call_arm.cc revision 2c1ed456dcdb027d097825dd98dbe48c71599b6c
1/* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17/* This file contains codegen for the Thumb2 ISA. */ 18 19#include "arm_lir.h" 20#include "codegen_arm.h" 21#include "dex/quick/mir_to_lir-inl.h" 22#include "entrypoints/quick/quick_entrypoints.h" 23 24namespace art { 25 26/* 27 * The sparse table in the literal pool is an array of <key,displacement> 28 * pairs. For each set, we'll load them as a pair using ldmia. 29 * This means that the register number of the temp we use for the key 30 * must be lower than the reg for the displacement. 31 * 32 * The test loop will look something like: 33 * 34 * adr rBase, <table> 35 * ldr r_val, [rARM_SP, v_reg_off] 36 * mov r_idx, #table_size 37 * lp: 38 * ldmia rBase!, {r_key, r_disp} 39 * sub r_idx, #1 40 * cmp r_val, r_key 41 * ifeq 42 * add rARM_PC, r_disp ; This is the branch from which we compute displacement 43 * cbnz r_idx, lp 44 */ 45void ArmMir2Lir::GenSparseSwitch(MIR* mir, uint32_t table_offset, 46 RegLocation rl_src) { 47 const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset; 48 if (cu_->verbose) { 49 DumpSparseSwitchTable(table); 50 } 51 // Add the table to the list - we'll process it later 52 SwitchTable *tab_rec = 53 static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), ArenaAllocator::kAllocData)); 54 tab_rec->table = table; 55 tab_rec->vaddr = current_dalvik_offset_; 56 uint32_t size = table[1]; 57 tab_rec->targets = static_cast<LIR**>(arena_->Alloc(size * sizeof(LIR*), 58 ArenaAllocator::kAllocLIR)); 59 switch_tables_.Insert(tab_rec); 60 61 // Get the switch value 62 rl_src = LoadValue(rl_src, kCoreReg); 63 int rBase = AllocTemp(); 64 /* Allocate key and disp temps */ 65 int r_key = AllocTemp(); 66 int r_disp = AllocTemp(); 67 // Make sure r_key's register number is less than r_disp's number for ldmia 68 if (r_key > r_disp) { 69 int tmp = r_disp; 70 r_disp = r_key; 71 r_key = tmp; 72 } 73 // Materialize a pointer to the switch table 74 NewLIR3(kThumb2Adr, rBase, 0, WrapPointer(tab_rec)); 75 // Set up r_idx 76 int r_idx = AllocTemp(); 77 LoadConstant(r_idx, size); 78 // Establish loop branch target 79 LIR* target = NewLIR0(kPseudoTargetLabel); 80 // Load next key/disp 81 NewLIR2(kThumb2LdmiaWB, rBase, (1 << r_key) | (1 << r_disp)); 82 OpRegReg(kOpCmp, r_key, rl_src.reg.GetReg()); 83 // Go if match. NOTE: No instruction set switch here - must stay Thumb2 84 OpIT(kCondEq, ""); 85 LIR* switch_branch = NewLIR1(kThumb2AddPCR, r_disp); 86 tab_rec->anchor = switch_branch; 87 // Needs to use setflags encoding here 88 NewLIR3(kThumb2SubsRRI12, r_idx, r_idx, 1); 89 OpCondBranch(kCondNe, target); 90} 91 92 93void ArmMir2Lir::GenPackedSwitch(MIR* mir, uint32_t table_offset, 94 RegLocation rl_src) { 95 const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset; 96 if (cu_->verbose) { 97 DumpPackedSwitchTable(table); 98 } 99 // Add the table to the list - we'll process it later 100 SwitchTable *tab_rec = 101 static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), ArenaAllocator::kAllocData)); 102 tab_rec->table = table; 103 tab_rec->vaddr = current_dalvik_offset_; 104 uint32_t size = table[1]; 105 tab_rec->targets = 106 static_cast<LIR**>(arena_->Alloc(size * sizeof(LIR*), ArenaAllocator::kAllocLIR)); 107 switch_tables_.Insert(tab_rec); 108 109 // Get the switch value 110 rl_src = LoadValue(rl_src, kCoreReg); 111 int table_base = AllocTemp(); 112 // Materialize a pointer to the switch table 113 NewLIR3(kThumb2Adr, table_base, 0, WrapPointer(tab_rec)); 114 int low_key = s4FromSwitchData(&table[2]); 115 int keyReg; 116 // Remove the bias, if necessary 117 if (low_key == 0) { 118 keyReg = rl_src.reg.GetReg(); 119 } else { 120 keyReg = AllocTemp(); 121 OpRegRegImm(kOpSub, keyReg, rl_src.reg.GetReg(), low_key); 122 } 123 // Bounds check - if < 0 or >= size continue following switch 124 OpRegImm(kOpCmp, keyReg, size-1); 125 LIR* branch_over = OpCondBranch(kCondHi, NULL); 126 127 // Load the displacement from the switch table 128 int disp_reg = AllocTemp(); 129 LoadBaseIndexed(table_base, keyReg, disp_reg, 2, kWord); 130 131 // ..and go! NOTE: No instruction set switch here - must stay Thumb2 132 LIR* switch_branch = NewLIR1(kThumb2AddPCR, disp_reg); 133 tab_rec->anchor = switch_branch; 134 135 /* branch_over target here */ 136 LIR* target = NewLIR0(kPseudoTargetLabel); 137 branch_over->target = target; 138} 139 140/* 141 * Array data table format: 142 * ushort ident = 0x0300 magic value 143 * ushort width width of each element in the table 144 * uint size number of elements in the table 145 * ubyte data[size*width] table of data values (may contain a single-byte 146 * padding at the end) 147 * 148 * Total size is 4+(width * size + 1)/2 16-bit code units. 149 */ 150void ArmMir2Lir::GenFillArrayData(uint32_t table_offset, RegLocation rl_src) { 151 const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset; 152 // Add the table to the list - we'll process it later 153 FillArrayData *tab_rec = 154 static_cast<FillArrayData*>(arena_->Alloc(sizeof(FillArrayData), ArenaAllocator::kAllocData)); 155 tab_rec->table = table; 156 tab_rec->vaddr = current_dalvik_offset_; 157 uint16_t width = tab_rec->table[1]; 158 uint32_t size = tab_rec->table[2] | ((static_cast<uint32_t>(tab_rec->table[3])) << 16); 159 tab_rec->size = (size * width) + 8; 160 161 fill_array_data_.Insert(tab_rec); 162 163 // Making a call - use explicit registers 164 FlushAllRegs(); /* Everything to home location */ 165 LoadValueDirectFixed(rl_src, r0); 166 LoadWordDisp(rARM_SELF, QUICK_ENTRYPOINT_OFFSET(pHandleFillArrayData).Int32Value(), 167 rARM_LR); 168 // Materialize a pointer to the fill data image 169 NewLIR3(kThumb2Adr, r1, 0, WrapPointer(tab_rec)); 170 ClobberCallerSave(); 171 LIR* call_inst = OpReg(kOpBlx, rARM_LR); 172 MarkSafepointPC(call_inst); 173} 174 175/* 176 * Handle unlocked -> thin locked transition inline or else call out to quick entrypoint. For more 177 * details see monitor.cc. 178 */ 179void ArmMir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) { 180 FlushAllRegs(); 181 LoadValueDirectFixed(rl_src, r0); // Get obj 182 LockCallTemps(); // Prepare for explicit register usage 183 constexpr bool kArchVariantHasGoodBranchPredictor = false; // TODO: true if cortex-A15. 184 if (kArchVariantHasGoodBranchPredictor) { 185 LIR* null_check_branch; 186 if ((opt_flags & MIR_IGNORE_NULL_CHECK) && !(cu_->disable_opt & (1 << kNullCheckElimination))) { 187 null_check_branch = nullptr; // No null check. 188 } else { 189 // If the null-check fails its handled by the slow-path to reduce exception related meta-data. 190 null_check_branch = OpCmpImmBranch(kCondEq, r0, 0, NULL); 191 } 192 LoadWordDisp(rARM_SELF, Thread::ThinLockIdOffset().Int32Value(), r2); 193 NewLIR3(kThumb2Ldrex, r1, r0, mirror::Object::MonitorOffset().Int32Value() >> 2); 194 LIR* not_unlocked_branch = OpCmpImmBranch(kCondNe, r1, 0, NULL); 195 NewLIR4(kThumb2Strex, r1, r2, r0, mirror::Object::MonitorOffset().Int32Value() >> 2); 196 LIR* lock_success_branch = OpCmpImmBranch(kCondEq, r1, 0, NULL); 197 198 199 LIR* slow_path_target = NewLIR0(kPseudoTargetLabel); 200 not_unlocked_branch->target = slow_path_target; 201 if (null_check_branch != nullptr) { 202 null_check_branch->target = slow_path_target; 203 } 204 // TODO: move to a slow path. 205 // Go expensive route - artLockObjectFromCode(obj); 206 LoadWordDisp(rARM_SELF, QUICK_ENTRYPOINT_OFFSET(pLockObject).Int32Value(), rARM_LR); 207 ClobberCallerSave(); 208 LIR* call_inst = OpReg(kOpBlx, rARM_LR); 209 MarkSafepointPC(call_inst); 210 211 LIR* success_target = NewLIR0(kPseudoTargetLabel); 212 lock_success_branch->target = success_target; 213 GenMemBarrier(kLoadLoad); 214 } else { 215 // Explicit null-check as slow-path is entered using an IT. 216 GenNullCheck(rl_src.s_reg_low, r0, opt_flags); 217 LoadWordDisp(rARM_SELF, Thread::ThinLockIdOffset().Int32Value(), r2); 218 NewLIR3(kThumb2Ldrex, r1, r0, mirror::Object::MonitorOffset().Int32Value() >> 2); 219 OpRegImm(kOpCmp, r1, 0); 220 OpIT(kCondEq, ""); 221 NewLIR4(kThumb2Strex/*eq*/, r1, r2, r0, mirror::Object::MonitorOffset().Int32Value() >> 2); 222 OpRegImm(kOpCmp, r1, 0); 223 OpIT(kCondNe, "T"); 224 // Go expensive route - artLockObjectFromCode(self, obj); 225 LoadWordDisp/*ne*/(rARM_SELF, QUICK_ENTRYPOINT_OFFSET(pLockObject).Int32Value(), rARM_LR); 226 ClobberCallerSave(); 227 LIR* call_inst = OpReg(kOpBlx/*ne*/, rARM_LR); 228 MarkSafepointPC(call_inst); 229 GenMemBarrier(kLoadLoad); 230 } 231} 232 233/* 234 * Handle thin locked -> unlocked transition inline or else call out to quick entrypoint. For more 235 * details see monitor.cc. Note the code below doesn't use ldrex/strex as the code holds the lock 236 * and can only give away ownership if its suspended. 237 */ 238void ArmMir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) { 239 FlushAllRegs(); 240 LoadValueDirectFixed(rl_src, r0); // Get obj 241 LockCallTemps(); // Prepare for explicit register usage 242 LIR* null_check_branch; 243 LoadWordDisp(rARM_SELF, Thread::ThinLockIdOffset().Int32Value(), r2); 244 constexpr bool kArchVariantHasGoodBranchPredictor = false; // TODO: true if cortex-A15. 245 if (kArchVariantHasGoodBranchPredictor) { 246 if ((opt_flags & MIR_IGNORE_NULL_CHECK) && !(cu_->disable_opt & (1 << kNullCheckElimination))) { 247 null_check_branch = nullptr; // No null check. 248 } else { 249 // If the null-check fails its handled by the slow-path to reduce exception related meta-data. 250 null_check_branch = OpCmpImmBranch(kCondEq, r0, 0, NULL); 251 } 252 LoadWordDisp(r0, mirror::Object::MonitorOffset().Int32Value(), r1); 253 LoadConstantNoClobber(r3, 0); 254 LIR* slow_unlock_branch = OpCmpBranch(kCondNe, r1, r2, NULL); 255 StoreWordDisp(r0, mirror::Object::MonitorOffset().Int32Value(), r3); 256 LIR* unlock_success_branch = OpUnconditionalBranch(NULL); 257 258 LIR* slow_path_target = NewLIR0(kPseudoTargetLabel); 259 slow_unlock_branch->target = slow_path_target; 260 if (null_check_branch != nullptr) { 261 null_check_branch->target = slow_path_target; 262 } 263 // TODO: move to a slow path. 264 // Go expensive route - artUnlockObjectFromCode(obj); 265 LoadWordDisp(rARM_SELF, QUICK_ENTRYPOINT_OFFSET(pUnlockObject).Int32Value(), rARM_LR); 266 ClobberCallerSave(); 267 LIR* call_inst = OpReg(kOpBlx, rARM_LR); 268 MarkSafepointPC(call_inst); 269 270 LIR* success_target = NewLIR0(kPseudoTargetLabel); 271 unlock_success_branch->target = success_target; 272 GenMemBarrier(kStoreLoad); 273 } else { 274 // Explicit null-check as slow-path is entered using an IT. 275 GenNullCheck(rl_src.s_reg_low, r0, opt_flags); 276 LoadWordDisp(r0, mirror::Object::MonitorOffset().Int32Value(), r1); // Get lock 277 LoadWordDisp(rARM_SELF, Thread::ThinLockIdOffset().Int32Value(), r2); 278 LoadConstantNoClobber(r3, 0); 279 // Is lock unheld on lock or held by us (==thread_id) on unlock? 280 OpRegReg(kOpCmp, r1, r2); 281 OpIT(kCondEq, "EE"); 282 StoreWordDisp/*eq*/(r0, mirror::Object::MonitorOffset().Int32Value(), r3); 283 // Go expensive route - UnlockObjectFromCode(obj); 284 LoadWordDisp/*ne*/(rARM_SELF, QUICK_ENTRYPOINT_OFFSET(pUnlockObject).Int32Value(), rARM_LR); 285 ClobberCallerSave(); 286 LIR* call_inst = OpReg(kOpBlx/*ne*/, rARM_LR); 287 MarkSafepointPC(call_inst); 288 GenMemBarrier(kStoreLoad); 289 } 290} 291 292void ArmMir2Lir::GenMoveException(RegLocation rl_dest) { 293 int ex_offset = Thread::ExceptionOffset().Int32Value(); 294 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); 295 int reset_reg = AllocTemp(); 296 LoadWordDisp(rARM_SELF, ex_offset, rl_result.reg.GetReg()); 297 LoadConstant(reset_reg, 0); 298 StoreWordDisp(rARM_SELF, ex_offset, reset_reg); 299 FreeTemp(reset_reg); 300 StoreValue(rl_dest, rl_result); 301} 302 303/* 304 * Mark garbage collection card. Skip if the value we're storing is null. 305 */ 306void ArmMir2Lir::MarkGCCard(int val_reg, int tgt_addr_reg) { 307 int reg_card_base = AllocTemp(); 308 int reg_card_no = AllocTemp(); 309 LIR* branch_over = OpCmpImmBranch(kCondEq, val_reg, 0, NULL); 310 LoadWordDisp(rARM_SELF, Thread::CardTableOffset().Int32Value(), reg_card_base); 311 OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift); 312 StoreBaseIndexed(reg_card_base, reg_card_no, reg_card_base, 0, 313 kUnsignedByte); 314 LIR* target = NewLIR0(kPseudoTargetLabel); 315 branch_over->target = target; 316 FreeTemp(reg_card_base); 317 FreeTemp(reg_card_no); 318} 319 320void ArmMir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) { 321 int spill_count = num_core_spills_ + num_fp_spills_; 322 /* 323 * On entry, r0, r1, r2 & r3 are live. Let the register allocation 324 * mechanism know so it doesn't try to use any of them when 325 * expanding the frame or flushing. This leaves the utility 326 * code with a single temp: r12. This should be enough. 327 */ 328 LockTemp(r0); 329 LockTemp(r1); 330 LockTemp(r2); 331 LockTemp(r3); 332 333 /* 334 * We can safely skip the stack overflow check if we're 335 * a leaf *and* our frame size < fudge factor. 336 */ 337 bool skip_overflow_check = (mir_graph_->MethodIsLeaf() && 338 (static_cast<size_t>(frame_size_) < 339 Thread::kStackOverflowReservedBytes)); 340 NewLIR0(kPseudoMethodEntry); 341 if (!skip_overflow_check) { 342 /* Load stack limit */ 343 LoadWordDisp(rARM_SELF, Thread::StackEndOffset().Int32Value(), r12); 344 } 345 /* Spill core callee saves */ 346 NewLIR1(kThumb2Push, core_spill_mask_); 347 /* Need to spill any FP regs? */ 348 if (num_fp_spills_) { 349 /* 350 * NOTE: fp spills are a little different from core spills in that 351 * they are pushed as a contiguous block. When promoting from 352 * the fp set, we must allocate all singles from s16..highest-promoted 353 */ 354 NewLIR1(kThumb2VPushCS, num_fp_spills_); 355 } 356 if (!skip_overflow_check) { 357 OpRegRegImm(kOpSub, rARM_LR, rARM_SP, frame_size_ - (spill_count * 4)); 358 GenRegRegCheck(kCondUlt, rARM_LR, r12, kThrowStackOverflow); 359 OpRegCopy(rARM_SP, rARM_LR); // Establish stack 360 } else { 361 OpRegImm(kOpSub, rARM_SP, frame_size_ - (spill_count * 4)); 362 } 363 364 FlushIns(ArgLocs, rl_method); 365 366 FreeTemp(r0); 367 FreeTemp(r1); 368 FreeTemp(r2); 369 FreeTemp(r3); 370} 371 372void ArmMir2Lir::GenExitSequence() { 373 int spill_count = num_core_spills_ + num_fp_spills_; 374 /* 375 * In the exit path, r0/r1 are live - make sure they aren't 376 * allocated by the register utilities as temps. 377 */ 378 LockTemp(r0); 379 LockTemp(r1); 380 381 NewLIR0(kPseudoMethodExit); 382 OpRegImm(kOpAdd, rARM_SP, frame_size_ - (spill_count * 4)); 383 /* Need to restore any FP callee saves? */ 384 if (num_fp_spills_) { 385 NewLIR1(kThumb2VPopCS, num_fp_spills_); 386 } 387 if (core_spill_mask_ & (1 << rARM_LR)) { 388 /* Unspill rARM_LR to rARM_PC */ 389 core_spill_mask_ &= ~(1 << rARM_LR); 390 core_spill_mask_ |= (1 << rARM_PC); 391 } 392 NewLIR1(kThumb2Pop, core_spill_mask_); 393 if (!(core_spill_mask_ & (1 << rARM_PC))) { 394 /* We didn't pop to rARM_PC, so must do a bv rARM_LR */ 395 NewLIR1(kThumbBx, rARM_LR); 396 } 397} 398 399void ArmMir2Lir::GenSpecialExitSequence() { 400 NewLIR1(kThumbBx, rARM_LR); 401} 402 403} // namespace art 404