1/*
2 * Written by Doug Lea, Bill Scherer, and Michael Scott with
3 * assistance from members of JCP JSR-166 Expert Group and released to
4 * the public domain, as explained at
5 * http://creativecommons.org/publicdomain/zero/1.0/
6 */
7
8package java.util.concurrent;
9import java.util.concurrent.locks.LockSupport;
10import java.util.concurrent.locks.ReentrantLock;
11import java.util.*;
12
13// BEGIN android-note
14// removed link to collections framework docs
15// END android-note
16
17/**
18 * A {@linkplain BlockingQueue blocking queue} in which each insert
19 * operation must wait for a corresponding remove operation by another
20 * thread, and vice versa.  A synchronous queue does not have any
21 * internal capacity, not even a capacity of one.  You cannot
22 * {@code peek} at a synchronous queue because an element is only
23 * present when you try to remove it; you cannot insert an element
24 * (using any method) unless another thread is trying to remove it;
25 * you cannot iterate as there is nothing to iterate.  The
26 * <em>head</em> of the queue is the element that the first queued
27 * inserting thread is trying to add to the queue; if there is no such
28 * queued thread then no element is available for removal and
29 * {@code poll()} will return {@code null}.  For purposes of other
30 * {@code Collection} methods (for example {@code contains}), a
31 * {@code SynchronousQueue} acts as an empty collection.  This queue
32 * does not permit {@code null} elements.
33 *
34 * <p>Synchronous queues are similar to rendezvous channels used in
35 * CSP and Ada. They are well suited for handoff designs, in which an
36 * object running in one thread must sync up with an object running
37 * in another thread in order to hand it some information, event, or
38 * task.
39 *
40 * <p>This class supports an optional fairness policy for ordering
41 * waiting producer and consumer threads.  By default, this ordering
42 * is not guaranteed. However, a queue constructed with fairness set
43 * to {@code true} grants threads access in FIFO order.
44 *
45 * <p>This class and its iterator implement all of the
46 * <em>optional</em> methods of the {@link Collection} and {@link
47 * Iterator} interfaces.
48 *
49 * @since 1.5
50 * @author Doug Lea and Bill Scherer and Michael Scott
51 * @param <E> the type of elements held in this collection
52 */
53public class SynchronousQueue<E> extends AbstractQueue<E>
54    implements BlockingQueue<E>, java.io.Serializable {
55    private static final long serialVersionUID = -3223113410248163686L;
56
57    /*
58     * This class implements extensions of the dual stack and dual
59     * queue algorithms described in "Nonblocking Concurrent Objects
60     * with Condition Synchronization", by W. N. Scherer III and
61     * M. L. Scott.  18th Annual Conf. on Distributed Computing,
62     * Oct. 2004 (see also
63     * http://www.cs.rochester.edu/u/scott/synchronization/pseudocode/duals.html).
64     * The (Lifo) stack is used for non-fair mode, and the (Fifo)
65     * queue for fair mode. The performance of the two is generally
66     * similar. Fifo usually supports higher throughput under
67     * contention but Lifo maintains higher thread locality in common
68     * applications.
69     *
70     * A dual queue (and similarly stack) is one that at any given
71     * time either holds "data" -- items provided by put operations,
72     * or "requests" -- slots representing take operations, or is
73     * empty. A call to "fulfill" (i.e., a call requesting an item
74     * from a queue holding data or vice versa) dequeues a
75     * complementary node.  The most interesting feature of these
76     * queues is that any operation can figure out which mode the
77     * queue is in, and act accordingly without needing locks.
78     *
79     * Both the queue and stack extend abstract class Transferer
80     * defining the single method transfer that does a put or a
81     * take. These are unified into a single method because in dual
82     * data structures, the put and take operations are symmetrical,
83     * so nearly all code can be combined. The resulting transfer
84     * methods are on the long side, but are easier to follow than
85     * they would be if broken up into nearly-duplicated parts.
86     *
87     * The queue and stack data structures share many conceptual
88     * similarities but very few concrete details. For simplicity,
89     * they are kept distinct so that they can later evolve
90     * separately.
91     *
92     * The algorithms here differ from the versions in the above paper
93     * in extending them for use in synchronous queues, as well as
94     * dealing with cancellation. The main differences include:
95     *
96     *  1. The original algorithms used bit-marked pointers, but
97     *     the ones here use mode bits in nodes, leading to a number
98     *     of further adaptations.
99     *  2. SynchronousQueues must block threads waiting to become
100     *     fulfilled.
101     *  3. Support for cancellation via timeout and interrupts,
102     *     including cleaning out cancelled nodes/threads
103     *     from lists to avoid garbage retention and memory depletion.
104     *
105     * Blocking is mainly accomplished using LockSupport park/unpark,
106     * except that nodes that appear to be the next ones to become
107     * fulfilled first spin a bit (on multiprocessors only). On very
108     * busy synchronous queues, spinning can dramatically improve
109     * throughput. And on less busy ones, the amount of spinning is
110     * small enough not to be noticeable.
111     *
112     * Cleaning is done in different ways in queues vs stacks.  For
113     * queues, we can almost always remove a node immediately in O(1)
114     * time (modulo retries for consistency checks) when it is
115     * cancelled. But if it may be pinned as the current tail, it must
116     * wait until some subsequent cancellation. For stacks, we need a
117     * potentially O(n) traversal to be sure that we can remove the
118     * node, but this can run concurrently with other threads
119     * accessing the stack.
120     *
121     * While garbage collection takes care of most node reclamation
122     * issues that otherwise complicate nonblocking algorithms, care
123     * is taken to "forget" references to data, other nodes, and
124     * threads that might be held on to long-term by blocked
125     * threads. In cases where setting to null would otherwise
126     * conflict with main algorithms, this is done by changing a
127     * node's link to now point to the node itself. This doesn't arise
128     * much for Stack nodes (because blocked threads do not hang on to
129     * old head pointers), but references in Queue nodes must be
130     * aggressively forgotten to avoid reachability of everything any
131     * node has ever referred to since arrival.
132     */
133
134    /**
135     * Shared internal API for dual stacks and queues.
136     */
137    abstract static class Transferer<E> {
138        /**
139         * Performs a put or take.
140         *
141         * @param e if non-null, the item to be handed to a consumer;
142         *          if null, requests that transfer return an item
143         *          offered by producer.
144         * @param timed if this operation should timeout
145         * @param nanos the timeout, in nanoseconds
146         * @return if non-null, the item provided or received; if null,
147         *         the operation failed due to timeout or interrupt --
148         *         the caller can distinguish which of these occurred
149         *         by checking Thread.interrupted.
150         */
151        abstract E transfer(E e, boolean timed, long nanos);
152    }
153
154    /** The number of CPUs, for spin control */
155    static final int NCPUS = Runtime.getRuntime().availableProcessors();
156
157    /**
158     * The number of times to spin before blocking in timed waits.
159     * The value is empirically derived -- it works well across a
160     * variety of processors and OSes. Empirically, the best value
161     * seems not to vary with number of CPUs (beyond 2) so is just
162     * a constant.
163     */
164    static final int maxTimedSpins = (NCPUS < 2) ? 0 : 32;
165
166    /**
167     * The number of times to spin before blocking in untimed waits.
168     * This is greater than timed value because untimed waits spin
169     * faster since they don't need to check times on each spin.
170     */
171    static final int maxUntimedSpins = maxTimedSpins * 16;
172
173    /**
174     * The number of nanoseconds for which it is faster to spin
175     * rather than to use timed park. A rough estimate suffices.
176     */
177    static final long spinForTimeoutThreshold = 1000L;
178
179    /** Dual stack */
180    static final class TransferStack<E> extends Transferer<E> {
181        /*
182         * This extends Scherer-Scott dual stack algorithm, differing,
183         * among other ways, by using "covering" nodes rather than
184         * bit-marked pointers: Fulfilling operations push on marker
185         * nodes (with FULFILLING bit set in mode) to reserve a spot
186         * to match a waiting node.
187         */
188
189        /* Modes for SNodes, ORed together in node fields */
190        /** Node represents an unfulfilled consumer */
191        static final int REQUEST    = 0;
192        /** Node represents an unfulfilled producer */
193        static final int DATA       = 1;
194        /** Node is fulfilling another unfulfilled DATA or REQUEST */
195        static final int FULFILLING = 2;
196
197        /** Returns true if m has fulfilling bit set. */
198        static boolean isFulfilling(int m) { return (m & FULFILLING) != 0; }
199
200        /** Node class for TransferStacks. */
201        static final class SNode {
202            volatile SNode next;        // next node in stack
203            volatile SNode match;       // the node matched to this
204            volatile Thread waiter;     // to control park/unpark
205            Object item;                // data; or null for REQUESTs
206            int mode;
207            // Note: item and mode fields don't need to be volatile
208            // since they are always written before, and read after,
209            // other volatile/atomic operations.
210
211            SNode(Object item) {
212                this.item = item;
213            }
214
215            boolean casNext(SNode cmp, SNode val) {
216                return cmp == next &&
217                    UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
218            }
219
220            /**
221             * Tries to match node s to this node, if so, waking up thread.
222             * Fulfillers call tryMatch to identify their waiters.
223             * Waiters block until they have been matched.
224             *
225             * @param s the node to match
226             * @return true if successfully matched to s
227             */
228            boolean tryMatch(SNode s) {
229                if (match == null &&
230                    UNSAFE.compareAndSwapObject(this, matchOffset, null, s)) {
231                    Thread w = waiter;
232                    if (w != null) {    // waiters need at most one unpark
233                        waiter = null;
234                        LockSupport.unpark(w);
235                    }
236                    return true;
237                }
238                return match == s;
239            }
240
241            /**
242             * Tries to cancel a wait by matching node to itself.
243             */
244            void tryCancel() {
245                UNSAFE.compareAndSwapObject(this, matchOffset, null, this);
246            }
247
248            boolean isCancelled() {
249                return match == this;
250            }
251
252            // Unsafe mechanics
253            private static final sun.misc.Unsafe UNSAFE;
254            private static final long matchOffset;
255            private static final long nextOffset;
256
257            static {
258                try {
259                    UNSAFE = sun.misc.Unsafe.getUnsafe();
260                    Class<?> k = SNode.class;
261                    matchOffset = UNSAFE.objectFieldOffset
262                        (k.getDeclaredField("match"));
263                    nextOffset = UNSAFE.objectFieldOffset
264                        (k.getDeclaredField("next"));
265                } catch (Exception e) {
266                    throw new Error(e);
267                }
268            }
269        }
270
271        /** The head (top) of the stack */
272        volatile SNode head;
273
274        boolean casHead(SNode h, SNode nh) {
275            return h == head &&
276                UNSAFE.compareAndSwapObject(this, headOffset, h, nh);
277        }
278
279        /**
280         * Creates or resets fields of a node. Called only from transfer
281         * where the node to push on stack is lazily created and
282         * reused when possible to help reduce intervals between reads
283         * and CASes of head and to avoid surges of garbage when CASes
284         * to push nodes fail due to contention.
285         */
286        static SNode snode(SNode s, Object e, SNode next, int mode) {
287            if (s == null) s = new SNode(e);
288            s.mode = mode;
289            s.next = next;
290            return s;
291        }
292
293        /**
294         * Puts or takes an item.
295         */
296        @SuppressWarnings("unchecked")
297        E transfer(E e, boolean timed, long nanos) {
298            /*
299             * Basic algorithm is to loop trying one of three actions:
300             *
301             * 1. If apparently empty or already containing nodes of same
302             *    mode, try to push node on stack and wait for a match,
303             *    returning it, or null if cancelled.
304             *
305             * 2. If apparently containing node of complementary mode,
306             *    try to push a fulfilling node on to stack, match
307             *    with corresponding waiting node, pop both from
308             *    stack, and return matched item. The matching or
309             *    unlinking might not actually be necessary because of
310             *    other threads performing action 3:
311             *
312             * 3. If top of stack already holds another fulfilling node,
313             *    help it out by doing its match and/or pop
314             *    operations, and then continue. The code for helping
315             *    is essentially the same as for fulfilling, except
316             *    that it doesn't return the item.
317             */
318
319            SNode s = null; // constructed/reused as needed
320            int mode = (e == null) ? REQUEST : DATA;
321
322            for (;;) {
323                SNode h = head;
324                if (h == null || h.mode == mode) {  // empty or same-mode
325                    if (timed && nanos <= 0) {      // can't wait
326                        if (h != null && h.isCancelled())
327                            casHead(h, h.next);     // pop cancelled node
328                        else
329                            return null;
330                    } else if (casHead(h, s = snode(s, e, h, mode))) {
331                        SNode m = awaitFulfill(s, timed, nanos);
332                        if (m == s) {               // wait was cancelled
333                            clean(s);
334                            return null;
335                        }
336                        if ((h = head) != null && h.next == s)
337                            casHead(h, s.next);     // help s's fulfiller
338                        return (E) ((mode == REQUEST) ? m.item : s.item);
339                    }
340                } else if (!isFulfilling(h.mode)) { // try to fulfill
341                    if (h.isCancelled())            // already cancelled
342                        casHead(h, h.next);         // pop and retry
343                    else if (casHead(h, s=snode(s, e, h, FULFILLING|mode))) {
344                        for (;;) { // loop until matched or waiters disappear
345                            SNode m = s.next;       // m is s's match
346                            if (m == null) {        // all waiters are gone
347                                casHead(s, null);   // pop fulfill node
348                                s = null;           // use new node next time
349                                break;              // restart main loop
350                            }
351                            SNode mn = m.next;
352                            if (m.tryMatch(s)) {
353                                casHead(s, mn);     // pop both s and m
354                                return (E) ((mode == REQUEST) ? m.item : s.item);
355                            } else                  // lost match
356                                s.casNext(m, mn);   // help unlink
357                        }
358                    }
359                } else {                            // help a fulfiller
360                    SNode m = h.next;               // m is h's match
361                    if (m == null)                  // waiter is gone
362                        casHead(h, null);           // pop fulfilling node
363                    else {
364                        SNode mn = m.next;
365                        if (m.tryMatch(h))          // help match
366                            casHead(h, mn);         // pop both h and m
367                        else                        // lost match
368                            h.casNext(m, mn);       // help unlink
369                    }
370                }
371            }
372        }
373
374        /**
375         * Spins/blocks until node s is matched by a fulfill operation.
376         *
377         * @param s the waiting node
378         * @param timed true if timed wait
379         * @param nanos timeout value
380         * @return matched node, or s if cancelled
381         */
382        SNode awaitFulfill(SNode s, boolean timed, long nanos) {
383            /*
384             * When a node/thread is about to block, it sets its waiter
385             * field and then rechecks state at least one more time
386             * before actually parking, thus covering race vs
387             * fulfiller noticing that waiter is non-null so should be
388             * woken.
389             *
390             * When invoked by nodes that appear at the point of call
391             * to be at the head of the stack, calls to park are
392             * preceded by spins to avoid blocking when producers and
393             * consumers are arriving very close in time.  This can
394             * happen enough to bother only on multiprocessors.
395             *
396             * The order of checks for returning out of main loop
397             * reflects fact that interrupts have precedence over
398             * normal returns, which have precedence over
399             * timeouts. (So, on timeout, one last check for match is
400             * done before giving up.) Except that calls from untimed
401             * SynchronousQueue.{poll/offer} don't check interrupts
402             * and don't wait at all, so are trapped in transfer
403             * method rather than calling awaitFulfill.
404             */
405            final long deadline = timed ? System.nanoTime() + nanos : 0L;
406            Thread w = Thread.currentThread();
407            int spins = (shouldSpin(s) ?
408                         (timed ? maxTimedSpins : maxUntimedSpins) : 0);
409            for (;;) {
410                if (w.isInterrupted())
411                    s.tryCancel();
412                SNode m = s.match;
413                if (m != null)
414                    return m;
415                if (timed) {
416                    nanos = deadline - System.nanoTime();
417                    if (nanos <= 0L) {
418                        s.tryCancel();
419                        continue;
420                    }
421                }
422                if (spins > 0)
423                    spins = shouldSpin(s) ? (spins-1) : 0;
424                else if (s.waiter == null)
425                    s.waiter = w; // establish waiter so can park next iter
426                else if (!timed)
427                    LockSupport.park(this);
428                else if (nanos > spinForTimeoutThreshold)
429                    LockSupport.parkNanos(this, nanos);
430            }
431        }
432
433        /**
434         * Returns true if node s is at head or there is an active
435         * fulfiller.
436         */
437        boolean shouldSpin(SNode s) {
438            SNode h = head;
439            return (h == s || h == null || isFulfilling(h.mode));
440        }
441
442        /**
443         * Unlinks s from the stack.
444         */
445        void clean(SNode s) {
446            s.item = null;   // forget item
447            s.waiter = null; // forget thread
448
449            /*
450             * At worst we may need to traverse entire stack to unlink
451             * s. If there are multiple concurrent calls to clean, we
452             * might not see s if another thread has already removed
453             * it. But we can stop when we see any node known to
454             * follow s. We use s.next unless it too is cancelled, in
455             * which case we try the node one past. We don't check any
456             * further because we don't want to doubly traverse just to
457             * find sentinel.
458             */
459
460            SNode past = s.next;
461            if (past != null && past.isCancelled())
462                past = past.next;
463
464            // Absorb cancelled nodes at head
465            SNode p;
466            while ((p = head) != null && p != past && p.isCancelled())
467                casHead(p, p.next);
468
469            // Unsplice embedded nodes
470            while (p != null && p != past) {
471                SNode n = p.next;
472                if (n != null && n.isCancelled())
473                    p.casNext(n, n.next);
474                else
475                    p = n;
476            }
477        }
478
479        // Unsafe mechanics
480        private static final sun.misc.Unsafe UNSAFE;
481        private static final long headOffset;
482        static {
483            try {
484                UNSAFE = sun.misc.Unsafe.getUnsafe();
485                Class<?> k = TransferStack.class;
486                headOffset = UNSAFE.objectFieldOffset
487                    (k.getDeclaredField("head"));
488            } catch (Exception e) {
489                throw new Error(e);
490            }
491        }
492    }
493
494    /** Dual Queue */
495    static final class TransferQueue<E> extends Transferer<E> {
496        /*
497         * This extends Scherer-Scott dual queue algorithm, differing,
498         * among other ways, by using modes within nodes rather than
499         * marked pointers. The algorithm is a little simpler than
500         * that for stacks because fulfillers do not need explicit
501         * nodes, and matching is done by CAS'ing QNode.item field
502         * from non-null to null (for put) or vice versa (for take).
503         */
504
505        /** Node class for TransferQueue. */
506        static final class QNode {
507            volatile QNode next;          // next node in queue
508            volatile Object item;         // CAS'ed to or from null
509            volatile Thread waiter;       // to control park/unpark
510            final boolean isData;
511
512            QNode(Object item, boolean isData) {
513                this.item = item;
514                this.isData = isData;
515            }
516
517            boolean casNext(QNode cmp, QNode val) {
518                return next == cmp &&
519                    UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
520            }
521
522            boolean casItem(Object cmp, Object val) {
523                return item == cmp &&
524                    UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
525            }
526
527            /**
528             * Tries to cancel by CAS'ing ref to this as item.
529             */
530            void tryCancel(Object cmp) {
531                UNSAFE.compareAndSwapObject(this, itemOffset, cmp, this);
532            }
533
534            boolean isCancelled() {
535                return item == this;
536            }
537
538            /**
539             * Returns true if this node is known to be off the queue
540             * because its next pointer has been forgotten due to
541             * an advanceHead operation.
542             */
543            boolean isOffList() {
544                return next == this;
545            }
546
547            // Unsafe mechanics
548            private static final sun.misc.Unsafe UNSAFE;
549            private static final long itemOffset;
550            private static final long nextOffset;
551
552            static {
553                try {
554                    UNSAFE = sun.misc.Unsafe.getUnsafe();
555                    Class<?> k = QNode.class;
556                    itemOffset = UNSAFE.objectFieldOffset
557                        (k.getDeclaredField("item"));
558                    nextOffset = UNSAFE.objectFieldOffset
559                        (k.getDeclaredField("next"));
560                } catch (Exception e) {
561                    throw new Error(e);
562                }
563            }
564        }
565
566        /** Head of queue */
567        transient volatile QNode head;
568        /** Tail of queue */
569        transient volatile QNode tail;
570        /**
571         * Reference to a cancelled node that might not yet have been
572         * unlinked from queue because it was the last inserted node
573         * when it was cancelled.
574         */
575        transient volatile QNode cleanMe;
576
577        TransferQueue() {
578            QNode h = new QNode(null, false); // initialize to dummy node.
579            head = h;
580            tail = h;
581        }
582
583        /**
584         * Tries to cas nh as new head; if successful, unlink
585         * old head's next node to avoid garbage retention.
586         */
587        void advanceHead(QNode h, QNode nh) {
588            if (h == head &&
589                UNSAFE.compareAndSwapObject(this, headOffset, h, nh))
590                h.next = h; // forget old next
591        }
592
593        /**
594         * Tries to cas nt as new tail.
595         */
596        void advanceTail(QNode t, QNode nt) {
597            if (tail == t)
598                UNSAFE.compareAndSwapObject(this, tailOffset, t, nt);
599        }
600
601        /**
602         * Tries to CAS cleanMe slot.
603         */
604        boolean casCleanMe(QNode cmp, QNode val) {
605            return cleanMe == cmp &&
606                UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
607        }
608
609        /**
610         * Puts or takes an item.
611         */
612        @SuppressWarnings("unchecked")
613        E transfer(E e, boolean timed, long nanos) {
614            /* Basic algorithm is to loop trying to take either of
615             * two actions:
616             *
617             * 1. If queue apparently empty or holding same-mode nodes,
618             *    try to add node to queue of waiters, wait to be
619             *    fulfilled (or cancelled) and return matching item.
620             *
621             * 2. If queue apparently contains waiting items, and this
622             *    call is of complementary mode, try to fulfill by CAS'ing
623             *    item field of waiting node and dequeuing it, and then
624             *    returning matching item.
625             *
626             * In each case, along the way, check for and try to help
627             * advance head and tail on behalf of other stalled/slow
628             * threads.
629             *
630             * The loop starts off with a null check guarding against
631             * seeing uninitialized head or tail values. This never
632             * happens in current SynchronousQueue, but could if
633             * callers held non-volatile/final ref to the
634             * transferer. The check is here anyway because it places
635             * null checks at top of loop, which is usually faster
636             * than having them implicitly interspersed.
637             */
638
639            QNode s = null; // constructed/reused as needed
640            boolean isData = (e != null);
641
642            for (;;) {
643                QNode t = tail;
644                QNode h = head;
645                if (t == null || h == null)         // saw uninitialized value
646                    continue;                       // spin
647
648                if (h == t || t.isData == isData) { // empty or same-mode
649                    QNode tn = t.next;
650                    if (t != tail)                  // inconsistent read
651                        continue;
652                    if (tn != null) {               // lagging tail
653                        advanceTail(t, tn);
654                        continue;
655                    }
656                    if (timed && nanos <= 0)        // can't wait
657                        return null;
658                    if (s == null)
659                        s = new QNode(e, isData);
660                    if (!t.casNext(null, s))        // failed to link in
661                        continue;
662
663                    advanceTail(t, s);              // swing tail and wait
664                    Object x = awaitFulfill(s, e, timed, nanos);
665                    if (x == s) {                   // wait was cancelled
666                        clean(t, s);
667                        return null;
668                    }
669
670                    if (!s.isOffList()) {           // not already unlinked
671                        advanceHead(t, s);          // unlink if head
672                        if (x != null)              // and forget fields
673                            s.item = s;
674                        s.waiter = null;
675                    }
676                    return (x != null) ? (E)x : e;
677
678                } else {                            // complementary-mode
679                    QNode m = h.next;               // node to fulfill
680                    if (t != tail || m == null || h != head)
681                        continue;                   // inconsistent read
682
683                    Object x = m.item;
684                    if (isData == (x != null) ||    // m already fulfilled
685                        x == m ||                   // m cancelled
686                        !m.casItem(x, e)) {         // lost CAS
687                        advanceHead(h, m);          // dequeue and retry
688                        continue;
689                    }
690
691                    advanceHead(h, m);              // successfully fulfilled
692                    LockSupport.unpark(m.waiter);
693                    return (x != null) ? (E)x : e;
694                }
695            }
696        }
697
698        /**
699         * Spins/blocks until node s is fulfilled.
700         *
701         * @param s the waiting node
702         * @param e the comparison value for checking match
703         * @param timed true if timed wait
704         * @param nanos timeout value
705         * @return matched item, or s if cancelled
706         */
707        Object awaitFulfill(QNode s, E e, boolean timed, long nanos) {
708            /* Same idea as TransferStack.awaitFulfill */
709            final long deadline = timed ? System.nanoTime() + nanos : 0L;
710            Thread w = Thread.currentThread();
711            int spins = ((head.next == s) ?
712                         (timed ? maxTimedSpins : maxUntimedSpins) : 0);
713            for (;;) {
714                if (w.isInterrupted())
715                    s.tryCancel(e);
716                Object x = s.item;
717                if (x != e)
718                    return x;
719                if (timed) {
720                    nanos = deadline - System.nanoTime();
721                    if (nanos <= 0L) {
722                        s.tryCancel(e);
723                        continue;
724                    }
725                }
726                if (spins > 0)
727                    --spins;
728                else if (s.waiter == null)
729                    s.waiter = w;
730                else if (!timed)
731                    LockSupport.park(this);
732                else if (nanos > spinForTimeoutThreshold)
733                    LockSupport.parkNanos(this, nanos);
734            }
735        }
736
737        /**
738         * Gets rid of cancelled node s with original predecessor pred.
739         */
740        void clean(QNode pred, QNode s) {
741            s.waiter = null; // forget thread
742            /*
743             * At any given time, exactly one node on list cannot be
744             * deleted -- the last inserted node. To accommodate this,
745             * if we cannot delete s, we save its predecessor as
746             * "cleanMe", deleting the previously saved version
747             * first. At least one of node s or the node previously
748             * saved can always be deleted, so this always terminates.
749             */
750            while (pred.next == s) { // Return early if already unlinked
751                QNode h = head;
752                QNode hn = h.next;   // Absorb cancelled first node as head
753                if (hn != null && hn.isCancelled()) {
754                    advanceHead(h, hn);
755                    continue;
756                }
757                QNode t = tail;      // Ensure consistent read for tail
758                if (t == h)
759                    return;
760                QNode tn = t.next;
761                if (t != tail)
762                    continue;
763                if (tn != null) {
764                    advanceTail(t, tn);
765                    continue;
766                }
767                if (s != t) {        // If not tail, try to unsplice
768                    QNode sn = s.next;
769                    if (sn == s || pred.casNext(s, sn))
770                        return;
771                }
772                QNode dp = cleanMe;
773                if (dp != null) {    // Try unlinking previous cancelled node
774                    QNode d = dp.next;
775                    QNode dn;
776                    if (d == null ||               // d is gone or
777                        d == dp ||                 // d is off list or
778                        !d.isCancelled() ||        // d not cancelled or
779                        (d != t &&                 // d not tail and
780                         (dn = d.next) != null &&  //   has successor
781                         dn != d &&                //   that is on list
782                         dp.casNext(d, dn)))       // d unspliced
783                        casCleanMe(dp, null);
784                    if (dp == pred)
785                        return;      // s is already saved node
786                } else if (casCleanMe(null, pred))
787                    return;          // Postpone cleaning s
788            }
789        }
790
791        private static final sun.misc.Unsafe UNSAFE;
792        private static final long headOffset;
793        private static final long tailOffset;
794        private static final long cleanMeOffset;
795        static {
796            try {
797                UNSAFE = sun.misc.Unsafe.getUnsafe();
798                Class<?> k = TransferQueue.class;
799                headOffset = UNSAFE.objectFieldOffset
800                    (k.getDeclaredField("head"));
801                tailOffset = UNSAFE.objectFieldOffset
802                    (k.getDeclaredField("tail"));
803                cleanMeOffset = UNSAFE.objectFieldOffset
804                    (k.getDeclaredField("cleanMe"));
805            } catch (Exception e) {
806                throw new Error(e);
807            }
808        }
809    }
810
811    /**
812     * The transferer. Set only in constructor, but cannot be declared
813     * as final without further complicating serialization.  Since
814     * this is accessed only at most once per public method, there
815     * isn't a noticeable performance penalty for using volatile
816     * instead of final here.
817     */
818    private transient volatile Transferer<E> transferer;
819
820    /**
821     * Creates a {@code SynchronousQueue} with nonfair access policy.
822     */
823    public SynchronousQueue() {
824        this(false);
825    }
826
827    /**
828     * Creates a {@code SynchronousQueue} with the specified fairness policy.
829     *
830     * @param fair if true, waiting threads contend in FIFO order for
831     *        access; otherwise the order is unspecified.
832     */
833    public SynchronousQueue(boolean fair) {
834        transferer = fair ? new TransferQueue<E>() : new TransferStack<E>();
835    }
836
837    /**
838     * Adds the specified element to this queue, waiting if necessary for
839     * another thread to receive it.
840     *
841     * @throws InterruptedException {@inheritDoc}
842     * @throws NullPointerException {@inheritDoc}
843     */
844    public void put(E e) throws InterruptedException {
845        if (e == null) throw new NullPointerException();
846        if (transferer.transfer(e, false, 0) == null) {
847            Thread.interrupted();
848            throw new InterruptedException();
849        }
850    }
851
852    /**
853     * Inserts the specified element into this queue, waiting if necessary
854     * up to the specified wait time for another thread to receive it.
855     *
856     * @return {@code true} if successful, or {@code false} if the
857     *         specified waiting time elapses before a consumer appears
858     * @throws InterruptedException {@inheritDoc}
859     * @throws NullPointerException {@inheritDoc}
860     */
861    public boolean offer(E e, long timeout, TimeUnit unit)
862        throws InterruptedException {
863        if (e == null) throw new NullPointerException();
864        if (transferer.transfer(e, true, unit.toNanos(timeout)) != null)
865            return true;
866        if (!Thread.interrupted())
867            return false;
868        throw new InterruptedException();
869    }
870
871    /**
872     * Inserts the specified element into this queue, if another thread is
873     * waiting to receive it.
874     *
875     * @param e the element to add
876     * @return {@code true} if the element was added to this queue, else
877     *         {@code false}
878     * @throws NullPointerException if the specified element is null
879     */
880    public boolean offer(E e) {
881        if (e == null) throw new NullPointerException();
882        return transferer.transfer(e, true, 0) != null;
883    }
884
885    /**
886     * Retrieves and removes the head of this queue, waiting if necessary
887     * for another thread to insert it.
888     *
889     * @return the head of this queue
890     * @throws InterruptedException {@inheritDoc}
891     */
892    public E take() throws InterruptedException {
893        E e = transferer.transfer(null, false, 0);
894        if (e != null)
895            return e;
896        Thread.interrupted();
897        throw new InterruptedException();
898    }
899
900    /**
901     * Retrieves and removes the head of this queue, waiting
902     * if necessary up to the specified wait time, for another thread
903     * to insert it.
904     *
905     * @return the head of this queue, or {@code null} if the
906     *         specified waiting time elapses before an element is present
907     * @throws InterruptedException {@inheritDoc}
908     */
909    public E poll(long timeout, TimeUnit unit) throws InterruptedException {
910        E e = transferer.transfer(null, true, unit.toNanos(timeout));
911        if (e != null || !Thread.interrupted())
912            return e;
913        throw new InterruptedException();
914    }
915
916    /**
917     * Retrieves and removes the head of this queue, if another thread
918     * is currently making an element available.
919     *
920     * @return the head of this queue, or {@code null} if no
921     *         element is available
922     */
923    public E poll() {
924        return transferer.transfer(null, true, 0);
925    }
926
927    /**
928     * Always returns {@code true}.
929     * A {@code SynchronousQueue} has no internal capacity.
930     *
931     * @return {@code true}
932     */
933    public boolean isEmpty() {
934        return true;
935    }
936
937    /**
938     * Always returns zero.
939     * A {@code SynchronousQueue} has no internal capacity.
940     *
941     * @return zero
942     */
943    public int size() {
944        return 0;
945    }
946
947    /**
948     * Always returns zero.
949     * A {@code SynchronousQueue} has no internal capacity.
950     *
951     * @return zero
952     */
953    public int remainingCapacity() {
954        return 0;
955    }
956
957    /**
958     * Does nothing.
959     * A {@code SynchronousQueue} has no internal capacity.
960     */
961    public void clear() {
962    }
963
964    /**
965     * Always returns {@code false}.
966     * A {@code SynchronousQueue} has no internal capacity.
967     *
968     * @param o the element
969     * @return {@code false}
970     */
971    public boolean contains(Object o) {
972        return false;
973    }
974
975    /**
976     * Always returns {@code false}.
977     * A {@code SynchronousQueue} has no internal capacity.
978     *
979     * @param o the element to remove
980     * @return {@code false}
981     */
982    public boolean remove(Object o) {
983        return false;
984    }
985
986    /**
987     * Returns {@code false} unless the given collection is empty.
988     * A {@code SynchronousQueue} has no internal capacity.
989     *
990     * @param c the collection
991     * @return {@code false} unless given collection is empty
992     */
993    public boolean containsAll(Collection<?> c) {
994        return c.isEmpty();
995    }
996
997    /**
998     * Always returns {@code false}.
999     * A {@code SynchronousQueue} has no internal capacity.
1000     *
1001     * @param c the collection
1002     * @return {@code false}
1003     */
1004    public boolean removeAll(Collection<?> c) {
1005        return false;
1006    }
1007
1008    /**
1009     * Always returns {@code false}.
1010     * A {@code SynchronousQueue} has no internal capacity.
1011     *
1012     * @param c the collection
1013     * @return {@code false}
1014     */
1015    public boolean retainAll(Collection<?> c) {
1016        return false;
1017    }
1018
1019    /**
1020     * Always returns {@code null}.
1021     * A {@code SynchronousQueue} does not return elements
1022     * unless actively waited on.
1023     *
1024     * @return {@code null}
1025     */
1026    public E peek() {
1027        return null;
1028    }
1029
1030    /**
1031     * Returns an empty iterator in which {@code hasNext} always returns
1032     * {@code false}.
1033     *
1034     * @return an empty iterator
1035     */
1036    @SuppressWarnings("unchecked")
1037    public Iterator<E> iterator() {
1038        return (Iterator<E>) EmptyIterator.EMPTY_ITERATOR;
1039    }
1040
1041    // Replicated from a previous version of Collections
1042    private static class EmptyIterator<E> implements Iterator<E> {
1043        static final EmptyIterator<Object> EMPTY_ITERATOR
1044            = new EmptyIterator<Object>();
1045
1046        public boolean hasNext() { return false; }
1047        public E next() { throw new NoSuchElementException(); }
1048        public void remove() { throw new IllegalStateException(); }
1049    }
1050
1051    /**
1052     * Returns a zero-length array.
1053     * @return a zero-length array
1054     */
1055    public Object[] toArray() {
1056        return new Object[0];
1057    }
1058
1059    /**
1060     * Sets the zeroeth element of the specified array to {@code null}
1061     * (if the array has non-zero length) and returns it.
1062     *
1063     * @param a the array
1064     * @return the specified array
1065     * @throws NullPointerException if the specified array is null
1066     */
1067    public <T> T[] toArray(T[] a) {
1068        if (a.length > 0)
1069            a[0] = null;
1070        return a;
1071    }
1072
1073    /**
1074     * @throws UnsupportedOperationException {@inheritDoc}
1075     * @throws ClassCastException            {@inheritDoc}
1076     * @throws NullPointerException          {@inheritDoc}
1077     * @throws IllegalArgumentException      {@inheritDoc}
1078     */
1079    public int drainTo(Collection<? super E> c) {
1080        if (c == null)
1081            throw new NullPointerException();
1082        if (c == this)
1083            throw new IllegalArgumentException();
1084        int n = 0;
1085        for (E e; (e = poll()) != null;) {
1086            c.add(e);
1087            ++n;
1088        }
1089        return n;
1090    }
1091
1092    /**
1093     * @throws UnsupportedOperationException {@inheritDoc}
1094     * @throws ClassCastException            {@inheritDoc}
1095     * @throws NullPointerException          {@inheritDoc}
1096     * @throws IllegalArgumentException      {@inheritDoc}
1097     */
1098    public int drainTo(Collection<? super E> c, int maxElements) {
1099        if (c == null)
1100            throw new NullPointerException();
1101        if (c == this)
1102            throw new IllegalArgumentException();
1103        int n = 0;
1104        for (E e; n < maxElements && (e = poll()) != null;) {
1105            c.add(e);
1106            ++n;
1107        }
1108        return n;
1109    }
1110
1111    /*
1112     * To cope with serialization strategy in the 1.5 version of
1113     * SynchronousQueue, we declare some unused classes and fields
1114     * that exist solely to enable serializability across versions.
1115     * These fields are never used, so are initialized only if this
1116     * object is ever serialized or deserialized.
1117     */
1118
1119    @SuppressWarnings("serial")
1120    static class WaitQueue implements java.io.Serializable { }
1121    static class LifoWaitQueue extends WaitQueue {
1122        private static final long serialVersionUID = -3633113410248163686L;
1123    }
1124    static class FifoWaitQueue extends WaitQueue {
1125        private static final long serialVersionUID = -3623113410248163686L;
1126    }
1127    private ReentrantLock qlock;
1128    private WaitQueue waitingProducers;
1129    private WaitQueue waitingConsumers;
1130
1131    /**
1132     * Saves this queue to a stream (that is, serializes it).
1133     */
1134    private void writeObject(java.io.ObjectOutputStream s)
1135        throws java.io.IOException {
1136        boolean fair = transferer instanceof TransferQueue;
1137        if (fair) {
1138            qlock = new ReentrantLock(true);
1139            waitingProducers = new FifoWaitQueue();
1140            waitingConsumers = new FifoWaitQueue();
1141        }
1142        else {
1143            qlock = new ReentrantLock();
1144            waitingProducers = new LifoWaitQueue();
1145            waitingConsumers = new LifoWaitQueue();
1146        }
1147        s.defaultWriteObject();
1148    }
1149
1150    /**
1151     * Reconstitutes this queue from a stream (that is, deserializes it).
1152     */
1153    private void readObject(final java.io.ObjectInputStream s)
1154        throws java.io.IOException, ClassNotFoundException {
1155        s.defaultReadObject();
1156        if (waitingProducers instanceof FifoWaitQueue)
1157            transferer = new TransferQueue<E>();
1158        else
1159            transferer = new TransferStack<E>();
1160    }
1161
1162    // Unsafe mechanics
1163    static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1164                                  String field, Class<?> klazz) {
1165        try {
1166            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1167        } catch (NoSuchFieldException e) {
1168            // Convert Exception to corresponding Error
1169            NoSuchFieldError error = new NoSuchFieldError(field);
1170            error.initCause(e);
1171            throw error;
1172        }
1173    }
1174
1175}
1176