1/*
2 * bootstub 32 bit entry setting routings
3 *
4 * Copyright (C) 2008-2010 Intel Corporation.
5 * Author: Alek Du <alek.du@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, write to the Free Software Foundation, Inc.,
18 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 */
21
22#include "types.h"
23#include "bootstub.h"
24#include "bootparam.h"
25#include "spi-uart.h"
26#include "ssp-uart.h"
27#include "mb.h"
28#include "sfi.h"
29#include "bootimg.h"
30
31#include <stdint.h>
32#include <stddef.h>
33#include "imr_toc.h"
34
35#define PAGE_SIZE_MASK	0xFFF
36#define MASK_1K		0x3FF
37#define PAGE_ALIGN_FWD(x)       ((x + PAGE_SIZE_MASK) & ~PAGE_SIZE_MASK)
38#define PAGE_ALIGN_BACK(x)      ((x) & ~PAGE_SIZE_MASK)
39
40#define IMR_START_ADDRESS(x)	(((x) & 0xFFFFFFFC) << 8)
41#define IMR_END_ADDRESS(x)	((x == 0) ? (x) : ((((x) & 0xFFFFFFFC) << 8) | MASK_1K))
42
43#define	IMR6_START_ADDRESS	IMR_START_ADDRESS(*((u32 *)0xff108160))
44#define	IMR6_END_ADDRESS	IMR_END_ADDRESS(*((u32 *)0xff108164))
45#define	IMR7_START_ADDRESS	IMR_START_ADDRESS(*((u32 *)0xff108170))
46#define	IMR7_END_ADDRESS	IMR_END_ADDRESS(*((u32 *)0xff108174))
47
48#define FATAL_HANG()  { asm("cli"); while (1) { asm("nop"); } }
49
50extern int no_uart_used;
51
52extern imr_toc_t imr6_toc;
53static u32 imr7_size;
54
55static u32 sps_load_adrs;
56
57static memory_map_t mb_mmap[E820MAX];
58u32 mb_magic, mb_info;
59
60struct gdt_ptr {
61        u16 len;
62        u32 ptr;
63} __attribute__((packed));
64
65static void *memcpy(void *dest, const void *src, size_t count)
66{
67        char *tmp = dest;
68        const char *s = src;
69	size_t _count = count / 4;
70
71	while (_count--) {
72		*(long *)tmp = *(long *)s;
73		tmp += 4;
74		s += 4;
75	}
76	count %= 4;
77        while (count--)
78                *tmp++ = *s++;
79        return dest;
80}
81
82static void *memset(void *s, unsigned char c, size_t count)
83{
84        char *xs = s;
85	size_t _count = count / 4;
86	unsigned long  _c = c << 24 | c << 16 | c << 8 | c;
87
88	while (_count--) {
89		*(long *)xs = _c;
90		xs += 4;
91	}
92	count %= 4;
93        while (count--)
94                *xs++ = c;
95        return s;
96}
97
98static size_t strnlen(const char *s, size_t maxlen)
99{
100        const char *es = s;
101        while (*es && maxlen) {
102                es++;
103                maxlen--;
104        }
105
106        return (es - s);
107}
108
109static const char *strnchr(const char *s, int c, size_t maxlen)
110{
111    int i;
112    for (i = 0; i < maxlen && *s != c; s++, i++)
113        ;
114    return s;
115}
116
117int strncmp(const char *cs, const char *ct, size_t count)
118{
119	unsigned char c1, c2;
120
121	while (count) {
122		c1 = *cs++;
123		c2 = *ct++;
124		if (c1 != c2)
125			return c1 < c2 ? -1 : 1;
126		if (!c1)
127			break;
128		count--;
129	}
130	return 0;
131}
132
133static inline int is_image_aosp(unsigned char *magic)
134{
135	return !strncmp((char *)magic, (char *)BOOT_MAGIC, sizeof(BOOT_MAGIC)-1);
136}
137
138static void setup_boot_params(struct boot_params *bp, struct setup_header *sh)
139{
140	bp->screen_info.orig_video_mode = 0;
141	bp->screen_info.orig_video_lines = 0;
142	bp->screen_info.orig_video_cols = 0;
143	bp->alt_mem_k = 128*1024; // hard coded 128M mem here, since SFI will override it
144	memcpy(&bp->hdr, sh, sizeof (struct setup_header));
145	bp->hdr.type_of_loader = 0xff; //bootstub is unknown bootloader for kernel :)
146	bp->hdr.hardware_subarch = X86_SUBARCH_MRST;
147}
148
149static u32 bzImage_setup(struct boot_params *bp, struct setup_header *sh)
150{
151	void *cmdline = (void *)BOOT_CMDLINE_OFFSET;
152	struct boot_img_hdr *aosp = (struct boot_img_hdr *)AOSP_HEADER_ADDRESS;
153	size_t cmdline_len;
154	u8 *initramfs, *ptr;
155
156	if (is_image_aosp(aosp->magic)) {
157		ptr = (u8*)aosp->kernel_addr;
158		cmdline_len = strnlen((const char *)aosp->cmdline, sizeof(aosp->cmdline));
159
160		/*
161		* Copy the command line to be after bootparams so that it won't be
162		* overwritten by the kernel executable.
163		*/
164		memset(cmdline, 0, sizeof(aosp->cmdline));
165		memcpy(cmdline, (const void *)aosp->cmdline, cmdline_len);
166
167		bp->hdr.ramdisk_size = aosp->ramdisk_size;
168
169		initramfs = (u8 *)aosp->ramdisk_addr;
170	} else {
171		ptr = (u8*)BZIMAGE_OFFSET;
172		cmdline_len = strnlen((const char *)CMDLINE_OFFSET, CMDLINE_SIZE);
173		/*
174		 * Copy the command line to be after bootparams so that it won't be
175		 * overwritten by the kernel executable.
176		 */
177		memset(cmdline, 0, CMDLINE_SIZE);
178		memcpy(cmdline, (const void *)CMDLINE_OFFSET, cmdline_len);
179
180		bp->hdr.ramdisk_size = *(u32 *)INITRD_SIZE_OFFSET;
181
182		initramfs = (u8 *)BZIMAGE_OFFSET + *(u32 *)BZIMAGE_SIZE_OFFSET;
183	}
184
185	bp->hdr.cmd_line_ptr = BOOT_CMDLINE_OFFSET;
186	bp->hdr.cmdline_size = cmdline_len;
187	bp->hdr.ramdisk_image = (bp->alt_mem_k*1024 - bp->hdr.ramdisk_size) & 0xFFFFF000;
188
189	if (*initramfs) {
190		bs_printk("Relocating initramfs to high memory ...\n");
191		memcpy((u8*)bp->hdr.ramdisk_image, initramfs, bp->hdr.ramdisk_size);
192	} else {
193		bs_printk("Won't relocate initramfs, are you in SLE?\n");
194	}
195
196	while (1){
197		if (*(u32 *)ptr == SETUP_SIGNATURE && *(u32 *)(ptr+4) == 0)
198			break;
199		ptr++;
200	}
201	ptr+=4;
202	return (((unsigned int)ptr+511)/512)*512;
203}
204
205static inline void cpuid(u32 op, u32 regs[4])
206{
207	__asm__ volatile (
208		"mov %%ebx, %%edi\n"
209		"cpuid\n"
210		"xchg %%edi, %%ebx\n"
211		: "=a"(regs[0]), "=D"(regs[1]), "=c"(regs[2]), "=d"(regs[3])
212		: "a"(op)
213		);
214}
215
216enum cpuid_regs {
217	CR_EAX = 0,
218	CR_ECX,
219	CR_EDX,
220	CR_EBX
221};
222
223int mid_identify_cpu(void)
224{
225	u32 regs[4];
226
227	cpuid(1, regs);
228
229	switch ( regs[CR_EAX] & CPUID_MASK ) {
230
231	case PENWELL_FAMILY:
232		return MID_CPU_CHIP_PENWELL;
233	case CLOVERVIEW_FAMILY:
234		return MID_CPU_CHIP_CLOVERVIEW;
235	case VALLEYVIEW2_FAMILY:
236		return MID_CPU_CHIP_VALLEYVIEW2;
237	case TANGIER_FAMILY:
238		return MID_CPU_CHIP_TANGIER;
239	case ANNIEDALE_FAMILY:
240		return MID_CPU_CHIP_ANNIEDALE;
241	default:
242		return MID_CPU_CHIP_OTHER;
243	}
244}
245
246static void setup_spi(void)
247{
248	if (!(*(int *)SPI_TYPE)) {
249		switch ( mid_identify_cpu() ) {
250
251		case MID_CPU_CHIP_PENWELL:
252			*(int *)SPI_TYPE = SPI_1;
253			bs_printk("PNW detected\n");
254			break;
255
256		case MID_CPU_CHIP_CLOVERVIEW:
257			*(int *)SPI_TYPE = SPI_1;
258			bs_printk("CLV detected\n");
259			break;
260
261		case MID_CPU_CHIP_TANGIER:
262			*(int *)SPI_TYPE = SPI_2;
263			bs_printk("MRD detected\n");
264			break;
265
266		case MID_CPU_CHIP_ANNIEDALE:
267			*(int *)SPI_TYPE = SPI_2;
268			bs_printk("ANN detected\n");
269			break;
270
271		case MID_CPU_CHIP_VALLEYVIEW2:
272		case MID_CPU_CHIP_OTHER:
273		default:
274			no_uart_used = 1;
275		}
276	}
277}
278
279static void setup_gdt(void)
280{
281        static const u64 boot_gdt[] __attribute__((aligned(16))) = {
282                /* CS: code, read/execute, 4 GB, base 0 */
283                [GDT_ENTRY_BOOT_CS] = GDT_ENTRY(0xc09b, 0, 0xfffff),
284                /* DS: data, read/write, 4 GB, base 0 */
285                [GDT_ENTRY_BOOT_DS] = GDT_ENTRY(0xc093, 0, 0xfffff),
286        };
287        static struct gdt_ptr gdt;
288
289        gdt.len = sizeof(boot_gdt)-1;
290        gdt.ptr = (u32)&boot_gdt;
291
292        asm volatile("lgdtl %0" : : "m" (gdt));
293}
294
295static void setup_idt(void)
296{
297        static const struct gdt_ptr null_idt = {0, 0};
298        asm volatile("lidtl %0" : : "m" (null_idt));
299}
300
301static void vxe_fw_setup(void)
302{
303	u8 *vxe_fw_image;
304	u32 vxe_fw_size;
305	u32 vxe_fw_load_adrs;
306
307	vxe_fw_size = *(u32*)VXE_FW_SIZE_OFFSET;
308	/* do we have a VXE FW image? */
309	if (vxe_fw_size == 0)
310		return;
311
312	/* Do we have enough room to load the image? */
313	if (vxe_fw_size > imr6_toc.entries[IMR_TOC_ENTRY_VXE_FW].size) {
314		bs_printk("FATAL ERROR: VXE FW image size is too large for IMR\n");
315		FATAL_HANG();
316	}
317
318	vxe_fw_image = (u8 *)(
319		BZIMAGE_OFFSET
320		+ *(u32 *)BZIMAGE_SIZE_OFFSET
321		+ *(u32 *)INITRD_SIZE_OFFSET
322	);
323
324	vxe_fw_load_adrs = IMR6_START_ADDRESS + imr6_toc.entries[IMR_TOC_ENTRY_VXE_FW].start_offset;
325	memcpy((u8 *)vxe_fw_load_adrs, vxe_fw_image, vxe_fw_size);
326}
327
328static void load_imr_toc(u32 imr, u32 imrsize, imr_toc_t *toc, u32 tocsize)
329{
330	if (imr == 0 || imrsize == 0 || toc == NULL || tocsize == 0 || imrsize < tocsize )
331	{
332                bs_printk("FATAL ERROR: TOC size is too large for IMR\n");
333		FATAL_HANG();
334	}
335	memcpy((u8 *)imr, (u8 *)toc, tocsize);
336}
337
338
339static u32 xen_multiboot_setup(void)
340{
341	u32 *magic, *xen_image, i;
342	char *src, *dst;
343	u32 xen_size;
344	u32 xen_jump_adrs;
345	static module_t modules[3];
346	static multiboot_info_t mb = {
347		.flags = MBI_CMDLINE | MBI_MODULES | MBI_MEMMAP | MBI_DRIVES,
348		.mmap_addr = (u32)mb_mmap,
349		.mods_count = 3,
350		.mods_addr = (u32)modules,
351	};
352
353	xen_size =  *(u32 *)XEN_SIZE_OFFSET;
354	/* do we have a xen image? */
355	if (xen_size == 0) {
356		return 0;
357        }
358
359	/* Compute the actual offset of the Xen image */
360	xen_image = (u32*)(
361		BZIMAGE_OFFSET
362		+ *(u32 *)BZIMAGE_SIZE_OFFSET
363		+ *(u32 *)INITRD_SIZE_OFFSET
364		+ *(u32 *)VXE_FW_SIZE_OFFSET
365		+ *(u32 *)SEC_PLAT_SVCS_SIZE_OFFSET
366	);
367
368	/* the multiboot signature should be located in the first 8192 bytes */
369	for (magic = xen_image; magic < xen_image + 2048; magic++)
370		if (*magic == MULTIBOOT_HEADER_MAGIC)
371			break;
372	if (*magic != MULTIBOOT_HEADER_MAGIC) {
373		return 0;
374        }
375
376	mb.cmdline = (u32)strnchr((char *)CMDLINE_OFFSET, '$', CMDLINE_SIZE) + 1;
377	dst = (char *)mb.cmdline + strnlen((const char *)mb.cmdline, CMDLINE_SIZE) - 1;
378	*dst = ' ';
379	dst++;
380	src = (char *)CMDLINE_OFFSET;
381	for (i = 0 ;i < strnlen((const char *)CMDLINE_OFFSET, CMDLINE_SIZE);i++) {
382		if (!strncmp(src, "capfreq=", 8)) {
383			while (*src != ' ' && *src != 0) {
384				*dst = *src;
385				dst++;
386				src++;
387			}
388			break;
389		}
390		src++;
391	}
392
393	/* fill in the multiboot module information: dom0 kernel + initrd + Platform Services Image */
394	modules[0].mod_start = BZIMAGE_OFFSET;
395	modules[0].mod_end = BZIMAGE_OFFSET + *(u32 *)BZIMAGE_SIZE_OFFSET;
396	modules[0].string = CMDLINE_OFFSET;
397
398	modules[1].mod_start = modules[0].mod_end ;
399	modules[1].mod_end = modules[1].mod_start + *(u32 *)INITRD_SIZE_OFFSET;
400	modules[1].string = 0;
401
402	modules[2].mod_start = sps_load_adrs;
403	modules[2].mod_end = modules[2].mod_start + *(u32 *)SEC_PLAT_SVCS_SIZE_OFFSET;
404	modules[2].string = 0;
405
406	mb.drives_addr = IMR6_START_ADDRESS + imr6_toc.entries[IMR_TOC_ENTRY_XEN_EXTRA].start_offset;
407	mb.drives_length = imr6_toc.entries[IMR_TOC_ENTRY_XEN_EXTRA].size;
408
409	for(i = 0; i < E820MAX; i++)
410		if (!mb_mmap[i].size)
411			break;
412	mb.mmap_length = i * sizeof(memory_map_t);
413
414	/* relocate xen to start address */
415	if (xen_size > imr7_size) {
416		bs_printk("FATAL ERROR: Xen image size is too large for IMR\n");
417		FATAL_HANG();
418	}
419	xen_jump_adrs = IMR7_START_ADDRESS;
420	memcpy((u8 *)xen_jump_adrs, xen_image, xen_size);
421
422	mb_info = (u32)&mb;
423	mb_magic = MULTIBOOT_BOOTLOADER_MAGIC;
424
425	return (u32)xen_jump_adrs;
426}
427
428static void sec_plat_svcs_setup(void)
429{
430	u8 *sps_image;
431	u32 sps_size;
432
433	sps_size = PAGE_ALIGN_FWD(*(u32*)SEC_PLAT_SVCS_SIZE_OFFSET);
434	/* do we have a SPS image? */
435	if (sps_size == 0)
436		return;
437
438	/* Do we have enough room to load the image? */
439	if (sps_size > imr7_size) {
440		bs_printk("FATAL ERROR: SPS image size is too large for IMR\n");
441		FATAL_HANG();
442	}
443
444	sps_image = (u8 *)(
445		BZIMAGE_OFFSET
446		+ *(u32 *)BZIMAGE_SIZE_OFFSET
447		+ *(u32 *)INITRD_SIZE_OFFSET
448		+ *(u32 *)VXE_FW_SIZE_OFFSET
449	);
450
451	/* load SPS image (with assumed CHAABI Mailboxes suffixed) */
452	/* at bottom of IMR7 */
453	/* Must be page-aligned or Xen will panic */
454	sps_load_adrs = PAGE_ALIGN_BACK(IMR7_START_ADDRESS + imr7_size - sps_size);
455	memcpy((u8 *)sps_load_adrs, sps_image, sps_size);
456
457	/* reduce remaining size for Xen image size check */
458	imr7_size -= sps_size;
459}
460
461int bootstub(void)
462{
463	u32 jmp;
464	struct boot_img_hdr *aosp = (struct boot_img_hdr *)AOSP_HEADER_ADDRESS;
465	struct boot_params *bp = (struct boot_params *)BOOT_PARAMS_OFFSET;
466	struct setup_header *sh;
467	u32 imr_size;
468	int nr_entries;
469
470	if (is_image_aosp(aosp->magic)) {
471		sh = (struct setup_header *)((unsigned  int)aosp->kernel_addr + 0x1F1);
472		/* disable the bs_printk through SPI/UART */
473		*(int *)SPI_UART_SUPPRESSION = 1;
474		*(int *)SPI_TYPE = SPI_2;
475	} else
476		sh = (struct setup_header *)SETUP_HEADER_OFFSET;
477
478	setup_idt();
479	setup_gdt();
480	setup_spi();
481	bs_printk("Bootstub Version: 1.4 ...\n");
482
483	memset(bp, 0, sizeof (struct boot_params));
484
485	if (mid_identify_cpu() == MID_CPU_CHIP_VALLEYVIEW2) {
486		nr_entries = get_e820_by_bios(bp->e820_map);
487		bp->e820_entries = (nr_entries > 0) ? nr_entries : 0;
488	} else {
489	        sfi_setup_mmap(bp, mb_mmap);
490	}
491
492	if ((mid_identify_cpu() != MID_CPU_CHIP_TANGIER) && (mid_identify_cpu() != MID_CPU_CHIP_ANNIEDALE)) {
493		if ((IMR6_END_ADDRESS > IMR6_START_ADDRESS) && (IMR7_END_ADDRESS > IMR7_START_ADDRESS)) {
494			imr_size  = PAGE_ALIGN_FWD(IMR6_END_ADDRESS - IMR6_START_ADDRESS);
495			load_imr_toc(IMR6_START_ADDRESS, imr_size, &imr6_toc, sizeof(imr6_toc));
496			vxe_fw_setup();
497			sfi_add_e820_entry(bp, mb_mmap, IMR6_START_ADDRESS, imr_size, E820_RESERVED);
498
499			imr7_size  = PAGE_ALIGN_FWD(IMR7_END_ADDRESS - IMR7_START_ADDRESS);
500			sec_plat_svcs_setup();
501			sfi_add_e820_entry(bp, mb_mmap, IMR7_START_ADDRESS, imr7_size, E820_RESERVED);
502		} else {
503			*(u32 *)XEN_SIZE_OFFSET = 0;	/* Don't allow Xen to boot */
504		}
505	} else {
506		*(u32 *)XEN_SIZE_OFFSET = 0;	/* Don't allow Xen to boot */
507	}
508
509	setup_boot_params(bp, sh);
510
511	jmp = xen_multiboot_setup();
512	if (!jmp) {
513		bs_printk("Using bzImage to boot\n");
514		jmp = bzImage_setup(bp, sh);
515	} else
516		bs_printk("Using multiboot image to boot\n");
517
518	bs_printk("Jump to kernel 32bit entry\n");
519	return jmp;
520}
521
522void bs_printk(const char *str)
523{
524        if (*(int *)SPI_UART_SUPPRESSION)
525                return;
526
527        switch (*(int *)SPI_TYPE) {
528
529        case SPI_1:
530                bs_spi_printk(str);
531                break;
532
533        case SPI_2:
534                bs_ssp_printk(str);
535                break;
536        }
537}
538