEM(zd1, 4, 8) | (ELEM(zm1, 4, 8) << 8)
1945        | (ELEM(zd1, 5, 8) << 16) | (ELEM(zm1, 5, 8) << 24)
1946        | (ELEM(zd1, 6, 8) << 32) | (ELEM(zm1, 6, 8) << 40)
1947        | (ELEM(zd1, 7, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
1948    env->vfp.regs[rm] = make_float64(m0);
1949    env->vfp.regs[rm + 1] = make_float64(m1);
1950    env->vfp.regs[rd] = make_float64(d0);
1951    env->vfp.regs[rd + 1] = make_float64(d1);
1952}
1953
1954void HELPER(neon_qzip16)(CPUARMState *env, uint32_t rd, uint32_t rm)
1955{
1956    uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1957    uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1958    uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1959    uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1960    uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zm0, 0, 16) << 16)
1961        | (ELEM(zd0, 1, 16) << 32) | (ELEM(zm0, 1, 16) << 48);
1962    uint64_t d1 = ELEM(zd0, 2, 16) | (ELEM(zm0, 2, 16) << 16)
1963        | (ELEM(zd0, 3, 16) << 32) | (ELEM(zm0, 3, 16) << 48);
1964    uint64_t m0 = ELEM(zd1, 0, 16) | (ELEM(zm1, 0, 16) << 16)
1965        | (ELEM(zd1, 1, 16) << 32) | (ELEM(zm1, 1, 16) << 48);
1966    uint64_t m1 = ELEM(zd1, 2, 16) | (ELEM(zm1, 2, 16) << 16)
1967        | (ELEM(zd1, 3, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
1968    env->vfp.regs[rm] = make_float64(m0);
1969    env->vfp.regs[rm + 1] = make_float64(m1);
1970    env->vfp.regs[rd] = make_float64(d0);
1971    env->vfp.regs[rd + 1] = make_float64(d1);
1972}
1973
1974void HELPER(neon_qzip32)(CPUARMState *env, uint32_t rd, uint32_t rm)
1975{
1976    uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1977    uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1978    uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1979    uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1980    uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zm0, 0, 32) << 32);
1981    uint64_t d1 = ELEM(zd0, 1, 32) | (ELEM(zm0, 1, 32) << 32);
1982    uint64_t m0 = ELEM(zd1, 0, 32) | (ELEM(zm1, 0, 32) << 32);
1983    uint64_t m1 = ELEM(zd1, 1, 32) | (ELEM(zm1, 1, 32) << 32);
1984    env->vfp.regs[rm] = make_float64(m0);
1985    env->vfp.regs[rm + 1] = make_float64(m1);
1986    env->vfp.regs[rd] = make_float64(d0);
1987    env->vfp.regs[rd + 1] = make_float64(d1);
1988}
1989
1990void HELPER(neon_zip8)(CPUARMState *env, uint32_t rd, uint32_t rm)
1991{
1992    uint64_t zm = float64_val(env->vfp.regs[rm]);
1993    uint64_t zd = float64_val(env->vfp.regs[rd]);
1994    uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zm, 0, 8) << 8)
1995        | (ELEM(zd, 1, 8) << 16) | (ELEM(zm, 1, 8) << 24)
1996        | (ELEM(zd, 2, 8) << 32) | (ELEM(zm, 2, 8) << 40)
1997        | (ELEM(zd, 3, 8) << 48) | (ELEM(zm, 3, 8) << 56);
1998    uint64_t m0 = ELEM(zd, 4, 8) | (ELEM(zm, 4, 8) << 8)
1999        | (ELEM(zd, 5, 8) << 16) | (ELEM(zm, 5, 8) << 24)
2000        | (ELEM(zd, 6, 8) << 32) | (ELEM(zm, 6, 8) << 40)
2001        | (ELEM(zd, 7, 8) << 48) | (ELEM(zm, 7, 8) << 56);
2002    env->vfp.regs[rm] = make_float64(m0);
2003    env->vfp.regs[rd] = make_float64(d0);
2004}
2005
2006void HELPER(neon_zip16)(CPUARMState *env, uint32_t rd, uint32_t rm)
2007{
2008    uint64_t zm = float64_val(env->vfp.regs[rm]);
2009    uint64_t zd = float64_val(env->vfp.regs[rd]);
2010    uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zm, 0, 16) << 16)
2011        | (ELEM(zd, 1, 16) << 32) | (ELEM(zm, 1, 16) << 48);
2012    uint64_t m0 = ELEM(zd, 2, 16) | (ELEM(zm, 2, 16) << 16)
2013        | (ELEM(zd, 3, 16) << 32) | (ELEM(zm, 3, 16) << 48);
2014    env->vfp.regs[rm] = make_float64(m0);
2015    env->vfp.regs[rd] = make_float64(d0);
2016}
2017