1/* 2 * Copyright 2013 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8#include "SkBuffer.h" 9#include "SkLazyPtr.h" 10#include "SkPath.h" 11#include "SkPathRef.h" 12 13////////////////////////////////////////////////////////////////////////////// 14SkPathRef::Editor::Editor(SkAutoTUnref<SkPathRef>* pathRef, 15 int incReserveVerbs, 16 int incReservePoints) 17{ 18 if ((*pathRef)->unique()) { 19 (*pathRef)->incReserve(incReserveVerbs, incReservePoints); 20 } else { 21 SkPathRef* copy = SkNEW(SkPathRef); 22 copy->copy(**pathRef, incReserveVerbs, incReservePoints); 23 pathRef->reset(copy); 24 } 25 fPathRef = *pathRef; 26 fPathRef->fGenerationID = 0; 27 SkDEBUGCODE(sk_atomic_inc(&fPathRef->fEditorsAttached);) 28} 29 30////////////////////////////////////////////////////////////////////////////// 31 32SkPathRef* SkPathRef::CreateEmptyImpl() { 33 SkPathRef* p = SkNEW(SkPathRef); 34 p->computeBounds(); // Preemptively avoid a race to clear fBoundsIsDirty. 35 return p; 36} 37 38SkPathRef* SkPathRef::CreateEmpty() { 39 SK_DECLARE_STATIC_LAZY_PTR(SkPathRef, empty, CreateEmptyImpl); 40 return SkRef(empty.get()); 41} 42 43void SkPathRef::CreateTransformedCopy(SkAutoTUnref<SkPathRef>* dst, 44 const SkPathRef& src, 45 const SkMatrix& matrix) { 46 SkDEBUGCODE(src.validate();) 47 if (matrix.isIdentity()) { 48 if (*dst != &src) { 49 src.ref(); 50 dst->reset(const_cast<SkPathRef*>(&src)); 51 SkDEBUGCODE((*dst)->validate();) 52 } 53 return; 54 } 55 56 if (!(*dst)->unique()) { 57 dst->reset(SkNEW(SkPathRef)); 58 } 59 60 if (*dst != &src) { 61 (*dst)->resetToSize(src.fVerbCnt, src.fPointCnt, src.fConicWeights.count()); 62 memcpy((*dst)->verbsMemWritable(), src.verbsMemBegin(), src.fVerbCnt * sizeof(uint8_t)); 63 (*dst)->fConicWeights = src.fConicWeights; 64 } 65 66 SkASSERT((*dst)->countPoints() == src.countPoints()); 67 SkASSERT((*dst)->countVerbs() == src.countVerbs()); 68 SkASSERT((*dst)->fConicWeights.count() == src.fConicWeights.count()); 69 70 // Need to check this here in case (&src == dst) 71 bool canXformBounds = !src.fBoundsIsDirty && matrix.rectStaysRect() && src.countPoints() > 1; 72 73 matrix.mapPoints((*dst)->fPoints, src.points(), src.fPointCnt); 74 75 /* 76 * Here we optimize the bounds computation, by noting if the bounds are 77 * already known, and if so, we just transform those as well and mark 78 * them as "known", rather than force the transformed path to have to 79 * recompute them. 80 * 81 * Special gotchas if the path is effectively empty (<= 1 point) or 82 * if it is non-finite. In those cases bounds need to stay empty, 83 * regardless of the matrix. 84 */ 85 if (canXformBounds) { 86 (*dst)->fBoundsIsDirty = false; 87 if (src.fIsFinite) { 88 matrix.mapRect(&(*dst)->fBounds, src.fBounds); 89 if (!((*dst)->fIsFinite = (*dst)->fBounds.isFinite())) { 90 (*dst)->fBounds.setEmpty(); 91 } 92 } else { 93 (*dst)->fIsFinite = false; 94 (*dst)->fBounds.setEmpty(); 95 } 96 } else { 97 (*dst)->fBoundsIsDirty = true; 98 } 99 100 (*dst)->fSegmentMask = src.fSegmentMask; 101 102 // It's an oval only if it stays a rect. 103 (*dst)->fIsOval = src.fIsOval && matrix.rectStaysRect(); 104 105 SkDEBUGCODE((*dst)->validate();) 106} 107 108SkPathRef* SkPathRef::CreateFromBuffer(SkRBuffer* buffer) { 109 SkPathRef* ref = SkNEW(SkPathRef); 110 bool isOval; 111 uint8_t segmentMask; 112 113 int32_t packed; 114 if (!buffer->readS32(&packed)) { 115 SkDELETE(ref); 116 return NULL; 117 } 118 119 ref->fIsFinite = (packed >> kIsFinite_SerializationShift) & 1; 120 segmentMask = (packed >> kSegmentMask_SerializationShift) & 0xF; 121 isOval = (packed >> kIsOval_SerializationShift) & 1; 122 123 int32_t verbCount, pointCount, conicCount; 124 if (!buffer->readU32(&(ref->fGenerationID)) || 125 !buffer->readS32(&verbCount) || 126 !buffer->readS32(&pointCount) || 127 !buffer->readS32(&conicCount)) { 128 SkDELETE(ref); 129 return NULL; 130 } 131 132 ref->resetToSize(verbCount, pointCount, conicCount); 133 SkASSERT(verbCount == ref->countVerbs()); 134 SkASSERT(pointCount == ref->countPoints()); 135 SkASSERT(conicCount == ref->fConicWeights.count()); 136 137 if (!buffer->read(ref->verbsMemWritable(), verbCount * sizeof(uint8_t)) || 138 !buffer->read(ref->fPoints, pointCount * sizeof(SkPoint)) || 139 !buffer->read(ref->fConicWeights.begin(), conicCount * sizeof(SkScalar)) || 140 !buffer->read(&ref->fBounds, sizeof(SkRect))) { 141 SkDELETE(ref); 142 return NULL; 143 } 144 ref->fBoundsIsDirty = false; 145 146 // resetToSize clears fSegmentMask and fIsOval 147 ref->fSegmentMask = segmentMask; 148 ref->fIsOval = isOval; 149 return ref; 150} 151 152void SkPathRef::Rewind(SkAutoTUnref<SkPathRef>* pathRef) { 153 if ((*pathRef)->unique()) { 154 SkDEBUGCODE((*pathRef)->validate();) 155 (*pathRef)->fBoundsIsDirty = true; // this also invalidates fIsFinite 156 (*pathRef)->fVerbCnt = 0; 157 (*pathRef)->fPointCnt = 0; 158 (*pathRef)->fFreeSpace = (*pathRef)->currSize(); 159 (*pathRef)->fGenerationID = 0; 160 (*pathRef)->fConicWeights.rewind(); 161 (*pathRef)->fSegmentMask = 0; 162 (*pathRef)->fIsOval = false; 163 SkDEBUGCODE((*pathRef)->validate();) 164 } else { 165 int oldVCnt = (*pathRef)->countVerbs(); 166 int oldPCnt = (*pathRef)->countPoints(); 167 pathRef->reset(SkNEW(SkPathRef)); 168 (*pathRef)->resetToSize(0, 0, 0, oldVCnt, oldPCnt); 169 } 170} 171 172bool SkPathRef::operator== (const SkPathRef& ref) const { 173 SkDEBUGCODE(this->validate();) 174 SkDEBUGCODE(ref.validate();) 175 176 // We explicitly check fSegmentMask as a quick-reject. We could skip it, 177 // since it is only a cache of info in the fVerbs, but its a fast way to 178 // notice a difference 179 if (fSegmentMask != ref.fSegmentMask) { 180 return false; 181 } 182 183 bool genIDMatch = fGenerationID && fGenerationID == ref.fGenerationID; 184#ifdef SK_RELEASE 185 if (genIDMatch) { 186 return true; 187 } 188#endif 189 if (fPointCnt != ref.fPointCnt || 190 fVerbCnt != ref.fVerbCnt) { 191 SkASSERT(!genIDMatch); 192 return false; 193 } 194 if (0 != memcmp(this->verbsMemBegin(), 195 ref.verbsMemBegin(), 196 ref.fVerbCnt * sizeof(uint8_t))) { 197 SkASSERT(!genIDMatch); 198 return false; 199 } 200 if (0 != memcmp(this->points(), 201 ref.points(), 202 ref.fPointCnt * sizeof(SkPoint))) { 203 SkASSERT(!genIDMatch); 204 return false; 205 } 206 if (fConicWeights != ref.fConicWeights) { 207 SkASSERT(!genIDMatch); 208 return false; 209 } 210 // We've done the work to determine that these are equal. If either has a zero genID, copy 211 // the other's. If both are 0 then genID() will compute the next ID. 212 if (0 == fGenerationID) { 213 fGenerationID = ref.genID(); 214 } else if (0 == ref.fGenerationID) { 215 ref.fGenerationID = this->genID(); 216 } 217 return true; 218} 219 220void SkPathRef::writeToBuffer(SkWBuffer* buffer) const { 221 SkDEBUGCODE(this->validate();) 222 SkDEBUGCODE(size_t beforePos = buffer->pos();) 223 224 // Call getBounds() to ensure (as a side-effect) that fBounds 225 // and fIsFinite are computed. 226 const SkRect& bounds = this->getBounds(); 227 228 int32_t packed = ((fIsFinite & 1) << kIsFinite_SerializationShift) | 229 ((fIsOval & 1) << kIsOval_SerializationShift) | 230 (fSegmentMask << kSegmentMask_SerializationShift); 231 buffer->write32(packed); 232 233 // TODO: write gen ID here. Problem: We don't know if we're cross process or not from 234 // SkWBuffer. Until this is fixed we write 0. 235 buffer->write32(0); 236 buffer->write32(fVerbCnt); 237 buffer->write32(fPointCnt); 238 buffer->write32(fConicWeights.count()); 239 buffer->write(verbsMemBegin(), fVerbCnt * sizeof(uint8_t)); 240 buffer->write(fPoints, fPointCnt * sizeof(SkPoint)); 241 buffer->write(fConicWeights.begin(), fConicWeights.bytes()); 242 buffer->write(&bounds, sizeof(bounds)); 243 244 SkASSERT(buffer->pos() - beforePos == (size_t) this->writeSize()); 245} 246 247uint32_t SkPathRef::writeSize() const { 248 return uint32_t(5 * sizeof(uint32_t) + 249 fVerbCnt * sizeof(uint8_t) + 250 fPointCnt * sizeof(SkPoint) + 251 fConicWeights.bytes() + 252 sizeof(SkRect)); 253} 254 255void SkPathRef::copy(const SkPathRef& ref, 256 int additionalReserveVerbs, 257 int additionalReservePoints) { 258 SkDEBUGCODE(this->validate();) 259 this->resetToSize(ref.fVerbCnt, ref.fPointCnt, ref.fConicWeights.count(), 260 additionalReserveVerbs, additionalReservePoints); 261 memcpy(this->verbsMemWritable(), ref.verbsMemBegin(), ref.fVerbCnt * sizeof(uint8_t)); 262 memcpy(this->fPoints, ref.fPoints, ref.fPointCnt * sizeof(SkPoint)); 263 fConicWeights = ref.fConicWeights; 264 // We could call genID() here to force a real ID (instead of 0). However, if we're making 265 // a copy then presumably we intend to make a modification immediately afterwards. 266 fGenerationID = ref.fGenerationID; 267 fBoundsIsDirty = ref.fBoundsIsDirty; 268 if (!fBoundsIsDirty) { 269 fBounds = ref.fBounds; 270 fIsFinite = ref.fIsFinite; 271 } 272 fSegmentMask = ref.fSegmentMask; 273 fIsOval = ref.fIsOval; 274 SkDEBUGCODE(this->validate();) 275} 276 277SkPoint* SkPathRef::growForRepeatedVerb(int /*SkPath::Verb*/ verb, 278 int numVbs, 279 SkScalar** weights) { 280 // This value is just made-up for now. When count is 4, calling memset was much 281 // slower than just writing the loop. This seems odd, and hopefully in the 282 // future this will appear to have been a fluke... 283 static const unsigned int kMIN_COUNT_FOR_MEMSET_TO_BE_FAST = 16; 284 285 SkDEBUGCODE(this->validate();) 286 int pCnt; 287 bool dirtyAfterEdit = true; 288 switch (verb) { 289 case SkPath::kMove_Verb: 290 pCnt = numVbs; 291 dirtyAfterEdit = false; 292 break; 293 case SkPath::kLine_Verb: 294 fSegmentMask |= SkPath::kLine_SegmentMask; 295 pCnt = numVbs; 296 break; 297 case SkPath::kQuad_Verb: 298 fSegmentMask |= SkPath::kQuad_SegmentMask; 299 pCnt = 2 * numVbs; 300 break; 301 case SkPath::kConic_Verb: 302 fSegmentMask |= SkPath::kConic_SegmentMask; 303 pCnt = 2 * numVbs; 304 break; 305 case SkPath::kCubic_Verb: 306 fSegmentMask |= SkPath::kCubic_SegmentMask; 307 pCnt = 3 * numVbs; 308 break; 309 case SkPath::kClose_Verb: 310 SkDEBUGFAIL("growForRepeatedVerb called for kClose_Verb"); 311 pCnt = 0; 312 dirtyAfterEdit = false; 313 break; 314 case SkPath::kDone_Verb: 315 SkDEBUGFAIL("growForRepeatedVerb called for kDone"); 316 // fall through 317 default: 318 SkDEBUGFAIL("default should not be reached"); 319 pCnt = 0; 320 dirtyAfterEdit = false; 321 } 322 323 size_t space = numVbs * sizeof(uint8_t) + pCnt * sizeof (SkPoint); 324 this->makeSpace(space); 325 326 SkPoint* ret = fPoints + fPointCnt; 327 uint8_t* vb = fVerbs - fVerbCnt; 328 329 // cast to unsigned, so if kMIN_COUNT_FOR_MEMSET_TO_BE_FAST is defined to 330 // be 0, the compiler will remove the test/branch entirely. 331 if ((unsigned)numVbs >= kMIN_COUNT_FOR_MEMSET_TO_BE_FAST) { 332 memset(vb - numVbs, verb, numVbs); 333 } else { 334 for (int i = 0; i < numVbs; ++i) { 335 vb[~i] = verb; 336 } 337 } 338 339 fVerbCnt += numVbs; 340 fPointCnt += pCnt; 341 fFreeSpace -= space; 342 fBoundsIsDirty = true; // this also invalidates fIsFinite 343 if (dirtyAfterEdit) { 344 fIsOval = false; 345 } 346 347 if (SkPath::kConic_Verb == verb) { 348 SkASSERT(NULL != weights); 349 *weights = fConicWeights.append(numVbs); 350 } 351 352 SkDEBUGCODE(this->validate();) 353 return ret; 354} 355 356SkPoint* SkPathRef::growForVerb(int /* SkPath::Verb*/ verb, SkScalar weight) { 357 SkDEBUGCODE(this->validate();) 358 int pCnt; 359 bool dirtyAfterEdit = true; 360 switch (verb) { 361 case SkPath::kMove_Verb: 362 pCnt = 1; 363 dirtyAfterEdit = false; 364 break; 365 case SkPath::kLine_Verb: 366 fSegmentMask |= SkPath::kLine_SegmentMask; 367 pCnt = 1; 368 break; 369 case SkPath::kQuad_Verb: 370 fSegmentMask |= SkPath::kQuad_SegmentMask; 371 pCnt = 2; 372 break; 373 case SkPath::kConic_Verb: 374 fSegmentMask |= SkPath::kConic_SegmentMask; 375 pCnt = 2; 376 break; 377 case SkPath::kCubic_Verb: 378 fSegmentMask |= SkPath::kCubic_SegmentMask; 379 pCnt = 3; 380 break; 381 case SkPath::kClose_Verb: 382 pCnt = 0; 383 dirtyAfterEdit = false; 384 break; 385 case SkPath::kDone_Verb: 386 SkDEBUGFAIL("growForVerb called for kDone"); 387 // fall through 388 default: 389 SkDEBUGFAIL("default is not reached"); 390 dirtyAfterEdit = false; 391 pCnt = 0; 392 } 393 size_t space = sizeof(uint8_t) + pCnt * sizeof (SkPoint); 394 this->makeSpace(space); 395 this->fVerbs[~fVerbCnt] = verb; 396 SkPoint* ret = fPoints + fPointCnt; 397 fVerbCnt += 1; 398 fPointCnt += pCnt; 399 fFreeSpace -= space; 400 fBoundsIsDirty = true; // this also invalidates fIsFinite 401 if (dirtyAfterEdit) { 402 fIsOval = false; 403 } 404 405 if (SkPath::kConic_Verb == verb) { 406 *fConicWeights.append() = weight; 407 } 408 409 SkDEBUGCODE(this->validate();) 410 return ret; 411} 412 413uint32_t SkPathRef::genID() const { 414 SkASSERT(!fEditorsAttached); 415 static const uint32_t kMask = (static_cast<int64_t>(1) << SkPath::kPathRefGenIDBitCnt) - 1; 416 if (!fGenerationID) { 417 if (0 == fPointCnt && 0 == fVerbCnt) { 418 fGenerationID = kEmptyGenID; 419 } else { 420 static int32_t gPathRefGenerationID; 421 // do a loop in case our global wraps around, as we never want to return a 0 or the 422 // empty ID 423 do { 424 fGenerationID = (sk_atomic_inc(&gPathRefGenerationID) + 1) & kMask; 425 } while (fGenerationID <= kEmptyGenID); 426 } 427 } 428 return fGenerationID; 429} 430 431#ifdef SK_DEBUG 432void SkPathRef::validate() const { 433 this->INHERITED::validate(); 434 SkASSERT(static_cast<ptrdiff_t>(fFreeSpace) >= 0); 435 SkASSERT(reinterpret_cast<intptr_t>(fVerbs) - reinterpret_cast<intptr_t>(fPoints) >= 0); 436 SkASSERT((NULL == fPoints) == (NULL == fVerbs)); 437 SkASSERT(!(NULL == fPoints && 0 != fFreeSpace)); 438 SkASSERT(!(NULL == fPoints && 0 != fFreeSpace)); 439 SkASSERT(!(NULL == fPoints && fPointCnt)); 440 SkASSERT(!(NULL == fVerbs && fVerbCnt)); 441 SkASSERT(this->currSize() == 442 fFreeSpace + sizeof(SkPoint) * fPointCnt + sizeof(uint8_t) * fVerbCnt); 443 444 if (!fBoundsIsDirty && !fBounds.isEmpty()) { 445 bool isFinite = true; 446 for (int i = 0; i < fPointCnt; ++i) { 447 SkASSERT(!fPoints[i].isFinite() || ( 448 fBounds.fLeft - fPoints[i].fX < SK_ScalarNearlyZero && 449 fPoints[i].fX - fBounds.fRight < SK_ScalarNearlyZero && 450 fBounds.fTop - fPoints[i].fY < SK_ScalarNearlyZero && 451 fPoints[i].fY - fBounds.fBottom < SK_ScalarNearlyZero)); 452 if (!fPoints[i].isFinite()) { 453 isFinite = false; 454 } 455 } 456 SkASSERT(SkToBool(fIsFinite) == isFinite); 457 } 458 459#ifdef SK_DEBUG_PATH 460 uint32_t mask = 0; 461 for (int i = 0; i < fVerbCnt; ++i) { 462 switch (fVerbs[~i]) { 463 case SkPath::kMove_Verb: 464 break; 465 case SkPath::kLine_Verb: 466 mask |= SkPath::kLine_SegmentMask; 467 break; 468 case SkPath::kQuad_Verb: 469 mask |= SkPath::kQuad_SegmentMask; 470 break; 471 case SkPath::kConic_Verb: 472 mask |= SkPath::kConic_SegmentMask; 473 break; 474 case SkPath::kCubic_Verb: 475 mask |= SkPath::kCubic_SegmentMask; 476 break; 477 case SkPath::kClose_Verb: 478 break; 479 case SkPath::kDone_Verb: 480 SkDEBUGFAIL("Done verb shouldn't be recorded."); 481 break; 482 default: 483 SkDEBUGFAIL("Unknown Verb"); 484 break; 485 } 486 } 487 SkASSERT(mask == fSegmentMask); 488#endif // SK_DEBUG_PATH 489} 490#endif 491