1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "base/bit_vector-inl.h"
18#include "base/logging.h"
19#include "base/scoped_arena_containers.h"
20#include "dataflow_iterator-inl.h"
21#include "dex/verified_method.h"
22#include "dex_flags.h"
23#include "driver/compiler_driver.h"
24#include "driver/dex_compilation_unit.h"
25#include "global_value_numbering.h"
26#include "gvn_dead_code_elimination.h"
27#include "local_value_numbering.h"
28#include "mir_field_info.h"
29#include "mirror/string.h"
30#include "quick/dex_file_method_inliner.h"
31#include "quick/dex_file_to_method_inliner_map.h"
32#include "stack.h"
33#include "type_inference.h"
34#include "utils.h"
35
36namespace art {
37
38static unsigned int Predecessors(BasicBlock* bb) {
39  return bb->predecessors.size();
40}
41
42/* Setup a constant value for opcodes thare have the DF_SETS_CONST attribute */
43void MIRGraph::SetConstant(int32_t ssa_reg, int32_t value) {
44  is_constant_v_->SetBit(ssa_reg);
45  constant_values_[ssa_reg] = value;
46  reg_location_[ssa_reg].is_const = true;
47}
48
49void MIRGraph::SetConstantWide(int32_t ssa_reg, int64_t value) {
50  is_constant_v_->SetBit(ssa_reg);
51  is_constant_v_->SetBit(ssa_reg + 1);
52  constant_values_[ssa_reg] = Low32Bits(value);
53  constant_values_[ssa_reg + 1] = High32Bits(value);
54  reg_location_[ssa_reg].is_const = true;
55  reg_location_[ssa_reg + 1].is_const = true;
56}
57
58void MIRGraph::DoConstantPropagation(BasicBlock* bb) {
59  MIR* mir;
60
61  for (mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
62    // Skip pass if BB has MIR without SSA representation.
63    if (mir->ssa_rep == nullptr) {
64       return;
65    }
66
67    uint64_t df_attributes = GetDataFlowAttributes(mir);
68
69    MIR::DecodedInstruction* d_insn = &mir->dalvikInsn;
70
71    if (!(df_attributes & DF_HAS_DEFS)) continue;
72
73    /* Handle instructions that set up constants directly */
74    if (df_attributes & DF_SETS_CONST) {
75      if (df_attributes & DF_DA) {
76        int32_t vB = static_cast<int32_t>(d_insn->vB);
77        switch (d_insn->opcode) {
78          case Instruction::CONST_4:
79          case Instruction::CONST_16:
80          case Instruction::CONST:
81            SetConstant(mir->ssa_rep->defs[0], vB);
82            break;
83          case Instruction::CONST_HIGH16:
84            SetConstant(mir->ssa_rep->defs[0], vB << 16);
85            break;
86          case Instruction::CONST_WIDE_16:
87          case Instruction::CONST_WIDE_32:
88            SetConstantWide(mir->ssa_rep->defs[0], static_cast<int64_t>(vB));
89            break;
90          case Instruction::CONST_WIDE:
91            SetConstantWide(mir->ssa_rep->defs[0], d_insn->vB_wide);
92            break;
93          case Instruction::CONST_WIDE_HIGH16:
94            SetConstantWide(mir->ssa_rep->defs[0], static_cast<int64_t>(vB) << 48);
95            break;
96          default:
97            break;
98        }
99      }
100      /* Handle instructions that set up constants directly */
101    } else if (df_attributes & DF_IS_MOVE) {
102      int i;
103
104      for (i = 0; i < mir->ssa_rep->num_uses; i++) {
105        if (!is_constant_v_->IsBitSet(mir->ssa_rep->uses[i])) break;
106      }
107      /* Move a register holding a constant to another register */
108      if (i == mir->ssa_rep->num_uses) {
109        SetConstant(mir->ssa_rep->defs[0], constant_values_[mir->ssa_rep->uses[0]]);
110        if (df_attributes & DF_A_WIDE) {
111          SetConstant(mir->ssa_rep->defs[1], constant_values_[mir->ssa_rep->uses[1]]);
112        }
113      }
114    }
115  }
116  /* TODO: implement code to handle arithmetic operations */
117}
118
119/* Advance to next strictly dominated MIR node in an extended basic block */
120MIR* MIRGraph::AdvanceMIR(BasicBlock** p_bb, MIR* mir) {
121  BasicBlock* bb = *p_bb;
122  if (mir != nullptr) {
123    mir = mir->next;
124    while (mir == nullptr) {
125      bb = GetBasicBlock(bb->fall_through);
126      if ((bb == nullptr) || Predecessors(bb) != 1) {
127        // mir is null and we cannot proceed further.
128        break;
129      } else {
130        *p_bb = bb;
131        mir = bb->first_mir_insn;
132      }
133    }
134  }
135  return mir;
136}
137
138/*
139 * To be used at an invoke mir.  If the logically next mir node represents
140 * a move-result, return it.  Else, return nullptr.  If a move-result exists,
141 * it is required to immediately follow the invoke with no intervening
142 * opcodes or incoming arcs.  However, if the result of the invoke is not
143 * used, a move-result may not be present.
144 */
145MIR* MIRGraph::FindMoveResult(BasicBlock* bb, MIR* mir) {
146  BasicBlock* tbb = bb;
147  mir = AdvanceMIR(&tbb, mir);
148  while (mir != nullptr) {
149    if ((mir->dalvikInsn.opcode == Instruction::MOVE_RESULT) ||
150        (mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) ||
151        (mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_WIDE)) {
152      break;
153    }
154    // Keep going if pseudo op, otherwise terminate
155    if (MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode)) {
156      mir = AdvanceMIR(&tbb, mir);
157    } else {
158      mir = nullptr;
159    }
160  }
161  return mir;
162}
163
164BasicBlock* MIRGraph::NextDominatedBlock(BasicBlock* bb) {
165  if (bb->block_type == kDead) {
166    return nullptr;
167  }
168  DCHECK((bb->block_type == kEntryBlock) || (bb->block_type == kDalvikByteCode)
169      || (bb->block_type == kExitBlock));
170  BasicBlock* bb_taken = GetBasicBlock(bb->taken);
171  BasicBlock* bb_fall_through = GetBasicBlock(bb->fall_through);
172  if (((bb_fall_through == nullptr) && (bb_taken != nullptr)) &&
173      ((bb_taken->block_type == kDalvikByteCode) || (bb_taken->block_type == kExitBlock))) {
174    // Follow simple unconditional branches.
175    bb = bb_taken;
176  } else {
177    // Follow simple fallthrough
178    bb = (bb_taken != nullptr) ? nullptr : bb_fall_through;
179  }
180  if (bb == nullptr || (Predecessors(bb) != 1)) {
181    return nullptr;
182  }
183  DCHECK((bb->block_type == kDalvikByteCode) || (bb->block_type == kExitBlock));
184  return bb;
185}
186
187static MIR* FindPhi(BasicBlock* bb, int ssa_name) {
188  for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
189    if (static_cast<int>(mir->dalvikInsn.opcode) == kMirOpPhi) {
190      for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
191        if (mir->ssa_rep->uses[i] == ssa_name) {
192          return mir;
193        }
194      }
195    }
196  }
197  return nullptr;
198}
199
200static SelectInstructionKind SelectKind(MIR* mir) {
201  // Work with the case when mir is null.
202  if (mir == nullptr) {
203    return kSelectNone;
204  }
205  switch (mir->dalvikInsn.opcode) {
206    case Instruction::MOVE:
207    case Instruction::MOVE_OBJECT:
208    case Instruction::MOVE_16:
209    case Instruction::MOVE_OBJECT_16:
210    case Instruction::MOVE_FROM16:
211    case Instruction::MOVE_OBJECT_FROM16:
212      return kSelectMove;
213    case Instruction::CONST:
214    case Instruction::CONST_4:
215    case Instruction::CONST_16:
216      return kSelectConst;
217    case Instruction::GOTO:
218    case Instruction::GOTO_16:
219    case Instruction::GOTO_32:
220      return kSelectGoto;
221    default:
222      return kSelectNone;
223  }
224}
225
226static constexpr ConditionCode kIfCcZConditionCodes[] = {
227    kCondEq, kCondNe, kCondLt, kCondGe, kCondGt, kCondLe
228};
229
230static_assert(arraysize(kIfCcZConditionCodes) == Instruction::IF_LEZ - Instruction::IF_EQZ + 1,
231              "if_ccz_ccodes_size1");
232
233static constexpr ConditionCode ConditionCodeForIfCcZ(Instruction::Code opcode) {
234  return kIfCcZConditionCodes[opcode - Instruction::IF_EQZ];
235}
236
237static_assert(ConditionCodeForIfCcZ(Instruction::IF_EQZ) == kCondEq, "if_eqz ccode");
238static_assert(ConditionCodeForIfCcZ(Instruction::IF_NEZ) == kCondNe, "if_nez ccode");
239static_assert(ConditionCodeForIfCcZ(Instruction::IF_LTZ) == kCondLt, "if_ltz ccode");
240static_assert(ConditionCodeForIfCcZ(Instruction::IF_GEZ) == kCondGe, "if_gez ccode");
241static_assert(ConditionCodeForIfCcZ(Instruction::IF_GTZ) == kCondGt, "if_gtz ccode");
242static_assert(ConditionCodeForIfCcZ(Instruction::IF_LEZ) == kCondLe, "if_lez ccode");
243
244int MIRGraph::GetSSAUseCount(int s_reg) {
245  DCHECK_LT(static_cast<size_t>(s_reg), ssa_subscripts_.size());
246  return raw_use_counts_[s_reg];
247}
248
249size_t MIRGraph::GetNumBytesForSpecialTemps() const {
250  // This logic is written with assumption that Method* is only special temp.
251  DCHECK_EQ(max_available_special_compiler_temps_, 1u);
252  return InstructionSetPointerSize(cu_->instruction_set);
253}
254
255size_t MIRGraph::GetNumAvailableVRTemps() {
256  // First take into account all temps reserved for backend.
257  if (max_available_non_special_compiler_temps_ < reserved_temps_for_backend_) {
258    return 0;
259  }
260
261  // Calculate remaining ME temps available.
262  size_t remaining_me_temps = max_available_non_special_compiler_temps_ -
263      reserved_temps_for_backend_;
264
265  if (num_non_special_compiler_temps_ >= remaining_me_temps) {
266    return 0;
267  } else {
268    return remaining_me_temps - num_non_special_compiler_temps_;
269  }
270}
271
272// FIXME - will probably need to revisit all uses of this, as type not defined.
273static const RegLocation temp_loc = {kLocCompilerTemp,
274                                     0, 1 /*defined*/, 0, 0, 0, 0, 0, 1 /*home*/,
275                                     RegStorage(), INVALID_SREG, INVALID_SREG};
276
277CompilerTemp* MIRGraph::GetNewCompilerTemp(CompilerTempType ct_type, bool wide) {
278  // Once the compiler temps have been committed, new ones cannot be requested anymore.
279  DCHECK_EQ(compiler_temps_committed_, false);
280  // Make sure that reserved for BE set is sane.
281  DCHECK_LE(reserved_temps_for_backend_, max_available_non_special_compiler_temps_);
282
283  bool verbose = cu_->verbose;
284  const char* ct_type_str = nullptr;
285
286  if (verbose) {
287    switch (ct_type) {
288      case kCompilerTempBackend:
289        ct_type_str = "backend";
290        break;
291      case kCompilerTempSpecialMethodPtr:
292        ct_type_str = "method*";
293        break;
294      case kCompilerTempVR:
295        ct_type_str = "VR";
296        break;
297      default:
298        ct_type_str = "unknown";
299        break;
300    }
301    LOG(INFO) << "CompilerTemps: A compiler temp of type " << ct_type_str << " that is "
302        << (wide ? "wide is being requested." : "not wide is being requested.");
303  }
304
305  CompilerTemp *compiler_temp = static_cast<CompilerTemp *>(arena_->Alloc(sizeof(CompilerTemp),
306                                                            kArenaAllocRegAlloc));
307
308  // Create the type of temp requested. Special temps need special handling because
309  // they have a specific virtual register assignment.
310  if (ct_type == kCompilerTempSpecialMethodPtr) {
311    // This has a special location on stack which is 32-bit or 64-bit depending
312    // on mode. However, we don't want to overlap with non-special section
313    // and thus even for 64-bit, we allow only a non-wide temp to be requested.
314    DCHECK_EQ(wide, false);
315
316    // The vreg is always the first special temp for method ptr.
317    compiler_temp->v_reg = GetFirstSpecialTempVR();
318
319    CHECK(reg_location_ == nullptr);
320  } else if (ct_type == kCompilerTempBackend) {
321    requested_backend_temp_ = true;
322
323    // Make sure that we are not exceeding temps reserved for BE.
324    // Since VR temps cannot be requested once the BE temps are requested, we
325    // allow reservation of VR temps as well for BE. We
326    size_t available_temps = reserved_temps_for_backend_ + GetNumAvailableVRTemps();
327    size_t needed_temps = wide ? 2u : 1u;
328    if (available_temps < needed_temps) {
329      if (verbose) {
330        LOG(INFO) << "CompilerTemps: Not enough temp(s) of type " << ct_type_str
331            << " are available.";
332      }
333      return nullptr;
334    }
335
336    // Update the remaining reserved temps since we have now used them.
337    // Note that the code below is actually subtracting to remove them from reserve
338    // once they have been claimed. It is careful to not go below zero.
339    reserved_temps_for_backend_ =
340        std::max(reserved_temps_for_backend_, needed_temps) - needed_temps;
341
342    // The new non-special compiler temp must receive a unique v_reg.
343    compiler_temp->v_reg = GetFirstNonSpecialTempVR() + num_non_special_compiler_temps_;
344    num_non_special_compiler_temps_++;
345  } else if (ct_type == kCompilerTempVR) {
346    // Once we start giving out BE temps, we don't allow anymore ME temps to be requested.
347    // This is done in order to prevent problems with ssa since these structures are allocated
348    // and managed by the ME.
349    DCHECK_EQ(requested_backend_temp_, false);
350
351    // There is a limit to the number of non-special temps so check to make sure it wasn't exceeded.
352    size_t available_temps = GetNumAvailableVRTemps();
353    if (available_temps <= 0 || (available_temps <= 1 && wide)) {
354      if (verbose) {
355        LOG(INFO) << "CompilerTemps: Not enough temp(s) of type " << ct_type_str
356            << " are available.";
357      }
358      return nullptr;
359    }
360
361    // The new non-special compiler temp must receive a unique v_reg.
362    compiler_temp->v_reg = GetFirstNonSpecialTempVR() + num_non_special_compiler_temps_;
363    num_non_special_compiler_temps_++;
364  } else {
365    UNIMPLEMENTED(FATAL) << "No handling for compiler temp type " << ct_type_str << ".";
366  }
367
368  // We allocate an sreg as well to make developer life easier.
369  // However, if this is requested from an ME pass that will recalculate ssa afterwards,
370  // this sreg is no longer valid. The caller should be aware of this.
371  compiler_temp->s_reg_low = AddNewSReg(compiler_temp->v_reg);
372
373  if (verbose) {
374    LOG(INFO) << "CompilerTemps: New temp of type " << ct_type_str << " with v"
375        << compiler_temp->v_reg << " and s" << compiler_temp->s_reg_low << " has been created.";
376  }
377
378  if (wide) {
379    // Only non-special temps are handled as wide for now.
380    // Note that the number of non special temps is incremented below.
381    DCHECK(ct_type == kCompilerTempBackend || ct_type == kCompilerTempVR);
382
383    // Ensure that the two registers are consecutive.
384    int ssa_reg_low = compiler_temp->s_reg_low;
385    int ssa_reg_high = AddNewSReg(compiler_temp->v_reg + 1);
386    num_non_special_compiler_temps_++;
387
388    if (verbose) {
389      LOG(INFO) << "CompilerTemps: The wide part of temp of type " << ct_type_str << " is v"
390          << compiler_temp->v_reg + 1 << " and s" << ssa_reg_high << ".";
391    }
392
393    if (reg_location_ != nullptr) {
394      reg_location_[ssa_reg_high] = temp_loc;
395      reg_location_[ssa_reg_high].high_word = true;
396      reg_location_[ssa_reg_high].s_reg_low = ssa_reg_low;
397      reg_location_[ssa_reg_high].wide = true;
398    }
399  }
400
401  // If the register locations have already been allocated, add the information
402  // about the temp. We will not overflow because they have been initialized
403  // to support the maximum number of temps. For ME temps that have multiple
404  // ssa versions, the structures below will be expanded on the post pass cleanup.
405  if (reg_location_ != nullptr) {
406    int ssa_reg_low = compiler_temp->s_reg_low;
407    reg_location_[ssa_reg_low] = temp_loc;
408    reg_location_[ssa_reg_low].s_reg_low = ssa_reg_low;
409    reg_location_[ssa_reg_low].wide = wide;
410  }
411
412  return compiler_temp;
413}
414
415void MIRGraph::RemoveLastCompilerTemp(CompilerTempType ct_type, bool wide, CompilerTemp* temp) {
416  // Once the compiler temps have been committed, it's too late for any modifications.
417  DCHECK_EQ(compiler_temps_committed_, false);
418
419  size_t used_temps = wide ? 2u : 1u;
420
421  if (ct_type == kCompilerTempBackend) {
422    DCHECK(requested_backend_temp_);
423
424    // Make the temps available to backend again.
425    reserved_temps_for_backend_ += used_temps;
426  } else if (ct_type == kCompilerTempVR) {
427    DCHECK(!requested_backend_temp_);
428  } else {
429    UNIMPLEMENTED(FATAL) << "No handling for compiler temp type " << static_cast<int>(ct_type);
430  }
431
432  // Reduce the number of non-special compiler temps.
433  DCHECK_LE(used_temps, num_non_special_compiler_temps_);
434  num_non_special_compiler_temps_ -= used_temps;
435
436  // Check that this was really the last temp.
437  DCHECK_EQ(static_cast<size_t>(temp->v_reg),
438            GetFirstNonSpecialTempVR() + num_non_special_compiler_temps_);
439
440  if (cu_->verbose) {
441    LOG(INFO) << "Last temporary has been removed.";
442  }
443}
444
445static bool EvaluateBranch(Instruction::Code opcode, int32_t src1, int32_t src2) {
446  bool is_taken;
447  switch (opcode) {
448    case Instruction::IF_EQ: is_taken = (src1 == src2); break;
449    case Instruction::IF_NE: is_taken = (src1 != src2); break;
450    case Instruction::IF_LT: is_taken = (src1 < src2); break;
451    case Instruction::IF_GE: is_taken = (src1 >= src2); break;
452    case Instruction::IF_GT: is_taken = (src1 > src2); break;
453    case Instruction::IF_LE: is_taken = (src1 <= src2); break;
454    case Instruction::IF_EQZ: is_taken = (src1 == 0); break;
455    case Instruction::IF_NEZ: is_taken = (src1 != 0); break;
456    case Instruction::IF_LTZ: is_taken = (src1 < 0); break;
457    case Instruction::IF_GEZ: is_taken = (src1 >= 0); break;
458    case Instruction::IF_GTZ: is_taken = (src1 > 0); break;
459    case Instruction::IF_LEZ: is_taken = (src1 <= 0); break;
460    default:
461      LOG(FATAL) << "Unexpected opcode " << opcode;
462      UNREACHABLE();
463  }
464  return is_taken;
465}
466
467/* Do some MIR-level extended basic block optimizations */
468bool MIRGraph::BasicBlockOpt(BasicBlock* bb) {
469  if (bb->block_type == kDead) {
470    return true;
471  }
472  // Currently multiply-accumulate backend supports are only available on arm32 and arm64.
473  if (cu_->instruction_set == kArm64 || cu_->instruction_set == kThumb2) {
474    MultiplyAddOpt(bb);
475  }
476  bool use_lvn = bb->use_lvn && (cu_->disable_opt & (1u << kLocalValueNumbering)) == 0u;
477  std::unique_ptr<ScopedArenaAllocator> allocator;
478  std::unique_ptr<GlobalValueNumbering> global_valnum;
479  std::unique_ptr<LocalValueNumbering> local_valnum;
480  if (use_lvn) {
481    allocator.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
482    global_valnum.reset(new (allocator.get()) GlobalValueNumbering(cu_, allocator.get(),
483                                                                   GlobalValueNumbering::kModeLvn));
484    local_valnum.reset(new (allocator.get()) LocalValueNumbering(global_valnum.get(), bb->id,
485                                                                 allocator.get()));
486  }
487  while (bb != nullptr) {
488    for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
489      // TUNING: use the returned value number for CSE.
490      if (use_lvn) {
491        local_valnum->GetValueNumber(mir);
492      }
493      // Look for interesting opcodes, skip otherwise
494      Instruction::Code opcode = mir->dalvikInsn.opcode;
495      switch (opcode) {
496        case Instruction::IF_EQ:
497        case Instruction::IF_NE:
498        case Instruction::IF_LT:
499        case Instruction::IF_GE:
500        case Instruction::IF_GT:
501        case Instruction::IF_LE:
502          if (!IsConst(mir->ssa_rep->uses[1])) {
503            break;
504          }
505          FALLTHROUGH_INTENDED;
506        case Instruction::IF_EQZ:
507        case Instruction::IF_NEZ:
508        case Instruction::IF_LTZ:
509        case Instruction::IF_GEZ:
510        case Instruction::IF_GTZ:
511        case Instruction::IF_LEZ:
512          // Result known at compile time?
513          if (IsConst(mir->ssa_rep->uses[0])) {
514            int32_t rhs = (mir->ssa_rep->num_uses == 2) ? ConstantValue(mir->ssa_rep->uses[1]) : 0;
515            bool is_taken = EvaluateBranch(opcode, ConstantValue(mir->ssa_rep->uses[0]), rhs);
516            BasicBlockId edge_to_kill = is_taken ? bb->fall_through : bb->taken;
517            if (is_taken) {
518              // Replace with GOTO.
519              bb->fall_through = NullBasicBlockId;
520              mir->dalvikInsn.opcode = Instruction::GOTO;
521              mir->dalvikInsn.vA =
522                  IsInstructionIfCc(opcode) ? mir->dalvikInsn.vC : mir->dalvikInsn.vB;
523            } else {
524              // Make NOP.
525              bb->taken = NullBasicBlockId;
526              mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
527            }
528            mir->ssa_rep->num_uses = 0;
529            BasicBlock* successor_to_unlink = GetBasicBlock(edge_to_kill);
530            successor_to_unlink->ErasePredecessor(bb->id);
531            // We have changed the graph structure.
532            dfs_orders_up_to_date_ = false;
533            domination_up_to_date_ = false;
534            topological_order_up_to_date_ = false;
535            // Keep MIR SSA rep, the worst that can happen is a Phi with just 1 input.
536          }
537          break;
538        case Instruction::CMPL_FLOAT:
539        case Instruction::CMPL_DOUBLE:
540        case Instruction::CMPG_FLOAT:
541        case Instruction::CMPG_DOUBLE:
542        case Instruction::CMP_LONG:
543          if ((cu_->disable_opt & (1 << kBranchFusing)) != 0) {
544            // Bitcode doesn't allow this optimization.
545            break;
546          }
547          if (mir->next != nullptr) {
548            MIR* mir_next = mir->next;
549            // Make sure result of cmp is used by next insn and nowhere else
550            if (IsInstructionIfCcZ(mir_next->dalvikInsn.opcode) &&
551                (mir->ssa_rep->defs[0] == mir_next->ssa_rep->uses[0]) &&
552                (GetSSAUseCount(mir->ssa_rep->defs[0]) == 1)) {
553              mir_next->meta.ccode = ConditionCodeForIfCcZ(mir_next->dalvikInsn.opcode);
554              switch (opcode) {
555                case Instruction::CMPL_FLOAT:
556                  mir_next->dalvikInsn.opcode =
557                      static_cast<Instruction::Code>(kMirOpFusedCmplFloat);
558                  break;
559                case Instruction::CMPL_DOUBLE:
560                  mir_next->dalvikInsn.opcode =
561                      static_cast<Instruction::Code>(kMirOpFusedCmplDouble);
562                  break;
563                case Instruction::CMPG_FLOAT:
564                  mir_next->dalvikInsn.opcode =
565                      static_cast<Instruction::Code>(kMirOpFusedCmpgFloat);
566                  break;
567                case Instruction::CMPG_DOUBLE:
568                  mir_next->dalvikInsn.opcode =
569                      static_cast<Instruction::Code>(kMirOpFusedCmpgDouble);
570                  break;
571                case Instruction::CMP_LONG:
572                  mir_next->dalvikInsn.opcode =
573                      static_cast<Instruction::Code>(kMirOpFusedCmpLong);
574                  break;
575                default: LOG(ERROR) << "Unexpected opcode: " << opcode;
576              }
577              mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
578              // Clear use count of temp VR.
579              use_counts_[mir->ssa_rep->defs[0]] = 0;
580              raw_use_counts_[mir->ssa_rep->defs[0]] = 0;
581              // Copy the SSA information that is relevant.
582              mir_next->ssa_rep->num_uses = mir->ssa_rep->num_uses;
583              mir_next->ssa_rep->uses = mir->ssa_rep->uses;
584              mir_next->ssa_rep->num_defs = 0;
585              mir->ssa_rep->num_uses = 0;
586              mir->ssa_rep->num_defs = 0;
587              // Copy in the decoded instruction information for potential SSA re-creation.
588              mir_next->dalvikInsn.vA = mir->dalvikInsn.vB;
589              mir_next->dalvikInsn.vB = mir->dalvikInsn.vC;
590            }
591          }
592          break;
593        default:
594          break;
595      }
596      // Is this the select pattern?
597      // TODO: flesh out support for Mips.  NOTE: llvm's select op doesn't quite work here.
598      // TUNING: expand to support IF_xx compare & branches
599      if ((cu_->instruction_set == kArm64 || cu_->instruction_set == kThumb2 ||
600           cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) &&
601          IsInstructionIfCcZ(mir->dalvikInsn.opcode)) {
602        BasicBlock* ft = GetBasicBlock(bb->fall_through);
603        DCHECK(ft != nullptr);
604        BasicBlock* ft_ft = GetBasicBlock(ft->fall_through);
605        BasicBlock* ft_tk = GetBasicBlock(ft->taken);
606
607        BasicBlock* tk = GetBasicBlock(bb->taken);
608        DCHECK(tk != nullptr);
609        BasicBlock* tk_ft = GetBasicBlock(tk->fall_through);
610        BasicBlock* tk_tk = GetBasicBlock(tk->taken);
611
612        /*
613         * In the select pattern, the taken edge goes to a block that unconditionally
614         * transfers to the rejoin block and the fall_though edge goes to a block that
615         * unconditionally falls through to the rejoin block.
616         */
617        if ((tk_ft == nullptr) && (ft_tk == nullptr) && (tk_tk == ft_ft) &&
618            (Predecessors(tk) == 1) && (Predecessors(ft) == 1)) {
619          /*
620           * Okay - we have the basic diamond shape.
621           */
622
623          // TODO: Add logic for LONG.
624          // Are the block bodies something we can handle?
625          if ((ft->first_mir_insn == ft->last_mir_insn) &&
626              (tk->first_mir_insn != tk->last_mir_insn) &&
627              (tk->first_mir_insn->next == tk->last_mir_insn) &&
628              ((SelectKind(ft->first_mir_insn) == kSelectMove) ||
629              (SelectKind(ft->first_mir_insn) == kSelectConst)) &&
630              (SelectKind(ft->first_mir_insn) == SelectKind(tk->first_mir_insn)) &&
631              (SelectKind(tk->last_mir_insn) == kSelectGoto)) {
632            // Almost there.  Are the instructions targeting the same vreg?
633            MIR* if_true = tk->first_mir_insn;
634            MIR* if_false = ft->first_mir_insn;
635            // It's possible that the target of the select isn't used - skip those (rare) cases.
636            MIR* phi = FindPhi(tk_tk, if_true->ssa_rep->defs[0]);
637            if ((phi != nullptr) && (if_true->dalvikInsn.vA == if_false->dalvikInsn.vA)) {
638              /*
639               * We'll convert the IF_EQZ/IF_NEZ to a SELECT.  We need to find the
640               * Phi node in the merge block and delete it (while using the SSA name
641               * of the merge as the target of the SELECT.  Delete both taken and
642               * fallthrough blocks, and set fallthrough to merge block.
643               * NOTE: not updating other dataflow info (no longer used at this point).
644               * If this changes, need to update i_dom, etc. here (and in CombineBlocks).
645               */
646              mir->meta.ccode = ConditionCodeForIfCcZ(mir->dalvikInsn.opcode);
647              mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpSelect);
648              bool const_form = (SelectKind(if_true) == kSelectConst);
649              if ((SelectKind(if_true) == kSelectMove)) {
650                if (IsConst(if_true->ssa_rep->uses[0]) &&
651                    IsConst(if_false->ssa_rep->uses[0])) {
652                    const_form = true;
653                    if_true->dalvikInsn.vB = ConstantValue(if_true->ssa_rep->uses[0]);
654                    if_false->dalvikInsn.vB = ConstantValue(if_false->ssa_rep->uses[0]);
655                }
656              }
657              if (const_form) {
658                /*
659                 * TODO: If both constants are the same value, then instead of generating
660                 * a select, we should simply generate a const bytecode. This should be
661                 * considered after inlining which can lead to CFG of this form.
662                 */
663                // "true" set val in vB
664                mir->dalvikInsn.vB = if_true->dalvikInsn.vB;
665                // "false" set val in vC
666                mir->dalvikInsn.vC = if_false->dalvikInsn.vB;
667              } else {
668                DCHECK_EQ(SelectKind(if_true), kSelectMove);
669                DCHECK_EQ(SelectKind(if_false), kSelectMove);
670                int32_t* src_ssa = arena_->AllocArray<int32_t>(3, kArenaAllocDFInfo);
671                src_ssa[0] = mir->ssa_rep->uses[0];
672                src_ssa[1] = if_true->ssa_rep->uses[0];
673                src_ssa[2] = if_false->ssa_rep->uses[0];
674                mir->ssa_rep->uses = src_ssa;
675                mir->ssa_rep->num_uses = 3;
676              }
677              AllocateSSADefData(mir, 1);
678              /*
679               * There is usually a Phi node in the join block for our two cases.  If the
680               * Phi node only contains our two cases as input, we will use the result
681               * SSA name of the Phi node as our select result and delete the Phi.  If
682               * the Phi node has more than two operands, we will arbitrarily use the SSA
683               * name of the "false" path, delete the SSA name of the "true" path from the
684               * Phi node (and fix up the incoming arc list).
685               */
686              if (phi->ssa_rep->num_uses == 2) {
687                mir->ssa_rep->defs[0] = phi->ssa_rep->defs[0];
688                // Rather than changing the Phi to kMirOpNop, remove it completely.
689                // This avoids leaving other Phis after kMirOpNop (i.e. a non-Phi) insn.
690                tk_tk->RemoveMIR(phi);
691                int dead_false_def = if_false->ssa_rep->defs[0];
692                raw_use_counts_[dead_false_def] = use_counts_[dead_false_def] = 0;
693              } else {
694                int live_def = if_false->ssa_rep->defs[0];
695                mir->ssa_rep->defs[0] = live_def;
696              }
697              int dead_true_def = if_true->ssa_rep->defs[0];
698              raw_use_counts_[dead_true_def] = use_counts_[dead_true_def] = 0;
699              // Update ending vreg->sreg map for GC maps generation.
700              int def_vreg = SRegToVReg(mir->ssa_rep->defs[0]);
701              bb->data_flow_info->vreg_to_ssa_map_exit[def_vreg] = mir->ssa_rep->defs[0];
702              // We want to remove ft and tk and link bb directly to ft_ft. First, we need
703              // to update all Phi inputs correctly with UpdatePredecessor(ft->id, bb->id)
704              // since the live_def above comes from ft->first_mir_insn (if_false).
705              DCHECK(if_false == ft->first_mir_insn);
706              ft_ft->UpdatePredecessor(ft->id, bb->id);
707              // Correct the rest of the links between bb, ft and ft_ft.
708              ft->ErasePredecessor(bb->id);
709              ft->fall_through = NullBasicBlockId;
710              bb->fall_through = ft_ft->id;
711              // Now we can kill tk and ft.
712              tk->Kill(this);
713              ft->Kill(this);
714              // NOTE: DFS order, domination info and topological order are still usable
715              // despite the newly dead blocks.
716            }
717          }
718        }
719      }
720    }
721    bb = ((cu_->disable_opt & (1 << kSuppressExceptionEdges)) != 0) ? NextDominatedBlock(bb) :
722        nullptr;
723  }
724  if (use_lvn && UNLIKELY(!global_valnum->Good())) {
725    LOG(WARNING) << "LVN overflow in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
726  }
727
728  return true;
729}
730
731/* Collect stats on number of checks removed */
732void MIRGraph::CountChecks(class BasicBlock* bb) {
733  if (bb->data_flow_info != nullptr) {
734    for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
735      if (mir->ssa_rep == nullptr) {
736        continue;
737      }
738      uint64_t df_attributes = GetDataFlowAttributes(mir);
739      if (df_attributes & DF_HAS_NULL_CHKS) {
740        checkstats_->null_checks++;
741        if (mir->optimization_flags & MIR_IGNORE_NULL_CHECK) {
742          checkstats_->null_checks_eliminated++;
743        }
744      }
745      if (df_attributes & DF_HAS_RANGE_CHKS) {
746        checkstats_->range_checks++;
747        if (mir->optimization_flags & MIR_IGNORE_RANGE_CHECK) {
748          checkstats_->range_checks_eliminated++;
749        }
750      }
751    }
752  }
753}
754
755/* Try to make common case the fallthrough path. */
756bool MIRGraph::LayoutBlocks(BasicBlock* bb) {
757  // TODO: For now, just looking for direct throws.  Consider generalizing for profile feedback.
758  if (!bb->explicit_throw) {
759    return false;
760  }
761
762  // If we visited it, we are done.
763  if (bb->visited) {
764    return false;
765  }
766  bb->visited = true;
767
768  BasicBlock* walker = bb;
769  while (true) {
770    // Check termination conditions.
771    if ((walker->block_type == kEntryBlock) || (Predecessors(walker) != 1)) {
772      break;
773    }
774    DCHECK(!walker->predecessors.empty());
775    BasicBlock* prev = GetBasicBlock(walker->predecessors[0]);
776
777    // If we visited the predecessor, we are done.
778    if (prev->visited) {
779      return false;
780    }
781    prev->visited = true;
782
783    if (prev->conditional_branch) {
784      if (GetBasicBlock(prev->fall_through) == walker) {
785        // Already done - return.
786        break;
787      }
788      DCHECK_EQ(walker, GetBasicBlock(prev->taken));
789      // Got one.  Flip it and exit.
790      Instruction::Code opcode = prev->last_mir_insn->dalvikInsn.opcode;
791      switch (opcode) {
792        case Instruction::IF_EQ: opcode = Instruction::IF_NE; break;
793        case Instruction::IF_NE: opcode = Instruction::IF_EQ; break;
794        case Instruction::IF_LT: opcode = Instruction::IF_GE; break;
795        case Instruction::IF_GE: opcode = Instruction::IF_LT; break;
796        case Instruction::IF_GT: opcode = Instruction::IF_LE; break;
797        case Instruction::IF_LE: opcode = Instruction::IF_GT; break;
798        case Instruction::IF_EQZ: opcode = Instruction::IF_NEZ; break;
799        case Instruction::IF_NEZ: opcode = Instruction::IF_EQZ; break;
800        case Instruction::IF_LTZ: opcode = Instruction::IF_GEZ; break;
801        case Instruction::IF_GEZ: opcode = Instruction::IF_LTZ; break;
802        case Instruction::IF_GTZ: opcode = Instruction::IF_LEZ; break;
803        case Instruction::IF_LEZ: opcode = Instruction::IF_GTZ; break;
804        default: LOG(FATAL) << "Unexpected opcode " << opcode;
805      }
806      prev->last_mir_insn->dalvikInsn.opcode = opcode;
807      BasicBlockId t_bb = prev->taken;
808      prev->taken = prev->fall_through;
809      prev->fall_through = t_bb;
810      break;
811    }
812    walker = prev;
813  }
814  return false;
815}
816
817/* Combine any basic blocks terminated by instructions that we now know can't throw */
818void MIRGraph::CombineBlocks(class BasicBlock* bb) {
819  // Loop here to allow combining a sequence of blocks
820  while ((bb->block_type == kDalvikByteCode) &&
821      (bb->last_mir_insn != nullptr) &&
822      (static_cast<int>(bb->last_mir_insn->dalvikInsn.opcode) == kMirOpCheck)) {
823    MIR* mir = bb->last_mir_insn;
824    DCHECK(bb->first_mir_insn !=  nullptr);
825
826    // Get the paired insn and check if it can still throw.
827    MIR* throw_insn = mir->meta.throw_insn;
828    if (CanThrow(throw_insn)) {
829      break;
830    }
831
832    // OK - got one.  Combine
833    BasicBlock* bb_next = GetBasicBlock(bb->fall_through);
834    DCHECK(!bb_next->catch_entry);
835    DCHECK_EQ(bb_next->predecessors.size(), 1u);
836
837    // Now move instructions from bb_next to bb. Start off with doing a sanity check
838    // that kMirOpCheck's throw instruction is first one in the bb_next.
839    DCHECK_EQ(bb_next->first_mir_insn, throw_insn);
840    // Now move all instructions (throw instruction to last one) from bb_next to bb.
841    MIR* last_to_move = bb_next->last_mir_insn;
842    bb_next->RemoveMIRList(throw_insn, last_to_move);
843    bb->InsertMIRListAfter(bb->last_mir_insn, throw_insn, last_to_move);
844    // The kMirOpCheck instruction is not needed anymore.
845    mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
846    bb->RemoveMIR(mir);
847
848    // Before we overwrite successors, remove their predecessor links to bb.
849    bb_next->ErasePredecessor(bb->id);
850    if (bb->taken != NullBasicBlockId) {
851      DCHECK_EQ(bb->successor_block_list_type, kNotUsed);
852      BasicBlock* bb_taken = GetBasicBlock(bb->taken);
853      // bb->taken will be overwritten below.
854      DCHECK_EQ(bb_taken->block_type, kExceptionHandling);
855      DCHECK_EQ(bb_taken->predecessors.size(), 1u);
856      DCHECK_EQ(bb_taken->predecessors[0], bb->id);
857      bb_taken->predecessors.clear();
858      bb_taken->block_type = kDead;
859      DCHECK(bb_taken->data_flow_info == nullptr);
860    } else {
861      DCHECK_EQ(bb->successor_block_list_type, kCatch);
862      for (SuccessorBlockInfo* succ_info : bb->successor_blocks) {
863        if (succ_info->block != NullBasicBlockId) {
864          BasicBlock* succ_bb = GetBasicBlock(succ_info->block);
865          DCHECK(succ_bb->catch_entry);
866          succ_bb->ErasePredecessor(bb->id);
867        }
868      }
869    }
870    // Use the successor info from the next block
871    bb->successor_block_list_type = bb_next->successor_block_list_type;
872    bb->successor_blocks.swap(bb_next->successor_blocks);  // Swap instead of copying.
873    bb_next->successor_block_list_type = kNotUsed;
874    // Use the ending block linkage from the next block
875    bb->fall_through = bb_next->fall_through;
876    bb_next->fall_through = NullBasicBlockId;
877    bb->taken = bb_next->taken;
878    bb_next->taken = NullBasicBlockId;
879    /*
880     * If lower-half of pair of blocks to combine contained
881     * a return or a conditional branch or an explicit throw,
882     * move the flag to the newly combined block.
883     */
884    bb->terminated_by_return = bb_next->terminated_by_return;
885    bb->conditional_branch = bb_next->conditional_branch;
886    bb->explicit_throw = bb_next->explicit_throw;
887    // Merge the use_lvn flag.
888    bb->use_lvn |= bb_next->use_lvn;
889
890    // Kill the unused block.
891    bb_next->data_flow_info = nullptr;
892
893    /*
894     * NOTE: we aren't updating all dataflow info here.  Should either make sure this pass
895     * happens after uses of i_dominated, dom_frontier or update the dataflow info here.
896     * NOTE: GVN uses bb->data_flow_info->live_in_v which is unaffected by the block merge.
897     */
898
899    // Kill bb_next and remap now-dead id to parent.
900    bb_next->block_type = kDead;
901    bb_next->data_flow_info = nullptr;  // Must be null for dead blocks. (Relied on by the GVN.)
902    block_id_map_.Overwrite(bb_next->id, bb->id);
903    // Update predecessors in children.
904    ChildBlockIterator iter(bb, this);
905    for (BasicBlock* child = iter.Next(); child != nullptr; child = iter.Next()) {
906      child->UpdatePredecessor(bb_next->id, bb->id);
907    }
908
909    // DFS orders, domination and topological order are not up to date anymore.
910    dfs_orders_up_to_date_ = false;
911    domination_up_to_date_ = false;
912    topological_order_up_to_date_ = false;
913
914    // Now, loop back and see if we can keep going
915  }
916}
917
918bool MIRGraph::EliminateNullChecksGate() {
919  if ((cu_->disable_opt & (1 << kNullCheckElimination)) != 0 ||
920      (merged_df_flags_ & DF_HAS_NULL_CHKS) == 0) {
921    return false;
922  }
923
924  DCHECK(temp_scoped_alloc_.get() == nullptr);
925  temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
926  temp_.nce.num_vregs = GetNumOfCodeAndTempVRs();
927  temp_.nce.work_vregs_to_check = new (temp_scoped_alloc_.get()) ArenaBitVector(
928      temp_scoped_alloc_.get(), temp_.nce.num_vregs, false, kBitMapNullCheck);
929  temp_.nce.ending_vregs_to_check_matrix =
930      temp_scoped_alloc_->AllocArray<ArenaBitVector*>(GetNumBlocks(), kArenaAllocMisc);
931  std::fill_n(temp_.nce.ending_vregs_to_check_matrix, GetNumBlocks(), nullptr);
932
933  // reset MIR_MARK
934  AllNodesIterator iter(this);
935  for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
936    for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
937      mir->optimization_flags &= ~MIR_MARK;
938    }
939  }
940
941  return true;
942}
943
944/*
945 * Eliminate unnecessary null checks for a basic block.
946 */
947bool MIRGraph::EliminateNullChecks(BasicBlock* bb) {
948  if (bb->block_type != kDalvikByteCode && bb->block_type != kEntryBlock) {
949    // Ignore the kExitBlock as well.
950    DCHECK(bb->first_mir_insn == nullptr);
951    return false;
952  }
953
954  ArenaBitVector* vregs_to_check = temp_.nce.work_vregs_to_check;
955  /*
956   * Set initial state. Catch blocks don't need any special treatment.
957   */
958  if (bb->block_type == kEntryBlock) {
959    vregs_to_check->ClearAllBits();
960    // Assume all ins are objects.
961    for (uint16_t in_reg = GetFirstInVR();
962         in_reg < GetNumOfCodeVRs(); in_reg++) {
963      vregs_to_check->SetBit(in_reg);
964    }
965    if ((cu_->access_flags & kAccStatic) == 0) {
966      // If non-static method, mark "this" as non-null.
967      int this_reg = GetFirstInVR();
968      vregs_to_check->ClearBit(this_reg);
969    }
970  } else {
971    DCHECK_EQ(bb->block_type, kDalvikByteCode);
972    // Starting state is union of all incoming arcs.
973    bool copied_first = false;
974    for (BasicBlockId pred_id : bb->predecessors) {
975      if (temp_.nce.ending_vregs_to_check_matrix[pred_id] == nullptr) {
976        continue;
977      }
978      BasicBlock* pred_bb = GetBasicBlock(pred_id);
979      DCHECK(pred_bb != nullptr);
980      MIR* null_check_insn = nullptr;
981      // Check to see if predecessor had an explicit null-check.
982      if (pred_bb->BranchesToSuccessorOnlyIfNotZero(bb->id)) {
983        // Remember the null check insn if there's no other predecessor requiring null check.
984        if (!copied_first || !vregs_to_check->IsBitSet(pred_bb->last_mir_insn->dalvikInsn.vA)) {
985          null_check_insn = pred_bb->last_mir_insn;
986          DCHECK(null_check_insn != nullptr);
987        }
988      }
989      if (!copied_first) {
990        copied_first = true;
991        vregs_to_check->Copy(temp_.nce.ending_vregs_to_check_matrix[pred_id]);
992      } else {
993        vregs_to_check->Union(temp_.nce.ending_vregs_to_check_matrix[pred_id]);
994      }
995      if (null_check_insn != nullptr) {
996        vregs_to_check->ClearBit(null_check_insn->dalvikInsn.vA);
997      }
998    }
999    DCHECK(copied_first);  // At least one predecessor must have been processed before this bb.
1000  }
1001  // At this point, vregs_to_check shows which sregs have an object definition with
1002  // no intervening uses.
1003
1004  // Walk through the instruction in the block, updating as necessary
1005  for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1006    uint64_t df_attributes = GetDataFlowAttributes(mir);
1007
1008    if ((df_attributes & DF_NULL_TRANSFER_N) != 0u) {
1009      // The algorithm was written in a phi agnostic way.
1010      continue;
1011    }
1012
1013    // Might need a null check?
1014    if (df_attributes & DF_HAS_NULL_CHKS) {
1015      int src_vreg;
1016      if (df_attributes & DF_NULL_CHK_OUT0) {
1017        DCHECK_NE(df_attributes & DF_IS_INVOKE, 0u);
1018        src_vreg = mir->dalvikInsn.vC;
1019      } else if (df_attributes & DF_NULL_CHK_B) {
1020        DCHECK_NE(df_attributes & DF_REF_B, 0u);
1021        src_vreg = mir->dalvikInsn.vB;
1022      } else {
1023        DCHECK_NE(df_attributes & DF_NULL_CHK_A, 0u);
1024        DCHECK_NE(df_attributes & DF_REF_A, 0u);
1025        src_vreg = mir->dalvikInsn.vA;
1026      }
1027      if (!vregs_to_check->IsBitSet(src_vreg)) {
1028        // Eliminate the null check.
1029        mir->optimization_flags |= MIR_MARK;
1030      } else {
1031        // Do the null check.
1032        mir->optimization_flags &= ~MIR_MARK;
1033        // Mark src_vreg as null-checked.
1034        vregs_to_check->ClearBit(src_vreg);
1035      }
1036    }
1037
1038    if ((df_attributes & DF_A_WIDE) ||
1039        (df_attributes & (DF_REF_A | DF_SETS_CONST | DF_NULL_TRANSFER)) == 0) {
1040      continue;
1041    }
1042
1043    /*
1044     * First, mark all object definitions as requiring null check.
1045     * Note: we can't tell if a CONST definition might be used as an object, so treat
1046     * them all as object definitions.
1047     */
1048    if ((df_attributes & (DF_DA | DF_REF_A)) == (DF_DA | DF_REF_A) ||
1049        (df_attributes & DF_SETS_CONST))  {
1050      vregs_to_check->SetBit(mir->dalvikInsn.vA);
1051    }
1052
1053    // Then, remove mark from all object definitions we know are non-null.
1054    if (df_attributes & DF_NON_NULL_DST) {
1055      // Mark target of NEW* as non-null
1056      DCHECK_NE(df_attributes & DF_REF_A, 0u);
1057      vregs_to_check->ClearBit(mir->dalvikInsn.vA);
1058    }
1059
1060    // Mark non-null returns from invoke-style NEW*
1061    if (df_attributes & DF_NON_NULL_RET) {
1062      MIR* next_mir = mir->next;
1063      // Next should be an MOVE_RESULT_OBJECT
1064      if (UNLIKELY(next_mir == nullptr)) {
1065        // The MethodVerifier makes sure there's no MOVE_RESULT at the catch entry or branch
1066        // target, so the MOVE_RESULT cannot be broken away into another block.
1067        LOG(WARNING) << "Unexpected end of block following new";
1068      } else if (UNLIKELY(next_mir->dalvikInsn.opcode != Instruction::MOVE_RESULT_OBJECT)) {
1069        LOG(WARNING) << "Unexpected opcode following new: " << next_mir->dalvikInsn.opcode;
1070      } else {
1071        // Mark as null checked.
1072        vregs_to_check->ClearBit(next_mir->dalvikInsn.vA);
1073      }
1074    }
1075
1076    // Propagate null check state on register copies.
1077    if (df_attributes & DF_NULL_TRANSFER_0) {
1078      DCHECK_EQ(df_attributes | ~(DF_DA | DF_REF_A | DF_UB | DF_REF_B), static_cast<uint64_t>(-1));
1079      if (vregs_to_check->IsBitSet(mir->dalvikInsn.vB)) {
1080        vregs_to_check->SetBit(mir->dalvikInsn.vA);
1081      } else {
1082        vregs_to_check->ClearBit(mir->dalvikInsn.vA);
1083      }
1084    }
1085  }
1086
1087  // Did anything change?
1088  bool nce_changed = false;
1089  ArenaBitVector* old_ending_ssa_regs_to_check = temp_.nce.ending_vregs_to_check_matrix[bb->id];
1090  if (old_ending_ssa_regs_to_check == nullptr) {
1091    DCHECK(temp_scoped_alloc_.get() != nullptr);
1092    nce_changed = vregs_to_check->GetHighestBitSet() != -1;
1093    temp_.nce.ending_vregs_to_check_matrix[bb->id] = vregs_to_check;
1094    // Create a new vregs_to_check for next BB.
1095    temp_.nce.work_vregs_to_check = new (temp_scoped_alloc_.get()) ArenaBitVector(
1096        temp_scoped_alloc_.get(), temp_.nce.num_vregs, false, kBitMapNullCheck);
1097  } else if (!vregs_to_check->SameBitsSet(old_ending_ssa_regs_to_check)) {
1098    nce_changed = true;
1099    temp_.nce.ending_vregs_to_check_matrix[bb->id] = vregs_to_check;
1100    temp_.nce.work_vregs_to_check = old_ending_ssa_regs_to_check;  // Reuse for next BB.
1101  }
1102  return nce_changed;
1103}
1104
1105void MIRGraph::EliminateNullChecksEnd() {
1106  // Clean up temporaries.
1107  temp_.nce.num_vregs = 0u;
1108  temp_.nce.work_vregs_to_check = nullptr;
1109  temp_.nce.ending_vregs_to_check_matrix = nullptr;
1110  DCHECK(temp_scoped_alloc_.get() != nullptr);
1111  temp_scoped_alloc_.reset();
1112
1113  // converge MIR_MARK with MIR_IGNORE_NULL_CHECK
1114  AllNodesIterator iter(this);
1115  for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
1116    for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1117      constexpr int kMarkToIgnoreNullCheckShift = kMIRMark - kMIRIgnoreNullCheck;
1118      static_assert(kMarkToIgnoreNullCheckShift > 0, "Not a valid right-shift");
1119      uint16_t mirMarkAdjustedToIgnoreNullCheck =
1120          (mir->optimization_flags & MIR_MARK) >> kMarkToIgnoreNullCheckShift;
1121      mir->optimization_flags |= mirMarkAdjustedToIgnoreNullCheck;
1122    }
1123  }
1124}
1125
1126void MIRGraph::InferTypesStart() {
1127  DCHECK(temp_scoped_alloc_ != nullptr);
1128  temp_.ssa.ti = new (temp_scoped_alloc_.get()) TypeInference(this, temp_scoped_alloc_.get());
1129}
1130
1131/*
1132 * Perform type and size inference for a basic block.
1133 */
1134bool MIRGraph::InferTypes(BasicBlock* bb) {
1135  if (bb->data_flow_info == nullptr) return false;
1136
1137  DCHECK(temp_.ssa.ti != nullptr);
1138  return temp_.ssa.ti->Apply(bb);
1139}
1140
1141void MIRGraph::InferTypesEnd() {
1142  DCHECK(temp_.ssa.ti != nullptr);
1143  temp_.ssa.ti->Finish();
1144  delete temp_.ssa.ti;
1145  temp_.ssa.ti = nullptr;
1146}
1147
1148bool MIRGraph::EliminateClassInitChecksGate() {
1149  if ((cu_->disable_opt & (1 << kClassInitCheckElimination)) != 0 ||
1150      (merged_df_flags_ & DF_CLINIT) == 0) {
1151    return false;
1152  }
1153
1154  DCHECK(temp_scoped_alloc_.get() == nullptr);
1155  temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
1156
1157  // Each insn we use here has at least 2 code units, offset/2 will be a unique index.
1158  const size_t end = (GetNumDalvikInsns() + 1u) / 2u;
1159  temp_.cice.indexes = temp_scoped_alloc_->AllocArray<uint16_t>(end, kArenaAllocGrowableArray);
1160  std::fill_n(temp_.cice.indexes, end, 0xffffu);
1161
1162  uint32_t unique_class_count = 0u;
1163  {
1164    // Get unique_class_count and store indexes in temp_insn_data_ using a map on a nested
1165    // ScopedArenaAllocator.
1166
1167    // Embed the map value in the entry to save space.
1168    struct MapEntry {
1169      // Map key: the class identified by the declaring dex file and type index.
1170      const DexFile* declaring_dex_file;
1171      uint16_t declaring_class_idx;
1172      // Map value: index into bit vectors of classes requiring initialization checks.
1173      uint16_t index;
1174    };
1175    struct MapEntryComparator {
1176      bool operator()(const MapEntry& lhs, const MapEntry& rhs) const {
1177        if (lhs.declaring_class_idx != rhs.declaring_class_idx) {
1178          return lhs.declaring_class_idx < rhs.declaring_class_idx;
1179        }
1180        return lhs.declaring_dex_file < rhs.declaring_dex_file;
1181      }
1182    };
1183
1184    ScopedArenaAllocator allocator(&cu_->arena_stack);
1185    ScopedArenaSet<MapEntry, MapEntryComparator> class_to_index_map(MapEntryComparator(),
1186                                                                    allocator.Adapter());
1187
1188    // First, find all SGET/SPUTs that may need class initialization checks, record INVOKE_STATICs.
1189    AllNodesIterator iter(this);
1190    for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
1191      if (bb->block_type == kDalvikByteCode) {
1192        for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1193          if (IsInstructionSGetOrSPut(mir->dalvikInsn.opcode)) {
1194            const MirSFieldLoweringInfo& field_info = GetSFieldLoweringInfo(mir);
1195            if (!field_info.IsReferrersClass()) {
1196              DCHECK_LT(class_to_index_map.size(), 0xffffu);
1197              MapEntry entry = {
1198                  // Treat unresolved fields as if each had its own class.
1199                  field_info.IsResolved() ? field_info.DeclaringDexFile()
1200                                          : nullptr,
1201                  field_info.IsResolved() ? field_info.DeclaringClassIndex()
1202                                          : field_info.FieldIndex(),
1203                  static_cast<uint16_t>(class_to_index_map.size())
1204              };
1205              uint16_t index = class_to_index_map.insert(entry).first->index;
1206              // Using offset/2 for index into temp_.cice.indexes.
1207              temp_.cice.indexes[mir->offset / 2u] = index;
1208            }
1209          } else if (IsInstructionInvokeStatic(mir->dalvikInsn.opcode)) {
1210            const MirMethodLoweringInfo& method_info = GetMethodLoweringInfo(mir);
1211            DCHECK(method_info.IsStatic());
1212            if (method_info.FastPath() && !method_info.IsReferrersClass()) {
1213              MapEntry entry = {
1214                  method_info.DeclaringDexFile(),
1215                  method_info.DeclaringClassIndex(),
1216                  static_cast<uint16_t>(class_to_index_map.size())
1217              };
1218              uint16_t index = class_to_index_map.insert(entry).first->index;
1219              // Using offset/2 for index into temp_.cice.indexes.
1220              temp_.cice.indexes[mir->offset / 2u] = index;
1221            }
1222          }
1223        }
1224      }
1225    }
1226    unique_class_count = static_cast<uint32_t>(class_to_index_map.size());
1227  }
1228
1229  if (unique_class_count == 0u) {
1230    // All SGET/SPUTs refer to initialized classes. Nothing to do.
1231    temp_.cice.indexes = nullptr;
1232    temp_scoped_alloc_.reset();
1233    return false;
1234  }
1235
1236  // 2 bits for each class: is class initialized, is class in dex cache.
1237  temp_.cice.num_class_bits = 2u * unique_class_count;
1238  temp_.cice.work_classes_to_check = new (temp_scoped_alloc_.get()) ArenaBitVector(
1239      temp_scoped_alloc_.get(), temp_.cice.num_class_bits, false, kBitMapClInitCheck);
1240  temp_.cice.ending_classes_to_check_matrix =
1241      temp_scoped_alloc_->AllocArray<ArenaBitVector*>(GetNumBlocks(), kArenaAllocMisc);
1242  std::fill_n(temp_.cice.ending_classes_to_check_matrix, GetNumBlocks(), nullptr);
1243  DCHECK_GT(temp_.cice.num_class_bits, 0u);
1244  return true;
1245}
1246
1247/*
1248 * Eliminate unnecessary class initialization checks for a basic block.
1249 */
1250bool MIRGraph::EliminateClassInitChecks(BasicBlock* bb) {
1251  DCHECK_EQ((cu_->disable_opt & (1 << kClassInitCheckElimination)), 0u);
1252  if (bb->block_type != kDalvikByteCode && bb->block_type != kEntryBlock) {
1253    // Ignore the kExitBlock as well.
1254    DCHECK(bb->first_mir_insn == nullptr);
1255    return false;
1256  }
1257
1258  /*
1259   * Set initial state.  Catch blocks don't need any special treatment.
1260   */
1261  ArenaBitVector* classes_to_check = temp_.cice.work_classes_to_check;
1262  DCHECK(classes_to_check != nullptr);
1263  if (bb->block_type == kEntryBlock) {
1264    classes_to_check->SetInitialBits(temp_.cice.num_class_bits);
1265  } else {
1266    // Starting state is union of all incoming arcs.
1267    bool copied_first = false;
1268    for (BasicBlockId pred_id : bb->predecessors) {
1269      if (temp_.cice.ending_classes_to_check_matrix[pred_id] == nullptr) {
1270        continue;
1271      }
1272      if (!copied_first) {
1273        copied_first = true;
1274        classes_to_check->Copy(temp_.cice.ending_classes_to_check_matrix[pred_id]);
1275      } else {
1276        classes_to_check->Union(temp_.cice.ending_classes_to_check_matrix[pred_id]);
1277      }
1278    }
1279    DCHECK(copied_first);  // At least one predecessor must have been processed before this bb.
1280  }
1281  // At this point, classes_to_check shows which classes need clinit checks.
1282
1283  // Walk through the instruction in the block, updating as necessary
1284  for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1285    uint16_t index = temp_.cice.indexes[mir->offset / 2u];
1286    if (index != 0xffffu) {
1287      bool check_initialization = false;
1288      bool check_dex_cache = false;
1289
1290      // NOTE: index != 0xffff does not guarantee that this is an SGET/SPUT/INVOKE_STATIC.
1291      // Dex instructions with width 1 can have the same offset/2.
1292
1293      if (IsInstructionSGetOrSPut(mir->dalvikInsn.opcode)) {
1294        check_initialization = true;
1295        check_dex_cache = true;
1296      } else if (IsInstructionInvokeStatic(mir->dalvikInsn.opcode)) {
1297        check_initialization = true;
1298        // NOTE: INVOKE_STATIC doesn't guarantee that the type will be in the dex cache.
1299      }
1300
1301      if (check_dex_cache) {
1302        uint32_t check_dex_cache_index = 2u * index + 1u;
1303        if (!classes_to_check->IsBitSet(check_dex_cache_index)) {
1304          // Eliminate the class init check.
1305          mir->optimization_flags |= MIR_CLASS_IS_IN_DEX_CACHE;
1306        } else {
1307          // Do the class init check.
1308          mir->optimization_flags &= ~MIR_CLASS_IS_IN_DEX_CACHE;
1309        }
1310        classes_to_check->ClearBit(check_dex_cache_index);
1311      }
1312      if (check_initialization) {
1313        uint32_t check_clinit_index = 2u * index;
1314        if (!classes_to_check->IsBitSet(check_clinit_index)) {
1315          // Eliminate the class init check.
1316          mir->optimization_flags |= MIR_CLASS_IS_INITIALIZED;
1317        } else {
1318          // Do the class init check.
1319          mir->optimization_flags &= ~MIR_CLASS_IS_INITIALIZED;
1320        }
1321        // Mark the class as initialized.
1322        classes_to_check->ClearBit(check_clinit_index);
1323      }
1324    }
1325  }
1326
1327  // Did anything change?
1328  bool changed = false;
1329  ArenaBitVector* old_ending_classes_to_check = temp_.cice.ending_classes_to_check_matrix[bb->id];
1330  if (old_ending_classes_to_check == nullptr) {
1331    DCHECK(temp_scoped_alloc_.get() != nullptr);
1332    changed = classes_to_check->GetHighestBitSet() != -1;
1333    temp_.cice.ending_classes_to_check_matrix[bb->id] = classes_to_check;
1334    // Create a new classes_to_check for next BB.
1335    temp_.cice.work_classes_to_check = new (temp_scoped_alloc_.get()) ArenaBitVector(
1336        temp_scoped_alloc_.get(), temp_.cice.num_class_bits, false, kBitMapClInitCheck);
1337  } else if (!classes_to_check->Equal(old_ending_classes_to_check)) {
1338    changed = true;
1339    temp_.cice.ending_classes_to_check_matrix[bb->id] = classes_to_check;
1340    temp_.cice.work_classes_to_check = old_ending_classes_to_check;  // Reuse for next BB.
1341  }
1342  return changed;
1343}
1344
1345void MIRGraph::EliminateClassInitChecksEnd() {
1346  // Clean up temporaries.
1347  temp_.cice.num_class_bits = 0u;
1348  temp_.cice.work_classes_to_check = nullptr;
1349  temp_.cice.ending_classes_to_check_matrix = nullptr;
1350  DCHECK(temp_.cice.indexes != nullptr);
1351  temp_.cice.indexes = nullptr;
1352  DCHECK(temp_scoped_alloc_.get() != nullptr);
1353  temp_scoped_alloc_.reset();
1354}
1355
1356static void DisableGVNDependentOptimizations(CompilationUnit* cu) {
1357  cu->disable_opt |= (1u << kGvnDeadCodeElimination);
1358}
1359
1360bool MIRGraph::ApplyGlobalValueNumberingGate() {
1361  if (GlobalValueNumbering::Skip(cu_)) {
1362    DisableGVNDependentOptimizations(cu_);
1363    return false;
1364  }
1365
1366  DCHECK(temp_scoped_alloc_ == nullptr);
1367  temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
1368  temp_.gvn.ifield_ids =
1369      GlobalValueNumbering::PrepareGvnFieldIds(temp_scoped_alloc_.get(), ifield_lowering_infos_);
1370  temp_.gvn.sfield_ids =
1371      GlobalValueNumbering::PrepareGvnFieldIds(temp_scoped_alloc_.get(), sfield_lowering_infos_);
1372  DCHECK(temp_.gvn.gvn == nullptr);
1373  temp_.gvn.gvn = new (temp_scoped_alloc_.get()) GlobalValueNumbering(
1374      cu_, temp_scoped_alloc_.get(), GlobalValueNumbering::kModeGvn);
1375  return true;
1376}
1377
1378bool MIRGraph::ApplyGlobalValueNumbering(BasicBlock* bb) {
1379  DCHECK(temp_.gvn.gvn != nullptr);
1380  LocalValueNumbering* lvn = temp_.gvn.gvn->PrepareBasicBlock(bb);
1381  if (lvn != nullptr) {
1382    for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1383      lvn->GetValueNumber(mir);
1384    }
1385  }
1386  bool change = (lvn != nullptr) && temp_.gvn.gvn->FinishBasicBlock(bb);
1387  return change;
1388}
1389
1390void MIRGraph::ApplyGlobalValueNumberingEnd() {
1391  // Perform modifications.
1392  DCHECK(temp_.gvn.gvn != nullptr);
1393  if (temp_.gvn.gvn->Good()) {
1394    temp_.gvn.gvn->StartPostProcessing();
1395    if (max_nested_loops_ != 0u) {
1396      TopologicalSortIterator iter(this);
1397      for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
1398        ScopedArenaAllocator allocator(&cu_->arena_stack);  // Reclaim memory after each LVN.
1399        LocalValueNumbering* lvn = temp_.gvn.gvn->PrepareBasicBlock(bb, &allocator);
1400        if (lvn != nullptr) {
1401          for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1402            lvn->GetValueNumber(mir);
1403          }
1404          bool change = temp_.gvn.gvn->FinishBasicBlock(bb);
1405          DCHECK(!change) << PrettyMethod(cu_->method_idx, *cu_->dex_file);
1406        }
1407      }
1408    }
1409    // GVN was successful, running the LVN would be useless.
1410    cu_->disable_opt |= (1u << kLocalValueNumbering);
1411  } else {
1412    LOG(WARNING) << "GVN failed for " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
1413    DisableGVNDependentOptimizations(cu_);
1414  }
1415}
1416
1417bool MIRGraph::EliminateDeadCodeGate() {
1418  if ((cu_->disable_opt & (1 << kGvnDeadCodeElimination)) != 0 || temp_.gvn.gvn == nullptr) {
1419    return false;
1420  }
1421  DCHECK(temp_scoped_alloc_ != nullptr);
1422  temp_.gvn.dce = new (temp_scoped_alloc_.get()) GvnDeadCodeElimination(temp_.gvn.gvn,
1423                                                                        temp_scoped_alloc_.get());
1424  return true;
1425}
1426
1427bool MIRGraph::EliminateDeadCode(BasicBlock* bb) {
1428  DCHECK(temp_scoped_alloc_ != nullptr);
1429  DCHECK(temp_.gvn.gvn != nullptr);
1430  if (bb->block_type != kDalvikByteCode) {
1431    return false;
1432  }
1433  DCHECK(temp_.gvn.dce != nullptr);
1434  temp_.gvn.dce->Apply(bb);
1435  return false;  // No need to repeat.
1436}
1437
1438void MIRGraph::EliminateDeadCodeEnd() {
1439  if (kIsDebugBuild) {
1440    // DCE can make some previously dead vregs alive again. Make sure the obsolete
1441    // live-in information is not used anymore.
1442    AllNodesIterator iter(this);
1443    for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
1444      if (bb->data_flow_info != nullptr) {
1445        bb->data_flow_info->live_in_v = nullptr;
1446      }
1447    }
1448  }
1449}
1450
1451void MIRGraph::GlobalValueNumberingCleanup() {
1452  // If the GVN didn't run, these pointers should be null and everything is effectively no-op.
1453  delete temp_.gvn.dce;
1454  temp_.gvn.dce = nullptr;
1455  delete temp_.gvn.gvn;
1456  temp_.gvn.gvn = nullptr;
1457  temp_.gvn.ifield_ids = nullptr;
1458  temp_.gvn.sfield_ids = nullptr;
1459  temp_scoped_alloc_.reset();
1460}
1461
1462void MIRGraph::ComputeInlineIFieldLoweringInfo(uint16_t field_idx, MIR* invoke, MIR* iget_or_iput) {
1463  uint32_t method_index = invoke->meta.method_lowering_info;
1464  if (temp_.smi.processed_indexes->IsBitSet(method_index)) {
1465    iget_or_iput->meta.ifield_lowering_info = temp_.smi.lowering_infos[method_index];
1466    DCHECK_EQ(field_idx, GetIFieldLoweringInfo(iget_or_iput).FieldIndex());
1467    return;
1468  }
1469
1470  const MirMethodLoweringInfo& method_info = GetMethodLoweringInfo(invoke);
1471  MethodReference target = method_info.GetTargetMethod();
1472  DexCompilationUnit inlined_unit(
1473      cu_, cu_->class_loader, cu_->class_linker, *target.dex_file,
1474      nullptr /* code_item not used */, 0u /* class_def_idx not used */, target.dex_method_index,
1475      0u /* access_flags not used */, nullptr /* verified_method not used */);
1476  DexMemAccessType type = IGetOrIPutMemAccessType(iget_or_iput->dalvikInsn.opcode);
1477  MirIFieldLoweringInfo inlined_field_info(field_idx, type, false);
1478  MirIFieldLoweringInfo::Resolve(cu_->compiler_driver, &inlined_unit, &inlined_field_info, 1u);
1479  DCHECK(inlined_field_info.IsResolved());
1480
1481  uint32_t field_info_index = ifield_lowering_infos_.size();
1482  ifield_lowering_infos_.push_back(inlined_field_info);
1483  temp_.smi.processed_indexes->SetBit(method_index);
1484  temp_.smi.lowering_infos[method_index] = field_info_index;
1485  iget_or_iput->meta.ifield_lowering_info = field_info_index;
1486}
1487
1488bool MIRGraph::InlineSpecialMethodsGate() {
1489  if ((cu_->disable_opt & (1 << kSuppressMethodInlining)) != 0 ||
1490      method_lowering_infos_.size() == 0u) {
1491    return false;
1492  }
1493  if (cu_->compiler_driver->GetMethodInlinerMap() == nullptr) {
1494    // This isn't the Quick compiler.
1495    return false;
1496  }
1497  return true;
1498}
1499
1500void MIRGraph::InlineSpecialMethodsStart() {
1501  // Prepare for inlining getters/setters. Since we're inlining at most 1 IGET/IPUT from
1502  // each INVOKE, we can index the data by the MIR::meta::method_lowering_info index.
1503
1504  DCHECK(temp_scoped_alloc_.get() == nullptr);
1505  temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
1506  temp_.smi.num_indexes = method_lowering_infos_.size();
1507  temp_.smi.processed_indexes = new (temp_scoped_alloc_.get()) ArenaBitVector(
1508      temp_scoped_alloc_.get(), temp_.smi.num_indexes, false, kBitMapMisc);
1509  temp_.smi.processed_indexes->ClearAllBits();
1510  temp_.smi.lowering_infos =
1511      temp_scoped_alloc_->AllocArray<uint16_t>(temp_.smi.num_indexes, kArenaAllocGrowableArray);
1512}
1513
1514void MIRGraph::InlineSpecialMethods(BasicBlock* bb) {
1515  if (bb->block_type != kDalvikByteCode) {
1516    return;
1517  }
1518  for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1519    if (MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode)) {
1520      continue;
1521    }
1522    if (!(mir->dalvikInsn.FlagsOf() & Instruction::kInvoke)) {
1523      continue;
1524    }
1525    const MirMethodLoweringInfo& method_info = GetMethodLoweringInfo(mir);
1526    if (!method_info.FastPath() || !method_info.IsSpecial()) {
1527      continue;
1528    }
1529
1530    InvokeType sharp_type = method_info.GetSharpType();
1531    if ((sharp_type != kDirect) && (sharp_type != kStatic)) {
1532      continue;
1533    }
1534
1535    if (sharp_type == kStatic) {
1536      bool needs_clinit = !method_info.IsClassInitialized() &&
1537          ((mir->optimization_flags & MIR_CLASS_IS_INITIALIZED) == 0);
1538      if (needs_clinit) {
1539        continue;
1540      }
1541    }
1542
1543    DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
1544    MethodReference target = method_info.GetTargetMethod();
1545    if (cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(target.dex_file)
1546            ->GenInline(this, bb, mir, target.dex_method_index)) {
1547      if (cu_->verbose || cu_->print_pass) {
1548        LOG(INFO) << "SpecialMethodInliner: Inlined " << method_info.GetInvokeType() << " ("
1549            << sharp_type << ") call to \"" << PrettyMethod(target.dex_method_index,
1550                                                            *target.dex_file)
1551            << "\" from \"" << PrettyMethod(cu_->method_idx, *cu_->dex_file)
1552            << "\" @0x" << std::hex << mir->offset;
1553      }
1554    }
1555  }
1556}
1557
1558void MIRGraph::InlineSpecialMethodsEnd() {
1559  // Clean up temporaries.
1560  DCHECK(temp_.smi.lowering_infos != nullptr);
1561  temp_.smi.lowering_infos = nullptr;
1562  temp_.smi.num_indexes = 0u;
1563  DCHECK(temp_.smi.processed_indexes != nullptr);
1564  temp_.smi.processed_indexes = nullptr;
1565  DCHECK(temp_scoped_alloc_.get() != nullptr);
1566  temp_scoped_alloc_.reset();
1567}
1568
1569void MIRGraph::DumpCheckStats() {
1570  Checkstats* stats =
1571      static_cast<Checkstats*>(arena_->Alloc(sizeof(Checkstats), kArenaAllocDFInfo));
1572  checkstats_ = stats;
1573  AllNodesIterator iter(this);
1574  for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
1575    CountChecks(bb);
1576  }
1577  if (stats->null_checks > 0) {
1578    float eliminated = static_cast<float>(stats->null_checks_eliminated);
1579    float checks = static_cast<float>(stats->null_checks);
1580    LOG(INFO) << "Null Checks: " << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " "
1581              << stats->null_checks_eliminated << " of " << stats->null_checks << " -> "
1582              << (eliminated/checks) * 100.0 << "%";
1583    }
1584  if (stats->range_checks > 0) {
1585    float eliminated = static_cast<float>(stats->range_checks_eliminated);
1586    float checks = static_cast<float>(stats->range_checks);
1587    LOG(INFO) << "Range Checks: " << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " "
1588              << stats->range_checks_eliminated << " of " << stats->range_checks << " -> "
1589              << (eliminated/checks) * 100.0 << "%";
1590  }
1591}
1592
1593bool MIRGraph::BuildExtendedBBList(class BasicBlock* bb) {
1594  if (bb->visited) return false;
1595  if (!((bb->block_type == kEntryBlock) || (bb->block_type == kDalvikByteCode)
1596      || (bb->block_type == kExitBlock))) {
1597    // Ignore special blocks
1598    bb->visited = true;
1599    return false;
1600  }
1601  // Must be head of extended basic block.
1602  BasicBlock* start_bb = bb;
1603  extended_basic_blocks_.push_back(bb->id);
1604  bool terminated_by_return = false;
1605  bool do_local_value_numbering = false;
1606  // Visit blocks strictly dominated by this head.
1607  while (bb != nullptr) {
1608    bb->visited = true;
1609    terminated_by_return |= bb->terminated_by_return;
1610    do_local_value_numbering |= bb->use_lvn;
1611    bb = NextDominatedBlock(bb);
1612  }
1613  if (terminated_by_return || do_local_value_numbering) {
1614    // Do lvn for all blocks in this extended set.
1615    bb = start_bb;
1616    while (bb != nullptr) {
1617      bb->use_lvn = do_local_value_numbering;
1618      bb->dominates_return = terminated_by_return;
1619      bb = NextDominatedBlock(bb);
1620    }
1621  }
1622  return false;  // Not iterative - return value will be ignored
1623}
1624
1625void MIRGraph::BasicBlockOptimizationStart() {
1626  if ((cu_->disable_opt & (1 << kLocalValueNumbering)) == 0) {
1627    temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
1628    temp_.gvn.ifield_ids =
1629        GlobalValueNumbering::PrepareGvnFieldIds(temp_scoped_alloc_.get(), ifield_lowering_infos_);
1630    temp_.gvn.sfield_ids =
1631        GlobalValueNumbering::PrepareGvnFieldIds(temp_scoped_alloc_.get(), sfield_lowering_infos_);
1632  }
1633}
1634
1635void MIRGraph::BasicBlockOptimization() {
1636  if ((cu_->disable_opt & (1 << kSuppressExceptionEdges)) != 0) {
1637    ClearAllVisitedFlags();
1638    PreOrderDfsIterator iter2(this);
1639    for (BasicBlock* bb = iter2.Next(); bb != nullptr; bb = iter2.Next()) {
1640      BuildExtendedBBList(bb);
1641    }
1642    // Perform extended basic block optimizations.
1643    for (unsigned int i = 0; i < extended_basic_blocks_.size(); i++) {
1644      BasicBlockOpt(GetBasicBlock(extended_basic_blocks_[i]));
1645    }
1646  } else {
1647    PreOrderDfsIterator iter(this);
1648    for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
1649      BasicBlockOpt(bb);
1650    }
1651  }
1652}
1653
1654void MIRGraph::BasicBlockOptimizationEnd() {
1655  // Clean up after LVN.
1656  temp_.gvn.ifield_ids = nullptr;
1657  temp_.gvn.sfield_ids = nullptr;
1658  temp_scoped_alloc_.reset();
1659}
1660
1661void MIRGraph::StringChange() {
1662  AllNodesIterator iter(this);
1663  for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
1664    for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1665      // Look for new instance opcodes, skip otherwise
1666      Instruction::Code opcode = mir->dalvikInsn.opcode;
1667      if (opcode == Instruction::NEW_INSTANCE) {
1668        uint32_t type_idx = mir->dalvikInsn.vB;
1669        if (cu_->compiler_driver->IsStringTypeIndex(type_idx, cu_->dex_file)) {
1670          // Change NEW_INSTANCE into CONST_4 of 0
1671          mir->dalvikInsn.opcode = Instruction::CONST_4;
1672          mir->dalvikInsn.vB = 0;
1673        }
1674      } else if ((opcode == Instruction::INVOKE_DIRECT) ||
1675                 (opcode == Instruction::INVOKE_DIRECT_RANGE)) {
1676        uint32_t method_idx = mir->dalvikInsn.vB;
1677        DexFileMethodInliner* inliner =
1678            cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(cu_->dex_file);
1679        if (inliner->IsStringInitMethodIndex(method_idx)) {
1680          bool is_range = (opcode == Instruction::INVOKE_DIRECT_RANGE);
1681          uint32_t orig_this_reg = is_range ? mir->dalvikInsn.vC : mir->dalvikInsn.arg[0];
1682          // Remove this pointer from string init and change to static call.
1683          mir->dalvikInsn.vA--;
1684          if (!is_range) {
1685            mir->dalvikInsn.opcode = Instruction::INVOKE_STATIC;
1686            for (uint32_t i = 0; i < mir->dalvikInsn.vA; i++) {
1687              mir->dalvikInsn.arg[i] = mir->dalvikInsn.arg[i + 1];
1688            }
1689          } else {
1690            mir->dalvikInsn.opcode = Instruction::INVOKE_STATIC_RANGE;
1691            mir->dalvikInsn.vC++;
1692          }
1693          // Insert a move-result instruction to the original this pointer reg.
1694          MIR* move_result_mir = static_cast<MIR *>(arena_->Alloc(sizeof(MIR), kArenaAllocMIR));
1695          move_result_mir->dalvikInsn.opcode = Instruction::MOVE_RESULT_OBJECT;
1696          move_result_mir->dalvikInsn.vA = orig_this_reg;
1697          move_result_mir->offset = mir->offset;
1698          move_result_mir->m_unit_index = mir->m_unit_index;
1699          bb->InsertMIRAfter(mir, move_result_mir);
1700          // Add additional moves if this pointer was copied to other registers.
1701          const VerifiedMethod* verified_method =
1702              cu_->compiler_driver->GetVerifiedMethod(cu_->dex_file, cu_->method_idx);
1703          DCHECK(verified_method != nullptr);
1704          const SafeMap<uint32_t, std::set<uint32_t>>& string_init_map =
1705              verified_method->GetStringInitPcRegMap();
1706          auto map_it = string_init_map.find(mir->offset);
1707          if (map_it != string_init_map.end()) {
1708            const std::set<uint32_t>& reg_set = map_it->second;
1709            for (auto set_it = reg_set.begin(); set_it != reg_set.end(); ++set_it) {
1710              MIR* move_mir = static_cast<MIR *>(arena_->Alloc(sizeof(MIR), kArenaAllocMIR));
1711              move_mir->dalvikInsn.opcode = Instruction::MOVE_OBJECT;
1712              move_mir->dalvikInsn.vA = *set_it;
1713              move_mir->dalvikInsn.vB = orig_this_reg;
1714              move_mir->offset = mir->offset;
1715              move_mir->m_unit_index = mir->m_unit_index;
1716              bb->InsertMIRAfter(move_result_mir, move_mir);
1717            }
1718          }
1719        }
1720      }
1721    }
1722  }
1723}
1724
1725
1726bool MIRGraph::EliminateSuspendChecksGate() {
1727  if (kLeafOptimization ||           // Incompatible (could create loops without suspend checks).
1728      (cu_->disable_opt & (1 << kSuspendCheckElimination)) != 0 ||  // Disabled.
1729      GetMaxNestedLoops() == 0u ||   // Nothing to do.
1730      GetMaxNestedLoops() >= 32u ||  // Only 32 bits in suspend_checks_in_loops_[.].
1731                                     // Exclude 32 as well to keep bit shifts well-defined.
1732      !HasInvokes()) {               // No invokes to actually eliminate any suspend checks.
1733    return false;
1734  }
1735  suspend_checks_in_loops_ = arena_->AllocArray<uint32_t>(GetNumBlocks(), kArenaAllocMisc);
1736  return true;
1737}
1738
1739bool MIRGraph::EliminateSuspendChecks(BasicBlock* bb) {
1740  if (bb->block_type != kDalvikByteCode) {
1741    return false;
1742  }
1743  DCHECK_EQ(GetTopologicalSortOrderLoopHeadStack()->size(), bb->nesting_depth);
1744  if (bb->nesting_depth == 0u) {
1745    // Out of loops.
1746    DCHECK_EQ(suspend_checks_in_loops_[bb->id], 0u);  // The array was zero-initialized.
1747    return false;
1748  }
1749  uint32_t suspend_checks_in_loops = (1u << bb->nesting_depth) - 1u;  // Start with all loop heads.
1750  bool found_invoke = false;
1751  for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1752    if ((IsInstructionInvoke(mir->dalvikInsn.opcode) ||
1753        IsInstructionQuickInvoke(mir->dalvikInsn.opcode)) &&
1754        !GetMethodLoweringInfo(mir).IsIntrinsic()) {
1755      // Non-intrinsic invoke, rely on a suspend point in the invoked method.
1756      found_invoke = true;
1757      break;
1758    }
1759  }
1760  if (!found_invoke) {
1761    // Intersect suspend checks from predecessors.
1762    uint16_t bb_topo_idx = topological_order_indexes_[bb->id];
1763    uint32_t pred_mask_union = 0u;
1764    for (BasicBlockId pred_id : bb->predecessors) {
1765      uint16_t pred_topo_idx = topological_order_indexes_[pred_id];
1766      if (pred_topo_idx < bb_topo_idx) {
1767        // Determine the loop depth of the predecessors relative to this block.
1768        size_t pred_loop_depth = topological_order_loop_head_stack_.size();
1769        while (pred_loop_depth != 0u &&
1770            pred_topo_idx < topological_order_loop_head_stack_[pred_loop_depth - 1].first) {
1771          --pred_loop_depth;
1772        }
1773        DCHECK_LE(pred_loop_depth, GetBasicBlock(pred_id)->nesting_depth);
1774        uint32_t pred_mask = (1u << pred_loop_depth) - 1u;
1775        // Intersect pred_mask bits in suspend_checks_in_loops with
1776        // suspend_checks_in_loops_[pred_id].
1777        uint32_t pred_loops_without_checks = pred_mask & ~suspend_checks_in_loops_[pred_id];
1778        suspend_checks_in_loops = suspend_checks_in_loops & ~pred_loops_without_checks;
1779        pred_mask_union |= pred_mask;
1780      }
1781    }
1782    // DCHECK_EQ() may not hold for unnatural loop heads, so use DCHECK_GE().
1783    DCHECK_GE(((1u << (IsLoopHead(bb->id) ? bb->nesting_depth - 1u: bb->nesting_depth)) - 1u),
1784              pred_mask_union);
1785    suspend_checks_in_loops &= pred_mask_union;
1786  }
1787  suspend_checks_in_loops_[bb->id] = suspend_checks_in_loops;
1788  if (suspend_checks_in_loops == 0u) {
1789    return false;
1790  }
1791  // Apply MIR_IGNORE_SUSPEND_CHECK if appropriate.
1792  if (bb->taken != NullBasicBlockId) {
1793    DCHECK(bb->last_mir_insn != nullptr);
1794    DCHECK(IsInstructionIfCc(bb->last_mir_insn->dalvikInsn.opcode) ||
1795           IsInstructionIfCcZ(bb->last_mir_insn->dalvikInsn.opcode) ||
1796           IsInstructionGoto(bb->last_mir_insn->dalvikInsn.opcode) ||
1797           (static_cast<int>(bb->last_mir_insn->dalvikInsn.opcode) >= kMirOpFusedCmplFloat &&
1798            static_cast<int>(bb->last_mir_insn->dalvikInsn.opcode) <= kMirOpFusedCmpLong));
1799    if (!IsSuspendCheckEdge(bb, bb->taken) &&
1800        (bb->fall_through == NullBasicBlockId || !IsSuspendCheckEdge(bb, bb->fall_through))) {
1801      bb->last_mir_insn->optimization_flags |= MIR_IGNORE_SUSPEND_CHECK;
1802    }
1803  } else if (bb->fall_through != NullBasicBlockId && IsSuspendCheckEdge(bb, bb->fall_through)) {
1804    // We've got a fall-through suspend edge. Add an artificial GOTO to force suspend check.
1805    MIR* mir = NewMIR();
1806    mir->dalvikInsn.opcode = Instruction::GOTO;
1807    mir->dalvikInsn.vA = 0;  // Branch offset.
1808    mir->offset = GetBasicBlock(bb->fall_through)->start_offset;
1809    mir->m_unit_index = current_method_;
1810    mir->ssa_rep = reinterpret_cast<SSARepresentation*>(
1811        arena_->Alloc(sizeof(SSARepresentation), kArenaAllocDFInfo));  // Zero-initialized.
1812    bb->AppendMIR(mir);
1813    std::swap(bb->fall_through, bb->taken);  // The fall-through has become taken.
1814  }
1815  return true;
1816}
1817
1818bool MIRGraph::CanThrow(MIR* mir) const {
1819  if ((mir->dalvikInsn.FlagsOf() & Instruction::kThrow) == 0) {
1820    return false;
1821  }
1822  const int opt_flags = mir->optimization_flags;
1823  uint64_t df_attributes = GetDataFlowAttributes(mir);
1824
1825  // First, check if the insn can still throw NPE.
1826  if (((df_attributes & DF_HAS_NULL_CHKS) != 0) && ((opt_flags & MIR_IGNORE_NULL_CHECK) == 0)) {
1827    return true;
1828  }
1829
1830  // Now process specific instructions.
1831  if ((df_attributes & DF_IFIELD) != 0) {
1832    // The IGET/IPUT family. We have processed the IGET/IPUT null check above.
1833    DCHECK_NE(opt_flags & MIR_IGNORE_NULL_CHECK, 0);
1834    // If not fast, weird things can happen and the insn can throw.
1835    const MirIFieldLoweringInfo& field_info = GetIFieldLoweringInfo(mir);
1836    bool fast = (df_attributes & DF_DA) != 0 ? field_info.FastGet() : field_info.FastPut();
1837    return !fast;
1838  } else if ((df_attributes & DF_SFIELD) != 0) {
1839    // The SGET/SPUT family. Check for potentially throwing class initialization.
1840    // Also, if not fast, weird things can happen and the insn can throw.
1841    const MirSFieldLoweringInfo& field_info = GetSFieldLoweringInfo(mir);
1842    bool fast = (df_attributes & DF_DA) != 0 ? field_info.FastGet() : field_info.FastPut();
1843    bool is_class_initialized = field_info.IsClassInitialized() ||
1844        ((mir->optimization_flags & MIR_CLASS_IS_INITIALIZED) != 0);
1845    return !(fast && is_class_initialized);
1846  } else if ((df_attributes & DF_HAS_RANGE_CHKS) != 0) {
1847    // Only AGET/APUT have range checks. We have processed the AGET/APUT null check above.
1848    DCHECK_NE(opt_flags & MIR_IGNORE_NULL_CHECK, 0);
1849    // Non-throwing only if range check has been eliminated.
1850    return ((opt_flags & MIR_IGNORE_RANGE_CHECK) == 0);
1851  } else if (mir->dalvikInsn.opcode == Instruction::CHECK_CAST &&
1852      (opt_flags & MIR_IGNORE_CHECK_CAST) != 0) {
1853    return false;
1854  } else if (mir->dalvikInsn.opcode == Instruction::ARRAY_LENGTH ||
1855      static_cast<int>(mir->dalvikInsn.opcode) == kMirOpNullCheck) {
1856    // No more checks for these (null check was processed above).
1857    return false;
1858  }
1859  return true;
1860}
1861
1862bool MIRGraph::HasAntiDependency(MIR* first, MIR* second) {
1863  DCHECK(first->ssa_rep != nullptr);
1864  DCHECK(second->ssa_rep != nullptr);
1865  if ((second->ssa_rep->num_defs > 0) && (first->ssa_rep->num_uses > 0)) {
1866    int vreg0 = SRegToVReg(second->ssa_rep->defs[0]);
1867    int vreg1 = (second->ssa_rep->num_defs == 2) ?
1868        SRegToVReg(second->ssa_rep->defs[1]) : INVALID_VREG;
1869    for (int i = 0; i < first->ssa_rep->num_uses; i++) {
1870      int32_t use = SRegToVReg(first->ssa_rep->uses[i]);
1871      if (use == vreg0 || use == vreg1) {
1872        return true;
1873      }
1874    }
1875  }
1876  return false;
1877}
1878
1879void MIRGraph::CombineMultiplyAdd(MIR* mul_mir, MIR* add_mir, bool mul_is_first_addend,
1880                                  bool is_wide, bool is_sub) {
1881  if (is_wide) {
1882    if (is_sub) {
1883      add_mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpMsubLong);
1884    } else {
1885      add_mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpMaddLong);
1886    }
1887  } else {
1888    if (is_sub) {
1889      add_mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpMsubInt);
1890    } else {
1891      add_mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpMaddInt);
1892    }
1893  }
1894  add_mir->ssa_rep->num_uses = is_wide ? 6 : 3;
1895  int32_t addend0 = INVALID_SREG;
1896  int32_t addend1 = INVALID_SREG;
1897  if (is_wide) {
1898    addend0 = mul_is_first_addend ? add_mir->ssa_rep->uses[2] : add_mir->ssa_rep->uses[0];
1899    addend1 = mul_is_first_addend ? add_mir->ssa_rep->uses[3] : add_mir->ssa_rep->uses[1];
1900  } else {
1901    addend0 = mul_is_first_addend ? add_mir->ssa_rep->uses[1] : add_mir->ssa_rep->uses[0];
1902  }
1903
1904  AllocateSSAUseData(add_mir, add_mir->ssa_rep->num_uses);
1905  add_mir->ssa_rep->uses[0] = mul_mir->ssa_rep->uses[0];
1906  add_mir->ssa_rep->uses[1] = mul_mir->ssa_rep->uses[1];
1907  // Clear the original multiply product ssa use count, as it is not used anymore.
1908  raw_use_counts_[mul_mir->ssa_rep->defs[0]] = 0;
1909  use_counts_[mul_mir->ssa_rep->defs[0]] = 0;
1910  if (is_wide) {
1911    DCHECK_EQ(add_mir->ssa_rep->num_uses, 6);
1912    add_mir->ssa_rep->uses[2] = mul_mir->ssa_rep->uses[2];
1913    add_mir->ssa_rep->uses[3] = mul_mir->ssa_rep->uses[3];
1914    add_mir->ssa_rep->uses[4] = addend0;
1915    add_mir->ssa_rep->uses[5] = addend1;
1916    raw_use_counts_[mul_mir->ssa_rep->defs[1]] = 0;
1917    use_counts_[mul_mir->ssa_rep->defs[1]] = 0;
1918  } else {
1919    DCHECK_EQ(add_mir->ssa_rep->num_uses, 3);
1920    add_mir->ssa_rep->uses[2] = addend0;
1921  }
1922  // Copy in the decoded instruction information.
1923  add_mir->dalvikInsn.vB = SRegToVReg(add_mir->ssa_rep->uses[0]);
1924  if (is_wide) {
1925    add_mir->dalvikInsn.vC = SRegToVReg(add_mir->ssa_rep->uses[2]);
1926    add_mir->dalvikInsn.arg[0] = SRegToVReg(add_mir->ssa_rep->uses[4]);
1927  } else {
1928    add_mir->dalvikInsn.vC = SRegToVReg(add_mir->ssa_rep->uses[1]);
1929    add_mir->dalvikInsn.arg[0] = SRegToVReg(add_mir->ssa_rep->uses[2]);
1930  }
1931  // Original multiply MIR is set to Nop.
1932  mul_mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
1933}
1934
1935void MIRGraph::MultiplyAddOpt(BasicBlock* bb) {
1936  if (bb->block_type == kDead) {
1937    return;
1938  }
1939  ScopedArenaAllocator allocator(&cu_->arena_stack);
1940  ScopedArenaSafeMap<uint32_t, MIR*> ssa_mul_map(std::less<uint32_t>(), allocator.Adapter());
1941  ScopedArenaSafeMap<uint32_t, MIR*>::iterator map_it;
1942  for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1943    Instruction::Code opcode = mir->dalvikInsn.opcode;
1944    bool is_sub = true;
1945    bool is_candidate_multiply = false;
1946    switch (opcode) {
1947      case Instruction::MUL_INT:
1948      case Instruction::MUL_INT_2ADDR:
1949        is_candidate_multiply = true;
1950        break;
1951      case Instruction::MUL_LONG:
1952      case Instruction::MUL_LONG_2ADDR:
1953        if (cu_->target64) {
1954          is_candidate_multiply = true;
1955        }
1956        break;
1957      case Instruction::ADD_INT:
1958      case Instruction::ADD_INT_2ADDR:
1959        is_sub = false;
1960        FALLTHROUGH_INTENDED;
1961      case Instruction::SUB_INT:
1962      case Instruction::SUB_INT_2ADDR:
1963        if (((map_it = ssa_mul_map.find(mir->ssa_rep->uses[0])) != ssa_mul_map.end()) && !is_sub) {
1964          // a*b+c
1965          CombineMultiplyAdd(map_it->second, mir, true /* product is the first addend */,
1966                             false /* is_wide */, false /* is_sub */);
1967          ssa_mul_map.erase(mir->ssa_rep->uses[0]);
1968        } else if ((map_it = ssa_mul_map.find(mir->ssa_rep->uses[1])) != ssa_mul_map.end()) {
1969          // c+a*b or c-a*b
1970          CombineMultiplyAdd(map_it->second, mir, false /* product is the second addend */,
1971                             false /* is_wide */, is_sub);
1972          ssa_mul_map.erase(map_it);
1973        }
1974        break;
1975      case Instruction::ADD_LONG:
1976      case Instruction::ADD_LONG_2ADDR:
1977        is_sub = false;
1978        FALLTHROUGH_INTENDED;
1979      case Instruction::SUB_LONG:
1980      case Instruction::SUB_LONG_2ADDR:
1981        if (!cu_->target64) {
1982          break;
1983        }
1984        if ((map_it = ssa_mul_map.find(mir->ssa_rep->uses[0])) != ssa_mul_map.end() && !is_sub) {
1985          // a*b+c
1986          CombineMultiplyAdd(map_it->second, mir, true /* product is the first addend */,
1987                             true /* is_wide */, false /* is_sub */);
1988          ssa_mul_map.erase(map_it);
1989        } else if ((map_it = ssa_mul_map.find(mir->ssa_rep->uses[2])) != ssa_mul_map.end()) {
1990          // c+a*b or c-a*b
1991          CombineMultiplyAdd(map_it->second, mir, false /* product is the second addend */,
1992                             true /* is_wide */, is_sub);
1993          ssa_mul_map.erase(map_it);
1994        }
1995        break;
1996      default:
1997        if (!ssa_mul_map.empty() && CanThrow(mir)) {
1998          // Should not combine multiply and add MIRs across potential exception.
1999          ssa_mul_map.clear();
2000        }
2001        break;
2002    }
2003
2004    // Exclude the case when an MIR writes a vreg which is previous candidate multiply MIR's uses.
2005    // It is because that current RA may allocate the same physical register to them. For this
2006    // kind of cases, the multiplier has been updated, we should not use updated value to the
2007    // multiply-add insn.
2008    if (ssa_mul_map.size() > 0) {
2009      for (auto it = ssa_mul_map.begin(); it != ssa_mul_map.end();) {
2010        MIR* mul = it->second;
2011        if (HasAntiDependency(mul, mir)) {
2012          it = ssa_mul_map.erase(it);
2013        } else {
2014          ++it;
2015        }
2016      }
2017    }
2018
2019    if (is_candidate_multiply &&
2020        (GetRawUseCount(mir->ssa_rep->defs[0]) == 1) && (mir->next != nullptr)) {
2021      ssa_mul_map.Put(mir->ssa_rep->defs[0], mir);
2022    }
2023  }
2024}
2025
2026}  // namespace art
2027