1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "mir_to_lir-inl.h"
18
19#include <functional>
20
21#include "arch/arm/instruction_set_features_arm.h"
22#include "base/bit_utils.h"
23#include "base/macros.h"
24#include "dex/compiler_ir.h"
25#include "dex/mir_graph.h"
26#include "dex/quick/arm/arm_lir.h"
27#include "driver/compiler_driver.h"
28#include "driver/compiler_options.h"
29#include "entrypoints/quick/quick_entrypoints.h"
30#include "mirror/array.h"
31#include "mirror/object_array-inl.h"
32#include "mirror/object-inl.h"
33#include "mirror/object_reference.h"
34#include "utils/dex_cache_arrays_layout-inl.h"
35#include "verifier/method_verifier.h"
36
37namespace art {
38
39// Shortcuts to repeatedly used long types.
40typedef mirror::ObjectArray<mirror::Object> ObjArray;
41typedef mirror::ObjectArray<mirror::Class> ClassArray;
42
43/*
44 * This source files contains "gen" codegen routines that should
45 * be applicable to most targets.  Only mid-level support utilities
46 * and "op" calls may be used here.
47 */
48
49ALWAYS_INLINE static inline bool ForceSlowFieldPath(CompilationUnit* cu) {
50  return (cu->enable_debug & (1 << kDebugSlowFieldPath)) != 0;
51}
52
53ALWAYS_INLINE static inline bool ForceSlowStringPath(CompilationUnit* cu) {
54  return (cu->enable_debug & (1 << kDebugSlowStringPath)) != 0;
55}
56
57ALWAYS_INLINE static inline bool ForceSlowTypePath(CompilationUnit* cu) {
58  return (cu->enable_debug & (1 << kDebugSlowTypePath)) != 0;
59}
60
61void Mir2Lir::GenIfNullUseHelperImm(RegStorage r_result, QuickEntrypointEnum trampoline, int imm) {
62  class CallHelperImmMethodSlowPath : public LIRSlowPath {
63   public:
64    CallHelperImmMethodSlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont,
65                                QuickEntrypointEnum trampoline_in, int imm_in,
66                                RegStorage r_result_in)
67        : LIRSlowPath(m2l, fromfast, cont), trampoline_(trampoline_in),
68          imm_(imm_in), r_result_(r_result_in) {
69    }
70
71    void Compile() {
72      GenerateTargetLabel();
73      m2l_->CallRuntimeHelperImm(trampoline_, imm_, true);
74      m2l_->OpRegCopy(r_result_,  m2l_->TargetReg(kRet0, kRef));
75      m2l_->OpUnconditionalBranch(cont_);
76    }
77
78   private:
79    QuickEntrypointEnum trampoline_;
80    const int imm_;
81    const RegStorage r_result_;
82  };
83
84  LIR* branch = OpCmpImmBranch(kCondEq, r_result, 0, nullptr);
85  LIR* cont = NewLIR0(kPseudoTargetLabel);
86
87  AddSlowPath(new (arena_) CallHelperImmMethodSlowPath(this, branch, cont, trampoline, imm,
88                                                       r_result));
89}
90
91RegStorage Mir2Lir::GenGetOtherTypeForSgetSput(const MirSFieldLoweringInfo& field_info,
92                                               int opt_flags) {
93  DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
94  // May do runtime call so everything to home locations.
95  FlushAllRegs();
96  RegStorage r_base = TargetReg(kArg0, kRef);
97  LockTemp(r_base);
98  if (CanUseOpPcRelDexCacheArrayLoad()) {
99    uint32_t offset = dex_cache_arrays_layout_.TypeOffset(field_info.StorageIndex());
100    OpPcRelDexCacheArrayLoad(cu_->dex_file, offset, r_base, false);
101  } else {
102    // Using fixed register to sync with possible call to runtime support.
103    RegStorage r_method = LoadCurrMethodWithHint(r_base);
104    LoadRefDisp(r_method, ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base,
105                kNotVolatile);
106    int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value();
107    LoadRefDisp(r_base, offset_of_field, r_base, kNotVolatile);
108  }
109  // r_base now points at static storage (Class*) or null if the type is not yet resolved.
110  LIR* unresolved_branch = nullptr;
111  if (!field_info.IsClassInDexCache() && (opt_flags & MIR_CLASS_IS_IN_DEX_CACHE) == 0) {
112    // Check if r_base is null.
113    unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, nullptr);
114  }
115  LIR* uninit_branch = nullptr;
116  if (!field_info.IsClassInitialized() && (opt_flags & MIR_CLASS_IS_INITIALIZED) == 0) {
117    // Check if r_base is not yet initialized class.
118    RegStorage r_tmp = TargetReg(kArg2, kNotWide);
119    LockTemp(r_tmp);
120    uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
121                                      mirror::Class::StatusOffset().Int32Value(),
122                                      mirror::Class::kStatusInitialized, nullptr, nullptr);
123    FreeTemp(r_tmp);
124  }
125  if (unresolved_branch != nullptr || uninit_branch != nullptr) {
126    //
127    // Slow path to ensure a class is initialized for sget/sput.
128    //
129    class StaticFieldSlowPath : public Mir2Lir::LIRSlowPath {
130     public:
131      // There are up to two branches to the static field slow path, the "unresolved" when the type
132      // entry in the dex cache is null, and the "uninit" when the class is not yet initialized.
133      // At least one will be non-null here, otherwise we wouldn't generate the slow path.
134      StaticFieldSlowPath(Mir2Lir* m2l, LIR* unresolved, LIR* uninit, LIR* cont, int storage_index,
135                          RegStorage r_base_in)
136          : LIRSlowPath(m2l, unresolved != nullptr ? unresolved : uninit, cont),
137            second_branch_(unresolved != nullptr ? uninit : nullptr),
138            storage_index_(storage_index), r_base_(r_base_in) {
139      }
140
141      void Compile() {
142        LIR* target = GenerateTargetLabel();
143        if (second_branch_ != nullptr) {
144          second_branch_->target = target;
145        }
146        m2l_->CallRuntimeHelperImm(kQuickInitializeStaticStorage, storage_index_, true);
147        // Copy helper's result into r_base, a no-op on all but MIPS.
148        m2l_->OpRegCopy(r_base_,  m2l_->TargetReg(kRet0, kRef));
149
150        m2l_->OpUnconditionalBranch(cont_);
151      }
152
153     private:
154      // Second branch to the slow path, or null if there's only one branch.
155      LIR* const second_branch_;
156
157      const int storage_index_;
158      const RegStorage r_base_;
159    };
160
161    // The slow path is invoked if the r_base is null or the class pointed
162    // to by it is not initialized.
163    LIR* cont = NewLIR0(kPseudoTargetLabel);
164    AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont,
165                                                 field_info.StorageIndex(), r_base));
166  }
167  return r_base;
168}
169
170/*
171 * Generate a kPseudoBarrier marker to indicate the boundary of special
172 * blocks.
173 */
174void Mir2Lir::GenBarrier() {
175  LIR* barrier = NewLIR0(kPseudoBarrier);
176  /* Mark all resources as being clobbered */
177  DCHECK(!barrier->flags.use_def_invalid);
178  barrier->u.m.def_mask = &kEncodeAll;
179}
180
181void Mir2Lir::GenDivZeroException() {
182  LIR* branch = OpUnconditionalBranch(nullptr);
183  AddDivZeroCheckSlowPath(branch);
184}
185
186void Mir2Lir::GenDivZeroCheck(ConditionCode c_code) {
187  LIR* branch = OpCondBranch(c_code, nullptr);
188  AddDivZeroCheckSlowPath(branch);
189}
190
191void Mir2Lir::GenDivZeroCheck(RegStorage reg) {
192  LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
193  AddDivZeroCheckSlowPath(branch);
194}
195
196void Mir2Lir::AddDivZeroCheckSlowPath(LIR* branch) {
197  class DivZeroCheckSlowPath : public Mir2Lir::LIRSlowPath {
198   public:
199    DivZeroCheckSlowPath(Mir2Lir* m2l, LIR* branch_in)
200        : LIRSlowPath(m2l, branch_in) {
201    }
202
203    void Compile() OVERRIDE {
204      m2l_->ResetRegPool();
205      m2l_->ResetDefTracking();
206      GenerateTargetLabel(kPseudoThrowTarget);
207      m2l_->CallRuntimeHelper(kQuickThrowDivZero, true);
208    }
209  };
210
211  AddSlowPath(new (arena_) DivZeroCheckSlowPath(this, branch));
212}
213
214void Mir2Lir::GenArrayBoundsCheck(RegStorage index, RegStorage length) {
215  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
216   public:
217    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch_in, RegStorage index_in,
218                             RegStorage length_in)
219        : LIRSlowPath(m2l, branch_in),
220          index_(index_in), length_(length_in) {
221    }
222
223    void Compile() OVERRIDE {
224      m2l_->ResetRegPool();
225      m2l_->ResetDefTracking();
226      GenerateTargetLabel(kPseudoThrowTarget);
227      m2l_->CallRuntimeHelperRegReg(kQuickThrowArrayBounds, index_, length_, true);
228    }
229
230   private:
231    const RegStorage index_;
232    const RegStorage length_;
233  };
234
235  LIR* branch = OpCmpBranch(kCondUge, index, length, nullptr);
236  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
237}
238
239void Mir2Lir::GenArrayBoundsCheck(int index, RegStorage length) {
240  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
241   public:
242    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch_in, int index_in, RegStorage length_in)
243        : LIRSlowPath(m2l, branch_in),
244          index_(index_in), length_(length_in) {
245    }
246
247    void Compile() OVERRIDE {
248      m2l_->ResetRegPool();
249      m2l_->ResetDefTracking();
250      GenerateTargetLabel(kPseudoThrowTarget);
251
252      RegStorage arg1_32 = m2l_->TargetReg(kArg1, kNotWide);
253      RegStorage arg0_32 = m2l_->TargetReg(kArg0, kNotWide);
254
255      m2l_->OpRegCopy(arg1_32, length_);
256      m2l_->LoadConstant(arg0_32, index_);
257      m2l_->CallRuntimeHelperRegReg(kQuickThrowArrayBounds, arg0_32, arg1_32, true);
258    }
259
260   private:
261    const int32_t index_;
262    const RegStorage length_;
263  };
264
265  LIR* branch = OpCmpImmBranch(kCondLs, length, index, nullptr);
266  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
267}
268
269LIR* Mir2Lir::GenNullCheck(RegStorage reg) {
270  class NullCheckSlowPath : public Mir2Lir::LIRSlowPath {
271   public:
272    NullCheckSlowPath(Mir2Lir* m2l, LIR* branch)
273        : LIRSlowPath(m2l, branch) {
274    }
275
276    void Compile() OVERRIDE {
277      m2l_->ResetRegPool();
278      m2l_->ResetDefTracking();
279      GenerateTargetLabel(kPseudoThrowTarget);
280      m2l_->CallRuntimeHelper(kQuickThrowNullPointer, true);
281    }
282  };
283
284  LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
285  AddSlowPath(new (arena_) NullCheckSlowPath(this, branch));
286  return branch;
287}
288
289/* Perform null-check on a register.  */
290LIR* Mir2Lir::GenNullCheck(RegStorage m_reg, int opt_flags) {
291  if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
292    return GenExplicitNullCheck(m_reg, opt_flags);
293  }
294  // If null check has not been eliminated, reset redundant store tracking.
295  if ((opt_flags & MIR_IGNORE_NULL_CHECK) == 0) {
296    ResetDefTracking();
297  }
298  return nullptr;
299}
300
301/* Perform an explicit null-check on a register.  */
302LIR* Mir2Lir::GenExplicitNullCheck(RegStorage m_reg, int opt_flags) {
303  if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
304    return nullptr;
305  }
306  return GenNullCheck(m_reg);
307}
308
309void Mir2Lir::MarkPossibleNullPointerException(int opt_flags) {
310  if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
311    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
312      return;
313    }
314    // Insert after last instruction.
315    MarkSafepointPC(last_lir_insn_);
316  }
317}
318
319void Mir2Lir::MarkPossibleNullPointerExceptionAfter(int opt_flags, LIR* after) {
320  if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
321    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
322      return;
323    }
324    MarkSafepointPCAfter(after);
325  }
326}
327
328void Mir2Lir::MarkPossibleStackOverflowException() {
329  if (cu_->compiler_driver->GetCompilerOptions().GetImplicitStackOverflowChecks()) {
330    MarkSafepointPC(last_lir_insn_);
331  }
332}
333
334void Mir2Lir::ForceImplicitNullCheck(RegStorage reg, int opt_flags) {
335  if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
336    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
337      return;
338    }
339    // Force an implicit null check by performing a memory operation (load) from the given
340    // register with offset 0.  This will cause a signal if the register contains 0 (null).
341    RegStorage tmp = AllocTemp();
342    // TODO: for Mips, would be best to use rZERO as the bogus register target.
343    LIR* load = Load32Disp(reg, 0, tmp);
344    FreeTemp(tmp);
345    MarkSafepointPC(load);
346  }
347}
348
349void Mir2Lir::GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
350                                  RegLocation rl_src2, LIR* taken) {
351  ConditionCode cond;
352  RegisterClass reg_class = (rl_src1.ref || rl_src2.ref) ? kRefReg : kCoreReg;
353  switch (opcode) {
354    case Instruction::IF_EQ:
355      cond = kCondEq;
356      break;
357    case Instruction::IF_NE:
358      cond = kCondNe;
359      break;
360    case Instruction::IF_LT:
361      cond = kCondLt;
362      break;
363    case Instruction::IF_GE:
364      cond = kCondGe;
365      break;
366    case Instruction::IF_GT:
367      cond = kCondGt;
368      break;
369    case Instruction::IF_LE:
370      cond = kCondLe;
371      break;
372    default:
373      cond = static_cast<ConditionCode>(0);
374      LOG(FATAL) << "Unexpected opcode " << opcode;
375  }
376
377  // Normalize such that if either operand is constant, src2 will be constant
378  if (rl_src1.is_const) {
379    RegLocation rl_temp = rl_src1;
380    rl_src1 = rl_src2;
381    rl_src2 = rl_temp;
382    cond = FlipComparisonOrder(cond);
383  }
384
385  rl_src1 = LoadValue(rl_src1, reg_class);
386  // Is this really an immediate comparison?
387  if (rl_src2.is_const) {
388    // If it's already live in a register or not easily materialized, just keep going
389    RegLocation rl_temp = UpdateLoc(rl_src2);
390    int32_t constant_value = mir_graph_->ConstantValue(rl_src2);
391    if ((rl_temp.location == kLocDalvikFrame) &&
392        InexpensiveConstantInt(constant_value, opcode)) {
393      // OK - convert this to a compare immediate and branch
394      OpCmpImmBranch(cond, rl_src1.reg, mir_graph_->ConstantValue(rl_src2), taken);
395      return;
396    }
397
398    // It's also commonly more efficient to have a test against zero with Eq/Ne. This is not worse
399    // for x86, and allows a cbz/cbnz for Arm and Mips. At the same time, it works around a register
400    // mismatch for 64b systems, where a reference is compared against null, as dex bytecode uses
401    // the 32b literal 0 for null.
402    if (constant_value == 0 && (cond == kCondEq || cond == kCondNe)) {
403      // Use the OpCmpImmBranch and ignore the value in the register.
404      OpCmpImmBranch(cond, rl_src1.reg, 0, taken);
405      return;
406    }
407  }
408
409  rl_src2 = LoadValue(rl_src2, reg_class);
410  OpCmpBranch(cond, rl_src1.reg, rl_src2.reg, taken);
411}
412
413void Mir2Lir::GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, LIR* taken) {
414  ConditionCode cond;
415  RegisterClass reg_class = rl_src.ref ? kRefReg : kCoreReg;
416  rl_src = LoadValue(rl_src, reg_class);
417  switch (opcode) {
418    case Instruction::IF_EQZ:
419      cond = kCondEq;
420      break;
421    case Instruction::IF_NEZ:
422      cond = kCondNe;
423      break;
424    case Instruction::IF_LTZ:
425      cond = kCondLt;
426      break;
427    case Instruction::IF_GEZ:
428      cond = kCondGe;
429      break;
430    case Instruction::IF_GTZ:
431      cond = kCondGt;
432      break;
433    case Instruction::IF_LEZ:
434      cond = kCondLe;
435      break;
436    default:
437      cond = static_cast<ConditionCode>(0);
438      LOG(FATAL) << "Unexpected opcode " << opcode;
439  }
440  OpCmpImmBranch(cond, rl_src.reg, 0, taken);
441}
442
443void Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) {
444  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
445  if (rl_src.location == kLocPhysReg) {
446    OpRegCopy(rl_result.reg, rl_src.reg);
447  } else {
448    LoadValueDirect(rl_src, rl_result.reg.GetLow());
449  }
450  OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_result.reg.GetLow(), 31);
451  StoreValueWide(rl_dest, rl_result);
452}
453
454void Mir2Lir::GenLongToInt(RegLocation rl_dest, RegLocation rl_src) {
455  rl_src = UpdateLocWide(rl_src);
456  rl_src = NarrowRegLoc(rl_src);
457  StoreValue(rl_dest, rl_src);
458}
459
460void Mir2Lir::GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
461                              RegLocation rl_src) {
462  rl_src = LoadValue(rl_src, kCoreReg);
463  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
464  OpKind op = kOpInvalid;
465  switch (opcode) {
466    case Instruction::INT_TO_BYTE:
467      op = kOp2Byte;
468      break;
469    case Instruction::INT_TO_SHORT:
470       op = kOp2Short;
471       break;
472    case Instruction::INT_TO_CHAR:
473       op = kOp2Char;
474       break;
475    default:
476      LOG(ERROR) << "Bad int conversion type";
477  }
478  OpRegReg(op, rl_result.reg, rl_src.reg);
479  StoreValue(rl_dest, rl_result);
480}
481
482/*
483 * Let helper function take care of everything.  Will call
484 * Array::AllocFromCode(type_idx, method, count);
485 * Note: AllocFromCode will handle checks for errNegativeArraySize.
486 */
487void Mir2Lir::GenNewArray(uint32_t type_idx, RegLocation rl_dest,
488                          RegLocation rl_src) {
489  FlushAllRegs();  /* Everything to home location */
490  const DexFile* dex_file = cu_->dex_file;
491  CompilerDriver* driver = cu_->compiler_driver;
492  if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *dex_file, type_idx)) {
493    bool is_type_initialized;  // Ignored as an array does not have an initializer.
494    bool use_direct_type_ptr;
495    uintptr_t direct_type_ptr;
496    bool is_finalizable;
497    if (kEmbedClassInCode &&
498        driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr,
499                                   &direct_type_ptr, &is_finalizable)) {
500      // The fast path.
501      if (!use_direct_type_ptr) {
502        LoadClassType(*dex_file, type_idx, kArg0);
503        CallRuntimeHelperRegRegLocationMethod(kQuickAllocArrayResolved, TargetReg(kArg0, kNotWide),
504                                              rl_src, true);
505      } else {
506        // Use the direct pointer.
507        CallRuntimeHelperImmRegLocationMethod(kQuickAllocArrayResolved, direct_type_ptr, rl_src,
508                                              true);
509      }
510    } else {
511      // The slow path.
512      CallRuntimeHelperImmRegLocationMethod(kQuickAllocArray, type_idx, rl_src, true);
513    }
514  } else {
515    CallRuntimeHelperImmRegLocationMethod(kQuickAllocArrayWithAccessCheck, type_idx, rl_src, true);
516  }
517  StoreValue(rl_dest, GetReturn(kRefReg));
518}
519
520/*
521 * Similar to GenNewArray, but with post-allocation initialization.
522 * Verifier guarantees we're dealing with an array class.  Current
523 * code throws runtime exception "bad Filled array req" for 'D' and 'J'.
524 * Current code also throws internal unimp if not 'L', '[' or 'I'.
525 */
526void Mir2Lir::GenFilledNewArray(CallInfo* info) {
527  size_t elems = info->num_arg_words;
528  int type_idx = info->index;
529  FlushAllRegs();  /* Everything to home location */
530  QuickEntrypointEnum target;
531  if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file,
532                                                       type_idx)) {
533    target = kQuickCheckAndAllocArray;
534  } else {
535    target = kQuickCheckAndAllocArrayWithAccessCheck;
536  }
537  CallRuntimeHelperImmImmMethod(target, type_idx, elems, true);
538  FreeTemp(TargetReg(kArg2, kNotWide));
539  FreeTemp(TargetReg(kArg1, kNotWide));
540  /*
541   * NOTE: the implicit target for Instruction::FILLED_NEW_ARRAY is the
542   * return region.  Because AllocFromCode placed the new array
543   * in kRet0, we'll just lock it into place.  When debugger support is
544   * added, it may be necessary to additionally copy all return
545   * values to a home location in thread-local storage
546   */
547  RegStorage ref_reg = TargetReg(kRet0, kRef);
548  LockTemp(ref_reg);
549
550  // TODO: use the correct component size, currently all supported types
551  // share array alignment with ints (see comment at head of function)
552  size_t component_size = sizeof(int32_t);
553
554  if (elems > 5) {
555    DCHECK(info->is_range);  // Non-range insn can't encode more than 5 elems.
556    /*
557     * Bit of ugliness here.  We're going generate a mem copy loop
558     * on the register range, but it is possible that some regs
559     * in the range have been promoted.  This is unlikely, but
560     * before generating the copy, we'll just force a flush
561     * of any regs in the source range that have been promoted to
562     * home location.
563     */
564    for (size_t i = 0; i < elems; i++) {
565      RegLocation loc = UpdateLoc(info->args[i]);
566      if (loc.location == kLocPhysReg) {
567        ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
568        if (loc.ref) {
569          StoreRefDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, kNotVolatile);
570        } else {
571          Store32Disp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg);
572        }
573      }
574    }
575    /*
576     * TUNING note: generated code here could be much improved, but
577     * this is an uncommon operation and isn't especially performance
578     * critical.
579     */
580    // This is addressing the stack, which may be out of the 4G area.
581    RegStorage r_src = AllocTempRef();
582    RegStorage r_dst = AllocTempRef();
583    RegStorage r_idx = AllocTempRef();  // Not really a reference, but match src/dst.
584    RegStorage r_val;
585    switch (cu_->instruction_set) {
586      case kThumb2:
587      case kArm64:
588        r_val = TargetReg(kLr, kNotWide);
589        break;
590      case kX86:
591      case kX86_64:
592        FreeTemp(ref_reg);
593        r_val = AllocTemp();
594        break;
595      case kMips:
596      case kMips64:
597        r_val = AllocTemp();
598        break;
599      default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set;
600    }
601    // Set up source pointer
602    RegLocation rl_first = info->args[0];
603    OpRegRegImm(kOpAdd, r_src, TargetPtrReg(kSp), SRegOffset(rl_first.s_reg_low));
604    // Set up the target pointer
605    OpRegRegImm(kOpAdd, r_dst, ref_reg,
606                mirror::Array::DataOffset(component_size).Int32Value());
607    // Set up the loop counter (known to be > 0)
608    LoadConstant(r_idx, static_cast<int>(elems - 1));
609    // Generate the copy loop.  Going backwards for convenience
610    LIR* loop_head_target = NewLIR0(kPseudoTargetLabel);
611    // Copy next element
612    {
613      ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
614      LoadBaseIndexed(r_src, r_idx, r_val, 2, k32);
615      // NOTE: No dalvik register annotation, local optimizations will be stopped
616      // by the loop boundaries.
617    }
618    StoreBaseIndexed(r_dst, r_idx, r_val, 2, k32);
619    FreeTemp(r_val);
620    OpDecAndBranch(kCondGe, r_idx, loop_head_target);
621    if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
622      // Restore the target pointer
623      OpRegRegImm(kOpAdd, ref_reg, r_dst,
624                  -mirror::Array::DataOffset(component_size).Int32Value());
625    }
626    FreeTemp(r_idx);
627    FreeTemp(r_dst);
628    FreeTemp(r_src);
629  } else {
630    DCHECK_LE(elems, 5u);  // Usually but not necessarily non-range.
631    // TUNING: interleave
632    for (size_t i = 0; i < elems; i++) {
633      RegLocation rl_arg;
634      if (info->args[i].ref) {
635        rl_arg = LoadValue(info->args[i], kRefReg);
636        StoreRefDisp(ref_reg,
637                    mirror::Array::DataOffset(component_size).Int32Value() + i * 4, rl_arg.reg,
638                    kNotVolatile);
639      } else {
640        rl_arg = LoadValue(info->args[i], kCoreReg);
641        Store32Disp(ref_reg,
642                    mirror::Array::DataOffset(component_size).Int32Value() + i * 4, rl_arg.reg);
643      }
644      // If the LoadValue caused a temp to be allocated, free it
645      if (IsTemp(rl_arg.reg)) {
646        FreeTemp(rl_arg.reg);
647      }
648    }
649  }
650  if (elems != 0 && info->args[0].ref) {
651    // If there is at least one potentially non-null value, unconditionally mark the GC card.
652    for (size_t i = 0; i < elems; i++) {
653      if (!mir_graph_->IsConstantNullRef(info->args[i])) {
654        UnconditionallyMarkGCCard(ref_reg);
655        break;
656      }
657    }
658  }
659  if (info->result.location != kLocInvalid) {
660    StoreValue(info->result, GetReturn(kRefReg));
661  }
662}
663
664/*
665 * Array data table format:
666 *  ushort ident = 0x0300   magic value
667 *  ushort width            width of each element in the table
668 *  uint   size             number of elements in the table
669 *  ubyte  data[size*width] table of data values (may contain a single-byte
670 *                          padding at the end)
671 *
672 * Total size is 4+(width * size + 1)/2 16-bit code units.
673 */
674void Mir2Lir::GenFillArrayData(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
675  if (kIsDebugBuild) {
676    const uint16_t* table = mir_graph_->GetTable(mir, table_offset);
677    const Instruction::ArrayDataPayload* payload =
678        reinterpret_cast<const Instruction::ArrayDataPayload*>(table);
679    CHECK_EQ(payload->ident, static_cast<uint16_t>(Instruction::kArrayDataSignature));
680  }
681  uint32_t table_offset_from_start = mir->offset + static_cast<int32_t>(table_offset);
682  CallRuntimeHelperImmRegLocation(kQuickHandleFillArrayData, table_offset_from_start, rl_src, true);
683}
684
685void Mir2Lir::GenSput(MIR* mir, RegLocation rl_src, OpSize size) {
686  const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
687  DCHECK_EQ(SPutMemAccessType(mir->dalvikInsn.opcode), field_info.MemAccessType());
688  cu_->compiler_driver->ProcessedStaticField(field_info.FastPut(), field_info.IsReferrersClass());
689  if (!ForceSlowFieldPath(cu_) && field_info.FastPut()) {
690    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
691    RegStorage r_base;
692    if (field_info.IsReferrersClass()) {
693      // Fast path, static storage base is this method's class
694      r_base = AllocTempRef();
695      RegStorage r_method = LoadCurrMethodWithHint(r_base);
696      LoadRefDisp(r_method, ArtMethod::DeclaringClassOffset().Int32Value(), r_base,
697                  kNotVolatile);
698    } else {
699      // Medium path, static storage base in a different class which requires checks that the other
700      // class is initialized.
701      r_base = GenGetOtherTypeForSgetSput(field_info, mir->optimization_flags);
702      if (!field_info.IsClassInitialized() &&
703          (mir->optimization_flags & MIR_CLASS_IS_INITIALIZED) == 0) {
704        // Ensure load of status and store of value don't re-order.
705        // TODO: Presumably the actual value store is control-dependent on the status load,
706        // and will thus not be reordered in any case, since stores are never speculated.
707        // Does later code "know" that the class is now initialized?  If so, we still
708        // need the barrier to guard later static loads.
709        GenMemBarrier(kLoadAny);
710      }
711    }
712    // rBase now holds static storage base
713    RegisterClass reg_class = RegClassForFieldLoadStore(size, field_info.IsVolatile());
714    if (IsWide(size)) {
715      rl_src = LoadValueWide(rl_src, reg_class);
716    } else {
717      rl_src = LoadValue(rl_src, reg_class);
718    }
719    if (IsRef(size)) {
720      StoreRefDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg,
721                   field_info.IsVolatile() ? kVolatile : kNotVolatile);
722    } else {
723      StoreBaseDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg, size,
724                    field_info.IsVolatile() ? kVolatile : kNotVolatile);
725    }
726    if (IsRef(size) && !mir_graph_->IsConstantNullRef(rl_src)) {
727      MarkGCCard(mir->optimization_flags, rl_src.reg, r_base);
728    }
729    FreeTemp(r_base);
730  } else {
731    FlushAllRegs();  // Everything to home locations
732    QuickEntrypointEnum target;
733    switch (size) {
734      case kReference:
735        target = kQuickSetObjStatic;
736        break;
737      case k64:
738      case kDouble:
739        target = kQuickSet64Static;
740        break;
741      case k32:
742      case kSingle:
743        target = kQuickSet32Static;
744        break;
745      case kSignedHalf:
746      case kUnsignedHalf:
747        target = kQuickSet16Static;
748        break;
749      case kSignedByte:
750      case kUnsignedByte:
751        target = kQuickSet8Static;
752        break;
753      case kWord:  // Intentional fallthrough.
754      default:
755        LOG(FATAL) << "Can't determine entrypoint for: " << size;
756        target = kQuickSet32Static;
757    }
758    CallRuntimeHelperImmRegLocation(target, field_info.FieldIndex(), rl_src, true);
759  }
760}
761
762void Mir2Lir::GenSget(MIR* mir, RegLocation rl_dest, OpSize size, Primitive::Type type) {
763  const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
764  DCHECK_EQ(SGetMemAccessType(mir->dalvikInsn.opcode), field_info.MemAccessType());
765  cu_->compiler_driver->ProcessedStaticField(field_info.FastGet(), field_info.IsReferrersClass());
766
767  if (!ForceSlowFieldPath(cu_) && field_info.FastGet()) {
768    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
769    RegStorage r_base;
770    if (field_info.IsReferrersClass()) {
771      // Fast path, static storage base is this method's class
772      r_base = AllocTempRef();
773      RegStorage r_method = LoadCurrMethodWithHint(r_base);
774      LoadRefDisp(r_method, ArtMethod::DeclaringClassOffset().Int32Value(), r_base,
775                  kNotVolatile);
776    } else {
777      // Medium path, static storage base in a different class which requires checks that the other
778      // class is initialized
779      r_base = GenGetOtherTypeForSgetSput(field_info, mir->optimization_flags);
780      if (!field_info.IsClassInitialized() &&
781          (mir->optimization_flags & MIR_CLASS_IS_INITIALIZED) == 0) {
782        // Ensure load of status and load of value don't re-order.
783        GenMemBarrier(kLoadAny);
784      }
785    }
786    // r_base now holds static storage base
787    RegisterClass reg_class = RegClassForFieldLoadStore(size, field_info.IsVolatile());
788    RegLocation rl_result = EvalLoc(rl_dest, reg_class, true);
789
790    int field_offset = field_info.FieldOffset().Int32Value();
791    if (IsRef(size)) {
792      // TODO: DCHECK?
793      LoadRefDisp(r_base, field_offset, rl_result.reg, field_info.IsVolatile() ? kVolatile :
794          kNotVolatile);
795    } else {
796      LoadBaseDisp(r_base, field_offset, rl_result.reg, size, field_info.IsVolatile() ?
797          kVolatile : kNotVolatile);
798    }
799    FreeTemp(r_base);
800
801    if (IsWide(size)) {
802      StoreValueWide(rl_dest, rl_result);
803    } else {
804      StoreValue(rl_dest, rl_result);
805    }
806  } else {
807    DCHECK(SizeMatchesTypeForEntrypoint(size, type));
808    FlushAllRegs();  // Everything to home locations
809    QuickEntrypointEnum target;
810    switch (type) {
811      case Primitive::kPrimNot:
812        target = kQuickGetObjStatic;
813        break;
814      case Primitive::kPrimLong:
815      case Primitive::kPrimDouble:
816        target = kQuickGet64Static;
817        break;
818      case Primitive::kPrimInt:
819      case Primitive::kPrimFloat:
820        target = kQuickGet32Static;
821        break;
822      case Primitive::kPrimShort:
823        target = kQuickGetShortStatic;
824        break;
825      case Primitive::kPrimChar:
826        target = kQuickGetCharStatic;
827        break;
828      case Primitive::kPrimByte:
829        target = kQuickGetByteStatic;
830        break;
831      case Primitive::kPrimBoolean:
832        target = kQuickGetBooleanStatic;
833        break;
834      case Primitive::kPrimVoid:  // Intentional fallthrough.
835      default:
836        LOG(FATAL) << "Can't determine entrypoint for: " << type;
837        target = kQuickGet32Static;
838    }
839    CallRuntimeHelperImm(target, field_info.FieldIndex(), true);
840
841    // FIXME: pGetXXStatic always return an int or int64 regardless of rl_dest.fp.
842    if (IsWide(size)) {
843      RegLocation rl_result = GetReturnWide(kCoreReg);
844      StoreValueWide(rl_dest, rl_result);
845    } else {
846      RegLocation rl_result = GetReturn(rl_dest.ref ? kRefReg : kCoreReg);
847      StoreValue(rl_dest, rl_result);
848    }
849  }
850}
851
852// Generate code for all slow paths.
853void Mir2Lir::HandleSlowPaths() {
854  // We should check slow_paths_.Size() every time, because a new slow path
855  // may be created during slowpath->Compile().
856  for (LIRSlowPath* slowpath : slow_paths_) {
857    slowpath->Compile();
858  }
859  slow_paths_.clear();
860}
861
862void Mir2Lir::GenIGet(MIR* mir, int opt_flags, OpSize size, Primitive::Type type,
863                      RegLocation rl_dest, RegLocation rl_obj) {
864  const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
865  if (kIsDebugBuild) {
866    auto mem_access_type = IsInstructionIGetQuickOrIPutQuick(mir->dalvikInsn.opcode) ?
867        IGetQuickOrIPutQuickMemAccessType(mir->dalvikInsn.opcode) :
868        IGetMemAccessType(mir->dalvikInsn.opcode);
869    DCHECK_EQ(mem_access_type, field_info.MemAccessType()) << mir->dalvikInsn.opcode;
870  }
871  cu_->compiler_driver->ProcessedInstanceField(field_info.FastGet());
872  if (!ForceSlowFieldPath(cu_) && field_info.FastGet()) {
873    RegisterClass reg_class = RegClassForFieldLoadStore(size, field_info.IsVolatile());
874    // A load of the class will lead to an iget with offset 0.
875    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
876    rl_obj = LoadValue(rl_obj, kRefReg);
877    GenNullCheck(rl_obj.reg, opt_flags);
878    RegLocation rl_result = EvalLoc(rl_dest, reg_class, true);
879    int field_offset = field_info.FieldOffset().Int32Value();
880    LIR* load_lir;
881    if (IsRef(size)) {
882      load_lir = LoadRefDisp(rl_obj.reg, field_offset, rl_result.reg, field_info.IsVolatile() ?
883          kVolatile : kNotVolatile);
884    } else {
885      load_lir = LoadBaseDisp(rl_obj.reg, field_offset, rl_result.reg, size,
886                              field_info.IsVolatile() ? kVolatile : kNotVolatile);
887    }
888    MarkPossibleNullPointerExceptionAfter(opt_flags, load_lir);
889    if (IsWide(size)) {
890      StoreValueWide(rl_dest, rl_result);
891    } else {
892      StoreValue(rl_dest, rl_result);
893    }
894  } else {
895    DCHECK(SizeMatchesTypeForEntrypoint(size, type));
896    QuickEntrypointEnum target;
897    switch (type) {
898      case Primitive::kPrimNot:
899        target = kQuickGetObjInstance;
900        break;
901      case Primitive::kPrimLong:
902      case Primitive::kPrimDouble:
903        target = kQuickGet64Instance;
904        break;
905      case Primitive::kPrimFloat:
906      case Primitive::kPrimInt:
907        target = kQuickGet32Instance;
908        break;
909      case Primitive::kPrimShort:
910        target = kQuickGetShortInstance;
911        break;
912      case Primitive::kPrimChar:
913        target = kQuickGetCharInstance;
914        break;
915      case Primitive::kPrimByte:
916        target = kQuickGetByteInstance;
917        break;
918      case Primitive::kPrimBoolean:
919        target = kQuickGetBooleanInstance;
920        break;
921      case Primitive::kPrimVoid:  // Intentional fallthrough.
922      default:
923        LOG(FATAL) << "Can't determine entrypoint for: " << type;
924        target = kQuickGet32Instance;
925    }
926    // Second argument of pGetXXInstance is always a reference.
927    DCHECK_EQ(static_cast<unsigned int>(rl_obj.wide), 0U);
928    CallRuntimeHelperImmRegLocation(target, field_info.FieldIndex(), rl_obj, true);
929
930    // FIXME: pGetXXInstance always return an int or int64 regardless of rl_dest.fp.
931    if (IsWide(size)) {
932      RegLocation rl_result = GetReturnWide(kCoreReg);
933      StoreValueWide(rl_dest, rl_result);
934    } else {
935      RegLocation rl_result = GetReturn(rl_dest.ref ? kRefReg : kCoreReg);
936      StoreValue(rl_dest, rl_result);
937    }
938  }
939}
940
941void Mir2Lir::GenIPut(MIR* mir, int opt_flags, OpSize size,
942                      RegLocation rl_src, RegLocation rl_obj) {
943  const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
944  if (kIsDebugBuild) {
945    auto mem_access_type = IsInstructionIGetQuickOrIPutQuick(mir->dalvikInsn.opcode) ?
946        IGetQuickOrIPutQuickMemAccessType(mir->dalvikInsn.opcode) :
947        IPutMemAccessType(mir->dalvikInsn.opcode);
948    DCHECK_EQ(mem_access_type, field_info.MemAccessType());
949  }
950  cu_->compiler_driver->ProcessedInstanceField(field_info.FastPut());
951  if (!ForceSlowFieldPath(cu_) && field_info.FastPut()) {
952    RegisterClass reg_class = RegClassForFieldLoadStore(size, field_info.IsVolatile());
953    // Dex code never writes to the class field.
954    DCHECK_GE(static_cast<uint32_t>(field_info.FieldOffset().Int32Value()),
955              sizeof(mirror::HeapReference<mirror::Class>));
956    rl_obj = LoadValue(rl_obj, kRefReg);
957    if (IsWide(size)) {
958      rl_src = LoadValueWide(rl_src, reg_class);
959    } else {
960      rl_src = LoadValue(rl_src, reg_class);
961    }
962    GenNullCheck(rl_obj.reg, opt_flags);
963    int field_offset = field_info.FieldOffset().Int32Value();
964    LIR* null_ck_insn;
965    if (IsRef(size)) {
966      null_ck_insn = StoreRefDisp(rl_obj.reg, field_offset, rl_src.reg, field_info.IsVolatile() ?
967          kVolatile : kNotVolatile);
968    } else {
969      null_ck_insn = StoreBaseDisp(rl_obj.reg, field_offset, rl_src.reg, size,
970                                   field_info.IsVolatile() ? kVolatile : kNotVolatile);
971    }
972    MarkPossibleNullPointerExceptionAfter(opt_flags, null_ck_insn);
973    if (IsRef(size) && !mir_graph_->IsConstantNullRef(rl_src)) {
974      MarkGCCard(opt_flags, rl_src.reg, rl_obj.reg);
975    }
976  } else {
977    QuickEntrypointEnum target;
978    switch (size) {
979      case kReference:
980        target = kQuickSetObjInstance;
981        break;
982      case k64:
983      case kDouble:
984        target = kQuickSet64Instance;
985        break;
986      case k32:
987      case kSingle:
988        target = kQuickSet32Instance;
989        break;
990      case kSignedHalf:
991      case kUnsignedHalf:
992        target = kQuickSet16Instance;
993        break;
994      case kSignedByte:
995      case kUnsignedByte:
996        target = kQuickSet8Instance;
997        break;
998      case kWord:  // Intentional fallthrough.
999      default:
1000        LOG(FATAL) << "Can't determine entrypoint for: " << size;
1001        target = kQuickSet32Instance;
1002    }
1003    CallRuntimeHelperImmRegLocationRegLocation(target, field_info.FieldIndex(), rl_obj, rl_src,
1004                                               true);
1005  }
1006}
1007
1008void Mir2Lir::GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
1009                             RegLocation rl_src) {
1010  bool needs_range_check = !(opt_flags & MIR_IGNORE_RANGE_CHECK);
1011  bool needs_null_check = !((cu_->disable_opt & (1 << kNullCheckElimination)) &&
1012      (opt_flags & MIR_IGNORE_NULL_CHECK));
1013  QuickEntrypointEnum target = needs_range_check
1014        ? (needs_null_check ? kQuickAputObjectWithNullAndBoundCheck
1015                            : kQuickAputObjectWithBoundCheck)
1016        : kQuickAputObject;
1017  CallRuntimeHelperRegLocationRegLocationRegLocation(target, rl_array, rl_index, rl_src, true);
1018}
1019
1020void Mir2Lir::GenConstClass(uint32_t type_idx, RegLocation rl_dest) {
1021  RegLocation rl_result;
1022  if (!cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
1023                                                        *cu_->dex_file,
1024                                                        type_idx)) {
1025    // Call out to helper which resolves type and verifies access.
1026    // Resolved type returned in kRet0.
1027    CallRuntimeHelperImm(kQuickInitializeTypeAndVerifyAccess, type_idx, true);
1028    rl_result = GetReturn(kRefReg);
1029  } else {
1030    rl_result = EvalLoc(rl_dest, kRefReg, true);
1031    // We don't need access checks, load type from dex cache
1032    if (CanUseOpPcRelDexCacheArrayLoad()) {
1033      size_t offset = dex_cache_arrays_layout_.TypeOffset(type_idx);
1034      OpPcRelDexCacheArrayLoad(cu_->dex_file, offset, rl_result.reg, false);
1035    } else {
1036      int32_t dex_cache_offset =
1037          ArtMethod::DexCacheResolvedTypesOffset().Int32Value();
1038      RegStorage res_reg = AllocTempRef();
1039      RegStorage r_method = LoadCurrMethodWithHint(res_reg);
1040      LoadRefDisp(r_method, dex_cache_offset, res_reg, kNotVolatile);
1041      int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1042      LoadRefDisp(res_reg, offset_of_type, rl_result.reg, kNotVolatile);
1043      FreeTemp(res_reg);
1044    }
1045    if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file,
1046        type_idx) || ForceSlowTypePath(cu_)) {
1047      // Slow path, at runtime test if type is null and if so initialize
1048      FlushAllRegs();
1049      GenIfNullUseHelperImm(rl_result.reg, kQuickInitializeType, type_idx);
1050    }
1051  }
1052  StoreValue(rl_dest, rl_result);
1053}
1054
1055void Mir2Lir::GenConstString(uint32_t string_idx, RegLocation rl_dest) {
1056  /* NOTE: Most strings should be available at compile time */
1057  int32_t offset_of_string = mirror::ObjectArray<mirror::String>::OffsetOfElement(string_idx).
1058                                                                                      Int32Value();
1059  if (!cu_->compiler_driver->CanAssumeStringIsPresentInDexCache(
1060      *cu_->dex_file, string_idx) || ForceSlowStringPath(cu_)) {
1061    // slow path, resolve string if not in dex cache
1062    FlushAllRegs();
1063    LockCallTemps();  // Using explicit registers
1064
1065    // Might call out to helper, which will return resolved string in kRet0
1066    RegStorage ret0 = TargetReg(kRet0, kRef);
1067    if (CanUseOpPcRelDexCacheArrayLoad()) {
1068      size_t offset = dex_cache_arrays_layout_.StringOffset(string_idx);
1069      OpPcRelDexCacheArrayLoad(cu_->dex_file, offset, ret0, false);
1070    } else {
1071      // Method to declaring class.
1072      RegStorage arg0 = TargetReg(kArg0, kRef);
1073      RegStorage r_method = LoadCurrMethodWithHint(arg0);
1074      LoadRefDisp(r_method, ArtMethod::DeclaringClassOffset().Int32Value(), arg0, kNotVolatile);
1075      // Declaring class to dex cache strings.
1076      LoadRefDisp(arg0, mirror::Class::DexCacheStringsOffset().Int32Value(), arg0, kNotVolatile);
1077
1078      LoadRefDisp(arg0, offset_of_string, ret0, kNotVolatile);
1079    }
1080    GenIfNullUseHelperImm(ret0, kQuickResolveString, string_idx);
1081
1082    GenBarrier();
1083    StoreValue(rl_dest, GetReturn(kRefReg));
1084  } else {
1085    RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
1086    if (CanUseOpPcRelDexCacheArrayLoad()) {
1087      size_t offset = dex_cache_arrays_layout_.StringOffset(string_idx);
1088      OpPcRelDexCacheArrayLoad(cu_->dex_file, offset, rl_result.reg, false);
1089    } else {
1090      RegLocation rl_method = LoadCurrMethod();
1091      RegStorage res_reg = AllocTempRef();
1092      LoadRefDisp(rl_method.reg, ArtMethod::DeclaringClassOffset().Int32Value(), res_reg,
1093                  kNotVolatile);
1094      LoadRefDisp(res_reg, mirror::Class::DexCacheStringsOffset().Int32Value(), res_reg,
1095                  kNotVolatile);
1096      LoadRefDisp(res_reg, offset_of_string, rl_result.reg, kNotVolatile);
1097      FreeTemp(res_reg);
1098    }
1099    StoreValue(rl_dest, rl_result);
1100  }
1101}
1102
1103/*
1104 * Let helper function take care of everything.  Will
1105 * call Class::NewInstanceFromCode(type_idx, method);
1106 */
1107void Mir2Lir::GenNewInstance(uint32_t type_idx, RegLocation rl_dest) {
1108  FlushAllRegs();  /* Everything to home location */
1109  // alloc will always check for resolution, do we also need to verify
1110  // access because the verifier was unable to?
1111  const DexFile* dex_file = cu_->dex_file;
1112  CompilerDriver* driver = cu_->compiler_driver;
1113  if (driver->CanAccessInstantiableTypeWithoutChecks(cu_->method_idx, *dex_file, type_idx)) {
1114    bool is_type_initialized;
1115    bool use_direct_type_ptr;
1116    uintptr_t direct_type_ptr;
1117    bool is_finalizable;
1118    if (kEmbedClassInCode &&
1119        driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr,
1120                                   &direct_type_ptr, &is_finalizable) &&
1121                                   !is_finalizable) {
1122      // The fast path.
1123      if (!use_direct_type_ptr) {
1124        LoadClassType(*dex_file, type_idx, kArg0);
1125        if (!is_type_initialized) {
1126          CallRuntimeHelperRegMethod(kQuickAllocObjectResolved, TargetReg(kArg0, kRef), true);
1127        } else {
1128          CallRuntimeHelperRegMethod(kQuickAllocObjectInitialized, TargetReg(kArg0, kRef), true);
1129        }
1130      } else {
1131        // Use the direct pointer.
1132        if (!is_type_initialized) {
1133          CallRuntimeHelperImmMethod(kQuickAllocObjectResolved, direct_type_ptr, true);
1134        } else {
1135          CallRuntimeHelperImmMethod(kQuickAllocObjectInitialized, direct_type_ptr, true);
1136        }
1137      }
1138    } else {
1139      // The slow path.
1140      CallRuntimeHelperImmMethod(kQuickAllocObject, type_idx, true);
1141    }
1142  } else {
1143    CallRuntimeHelperImmMethod(kQuickAllocObjectWithAccessCheck, type_idx, true);
1144  }
1145  StoreValue(rl_dest, GetReturn(kRefReg));
1146}
1147
1148void Mir2Lir::GenThrow(RegLocation rl_src) {
1149  FlushAllRegs();
1150  CallRuntimeHelperRegLocation(kQuickDeliverException, rl_src, true);
1151}
1152
1153// For final classes there are no sub-classes to check and so we can answer the instance-of
1154// question with simple comparisons.
1155void Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
1156                                 RegLocation rl_src) {
1157  // X86 has its own implementation.
1158  DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
1159
1160  RegLocation object = LoadValue(rl_src, kRefReg);
1161  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1162  RegStorage result_reg = rl_result.reg;
1163  if (IsSameReg(result_reg, object.reg)) {
1164    result_reg = AllocTypedTemp(false, kCoreReg);
1165    DCHECK(!IsSameReg(result_reg, object.reg));
1166  }
1167  LoadConstant(result_reg, 0);     // assume false
1168  LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg, 0, nullptr);
1169
1170  RegStorage check_class = AllocTypedTemp(false, kRefReg);
1171  RegStorage object_class = AllocTypedTemp(false, kRefReg);
1172
1173  if (use_declaring_class) {
1174    RegStorage r_method = LoadCurrMethodWithHint(check_class);
1175    LoadRefDisp(r_method, ArtMethod::DeclaringClassOffset().Int32Value(), check_class,
1176                kNotVolatile);
1177    LoadRefDisp(object.reg,  mirror::Object::ClassOffset().Int32Value(), object_class,
1178                kNotVolatile);
1179  } else if (CanUseOpPcRelDexCacheArrayLoad()) {
1180    size_t offset = dex_cache_arrays_layout_.TypeOffset(type_idx);
1181    OpPcRelDexCacheArrayLoad(cu_->dex_file, offset, check_class, false);
1182    LoadRefDisp(object.reg,  mirror::Object::ClassOffset().Int32Value(), object_class,
1183                kNotVolatile);
1184  } else {
1185    RegStorage r_method = LoadCurrMethodWithHint(check_class);
1186    LoadRefDisp(r_method, ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1187                check_class, kNotVolatile);
1188    LoadRefDisp(object.reg,  mirror::Object::ClassOffset().Int32Value(), object_class,
1189                kNotVolatile);
1190    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1191    LoadRefDisp(check_class, offset_of_type, check_class, kNotVolatile);
1192  }
1193
1194  // FIXME: what should we be comparing here? compressed or decompressed references?
1195  if (cu_->instruction_set == kThumb2) {
1196    OpRegReg(kOpCmp, check_class, object_class);  // Same?
1197    LIR* it = OpIT(kCondEq, "");   // if-convert the test
1198    LoadConstant(result_reg, 1);     // .eq case - load true
1199    OpEndIT(it);
1200  } else {
1201    GenSelectConst32(check_class, object_class, kCondEq, 1, 0, result_reg, kCoreReg);
1202  }
1203  LIR* target = NewLIR0(kPseudoTargetLabel);
1204  null_branchover->target = target;
1205  FreeTemp(object_class);
1206  FreeTemp(check_class);
1207  if (IsTemp(result_reg)) {
1208    OpRegCopy(rl_result.reg, result_reg);
1209    FreeTemp(result_reg);
1210  }
1211  StoreValue(rl_dest, rl_result);
1212}
1213
1214void Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1215                                         bool type_known_abstract, bool use_declaring_class,
1216                                         bool can_assume_type_is_in_dex_cache,
1217                                         uint32_t type_idx, RegLocation rl_dest,
1218                                         RegLocation rl_src) {
1219  FlushAllRegs();
1220  // May generate a call - use explicit registers
1221  LockCallTemps();
1222  RegStorage class_reg = TargetReg(kArg2, kRef);  // kArg2 will hold the Class*
1223  RegStorage ref_reg = TargetReg(kArg0, kRef);  // kArg0 will hold the ref.
1224  RegStorage ret_reg = GetReturn(kRefReg).reg;
1225  if (needs_access_check) {
1226    // Check we have access to type_idx and if not throw IllegalAccessError,
1227    // returns Class* in kArg0
1228    CallRuntimeHelperImmMethod(kQuickInitializeTypeAndVerifyAccess, type_idx, true);
1229    OpRegCopy(class_reg, ret_reg);  // Align usage with fast path
1230    LoadValueDirectFixed(rl_src, ref_reg);  // kArg0 <= ref
1231  } else if (use_declaring_class) {
1232    RegStorage r_method = LoadCurrMethodWithHint(TargetReg(kArg1, kRef));
1233    LoadValueDirectFixed(rl_src, ref_reg);  // kArg0 <= ref
1234    LoadRefDisp(r_method, ArtMethod::DeclaringClassOffset().Int32Value(),
1235                class_reg, kNotVolatile);
1236  } else {
1237    if (can_assume_type_is_in_dex_cache) {
1238      // Conditionally, as in the other case we will also load it.
1239      LoadValueDirectFixed(rl_src, ref_reg);  // kArg0 <= ref
1240    }
1241
1242    if (CanUseOpPcRelDexCacheArrayLoad()) {
1243      size_t offset = dex_cache_arrays_layout_.TypeOffset(type_idx);
1244      OpPcRelDexCacheArrayLoad(cu_->dex_file, offset, class_reg, false);
1245    } else {
1246      RegStorage r_method = LoadCurrMethodWithHint(class_reg);
1247      // Load dex cache entry into class_reg (kArg2)
1248      LoadRefDisp(r_method, ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1249                  class_reg, kNotVolatile);
1250      int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1251      LoadRefDisp(class_reg, offset_of_type, class_reg, kNotVolatile);
1252    }
1253    if (!can_assume_type_is_in_dex_cache) {
1254      GenIfNullUseHelperImm(class_reg, kQuickInitializeType, type_idx);
1255
1256      // Should load value here.
1257      LoadValueDirectFixed(rl_src, ref_reg);  // kArg0 <= ref
1258    }
1259  }
1260  /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result */
1261  RegLocation rl_result = GetReturn(kCoreReg);
1262  if (!IsSameReg(rl_result.reg, ref_reg)) {
1263    // On MIPS and x86_64 rArg0 != rl_result, place false in result if branch is taken.
1264    LoadConstant(rl_result.reg, 0);
1265  }
1266  LIR* branch1 = OpCmpImmBranch(kCondEq, ref_reg, 0, nullptr);
1267
1268  /* load object->klass_ */
1269  RegStorage ref_class_reg = TargetReg(kArg1, kRef);  // kArg1 will hold the Class* of ref.
1270  DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1271  LoadRefDisp(ref_reg, mirror::Object::ClassOffset().Int32Value(),
1272              ref_class_reg, kNotVolatile);
1273  /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class */
1274  LIR* branchover = nullptr;
1275  if (type_known_final) {
1276    // rl_result == ref == class.
1277    GenSelectConst32(ref_class_reg, class_reg, kCondEq, 1, 0, rl_result.reg,
1278                     kCoreReg);
1279  } else {
1280    if (cu_->instruction_set == kThumb2) {
1281      RegStorage r_tgt = LoadHelper(kQuickInstanceofNonTrivial);
1282      LIR* it = nullptr;
1283      if (!type_known_abstract) {
1284      /* Uses conditional nullification */
1285        OpRegReg(kOpCmp, ref_class_reg, class_reg);  // Same?
1286        it = OpIT(kCondEq, "EE");   // if-convert the test
1287        LoadConstant(rl_result.reg, 1);     // .eq case - load true
1288      }
1289      OpRegCopy(ref_reg, class_reg);    // .ne case - arg0 <= class
1290      OpReg(kOpBlx, r_tgt);    // .ne case: helper(class, ref->class)
1291      if (it != nullptr) {
1292        OpEndIT(it);
1293      }
1294      FreeTemp(r_tgt);
1295    } else {
1296      if (!type_known_abstract) {
1297        /* Uses branchovers */
1298        LoadConstant(rl_result.reg, 1);     // assume true
1299        branchover = OpCmpBranch(kCondEq, TargetReg(kArg1, kRef), TargetReg(kArg2, kRef), nullptr);
1300      }
1301
1302      OpRegCopy(TargetReg(kArg0, kRef), class_reg);    // .ne case - arg0 <= class
1303      CallRuntimeHelper(kQuickInstanceofNonTrivial, false);
1304    }
1305  }
1306  // TODO: only clobber when type isn't final?
1307  ClobberCallerSave();
1308  /* branch targets here */
1309  LIR* target = NewLIR0(kPseudoTargetLabel);
1310  StoreValue(rl_dest, rl_result);
1311  branch1->target = target;
1312  if (branchover != nullptr) {
1313    branchover->target = target;
1314  }
1315}
1316
1317void Mir2Lir::GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) {
1318  bool type_known_final, type_known_abstract, use_declaring_class;
1319  bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
1320                                                                              *cu_->dex_file,
1321                                                                              type_idx,
1322                                                                              &type_known_final,
1323                                                                              &type_known_abstract,
1324                                                                              &use_declaring_class);
1325  bool can_assume_type_is_in_dex_cache = !needs_access_check &&
1326      cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx);
1327
1328  if ((use_declaring_class || can_assume_type_is_in_dex_cache) && type_known_final) {
1329    GenInstanceofFinal(use_declaring_class, type_idx, rl_dest, rl_src);
1330  } else {
1331    GenInstanceofCallingHelper(needs_access_check, type_known_final, type_known_abstract,
1332                               use_declaring_class, can_assume_type_is_in_dex_cache,
1333                               type_idx, rl_dest, rl_src);
1334  }
1335}
1336
1337void Mir2Lir::GenCheckCast(int opt_flags, uint32_t insn_idx, uint32_t type_idx,
1338                           RegLocation rl_src) {
1339  if ((opt_flags & MIR_IGNORE_CHECK_CAST) != 0) {
1340    // Compiler analysis proved that this check-cast would never cause an exception.
1341    return;
1342  }
1343  bool type_known_final, type_known_abstract, use_declaring_class;
1344  bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
1345                                                                              *cu_->dex_file,
1346                                                                              type_idx,
1347                                                                              &type_known_final,
1348                                                                              &type_known_abstract,
1349                                                                              &use_declaring_class);
1350  // Note: currently type_known_final is unused, as optimizing will only improve the performance
1351  // of the exception throw path.
1352  DexCompilationUnit* cu = mir_graph_->GetCurrentDexCompilationUnit();
1353  if (!needs_access_check && cu_->compiler_driver->IsSafeCast(cu, insn_idx)) {
1354    // Verifier type analysis proved this check cast would never cause an exception.
1355    return;
1356  }
1357  FlushAllRegs();
1358  // May generate a call - use explicit registers
1359  LockCallTemps();
1360  RegStorage class_reg = TargetReg(kArg2, kRef);  // kArg2 will hold the Class*
1361  if (needs_access_check) {
1362    // Check we have access to type_idx and if not throw IllegalAccessError,
1363    // returns Class* in kRet0
1364    // InitializeTypeAndVerifyAccess(idx, method)
1365    CallRuntimeHelperImmMethod(kQuickInitializeTypeAndVerifyAccess, type_idx, true);
1366    OpRegCopy(class_reg, TargetReg(kRet0, kRef));  // Align usage with fast path
1367  } else if (use_declaring_class) {
1368    RegStorage method_reg = LoadCurrMethodWithHint(TargetReg(kArg1, kRef));
1369    LoadRefDisp(method_reg, ArtMethod::DeclaringClassOffset().Int32Value(),
1370                class_reg, kNotVolatile);
1371  } else {
1372    // Load dex cache entry into class_reg (kArg2)
1373    if (CanUseOpPcRelDexCacheArrayLoad()) {
1374      size_t offset = dex_cache_arrays_layout_.TypeOffset(type_idx);
1375      OpPcRelDexCacheArrayLoad(cu_->dex_file, offset, class_reg, false);
1376    } else {
1377      RegStorage r_method = LoadCurrMethodWithHint(class_reg);
1378
1379      LoadRefDisp(r_method, ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1380                  class_reg, kNotVolatile);
1381      int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1382      LoadRefDisp(class_reg, offset_of_type, class_reg, kNotVolatile);
1383    }
1384    if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx)) {
1385      // Need to test presence of type in dex cache at runtime
1386      GenIfNullUseHelperImm(class_reg, kQuickInitializeType, type_idx);
1387    }
1388  }
1389  // At this point, class_reg (kArg2) has class
1390  LoadValueDirectFixed(rl_src, TargetReg(kArg0, kRef));  // kArg0 <= ref
1391
1392  // Slow path for the case where the classes are not equal.  In this case we need
1393  // to call a helper function to do the check.
1394  class SlowPath : public LIRSlowPath {
1395   public:
1396    SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, bool load)
1397        : LIRSlowPath(m2l, fromfast, cont), load_(load) {
1398    }
1399
1400    void Compile() {
1401      GenerateTargetLabel();
1402
1403      if (load_) {
1404        m2l_->LoadRefDisp(m2l_->TargetReg(kArg0, kRef), mirror::Object::ClassOffset().Int32Value(),
1405                          m2l_->TargetReg(kArg1, kRef), kNotVolatile);
1406      }
1407      m2l_->CallRuntimeHelperRegReg(kQuickCheckCast, m2l_->TargetReg(kArg2, kRef),
1408                                    m2l_->TargetReg(kArg1, kRef), true);
1409      m2l_->OpUnconditionalBranch(cont_);
1410    }
1411
1412   private:
1413    const bool load_;
1414  };
1415
1416  if (type_known_abstract) {
1417    // Easier case, run slow path if target is non-null (slow path will load from target)
1418    LIR* branch = OpCmpImmBranch(kCondNe, TargetReg(kArg0, kRef), 0, nullptr);
1419    LIR* cont = NewLIR0(kPseudoTargetLabel);
1420    AddSlowPath(new (arena_) SlowPath(this, branch, cont, true));
1421  } else {
1422    // Harder, more common case.  We need to generate a forward branch over the load
1423    // if the target is null.  If it's non-null we perform the load and branch to the
1424    // slow path if the classes are not equal.
1425
1426    /* Null is OK - continue */
1427    LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0, kRef), 0, nullptr);
1428    /* load object->klass_ */
1429    DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1430    LoadRefDisp(TargetReg(kArg0, kRef), mirror::Object::ClassOffset().Int32Value(),
1431                TargetReg(kArg1, kRef), kNotVolatile);
1432
1433    LIR* branch2 = OpCmpBranch(kCondNe, TargetReg(kArg1, kRef), class_reg, nullptr);
1434    LIR* cont = NewLIR0(kPseudoTargetLabel);
1435
1436    // Add the slow path that will not perform load since this is already done.
1437    AddSlowPath(new (arena_) SlowPath(this, branch2, cont, false));
1438
1439    // Set the null check to branch to the continuation.
1440    branch1->target = cont;
1441  }
1442}
1443
1444void Mir2Lir::GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
1445                           RegLocation rl_src1, RegLocation rl_src2) {
1446  RegLocation rl_result;
1447  if (cu_->instruction_set == kThumb2) {
1448    /*
1449     * NOTE:  This is the one place in the code in which we might have
1450     * as many as six live temporary registers.  There are 5 in the normal
1451     * set for Arm.  Until we have spill capabilities, temporarily add
1452     * lr to the temp set.  It is safe to do this locally, but note that
1453     * lr is used explicitly elsewhere in the code generator and cannot
1454     * normally be used as a general temp register.
1455     */
1456    MarkTemp(TargetReg(kLr, kNotWide));   // Add lr to the temp pool
1457    FreeTemp(TargetReg(kLr, kNotWide));   // and make it available
1458  }
1459  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1460  rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1461  rl_result = EvalLoc(rl_dest, kCoreReg, true);
1462  // The longs may overlap - use intermediate temp if so
1463  if ((rl_result.reg.GetLowReg() == rl_src1.reg.GetHighReg()) || (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg())) {
1464    RegStorage t_reg = AllocTemp();
1465    OpRegRegReg(first_op, t_reg, rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
1466    OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
1467    OpRegCopy(rl_result.reg.GetLow(), t_reg);
1468    FreeTemp(t_reg);
1469  } else {
1470    OpRegRegReg(first_op, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
1471    OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
1472  }
1473  /*
1474   * NOTE: If rl_dest refers to a frame variable in a large frame, the
1475   * following StoreValueWide might need to allocate a temp register.
1476   * To further work around the lack of a spill capability, explicitly
1477   * free any temps from rl_src1 & rl_src2 that aren't still live in rl_result.
1478   * Remove when spill is functional.
1479   */
1480  FreeRegLocTemps(rl_result, rl_src1);
1481  FreeRegLocTemps(rl_result, rl_src2);
1482  StoreValueWide(rl_dest, rl_result);
1483  if (cu_->instruction_set == kThumb2) {
1484    Clobber(TargetReg(kLr, kNotWide));
1485    UnmarkTemp(TargetReg(kLr, kNotWide));  // Remove lr from the temp pool
1486  }
1487}
1488
1489void Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
1490                             RegLocation rl_src1, RegLocation rl_shift) {
1491  QuickEntrypointEnum target;
1492  switch (opcode) {
1493    case Instruction::SHL_LONG:
1494    case Instruction::SHL_LONG_2ADDR:
1495      target = kQuickShlLong;
1496      break;
1497    case Instruction::SHR_LONG:
1498    case Instruction::SHR_LONG_2ADDR:
1499      target = kQuickShrLong;
1500      break;
1501    case Instruction::USHR_LONG:
1502    case Instruction::USHR_LONG_2ADDR:
1503      target = kQuickUshrLong;
1504      break;
1505    default:
1506      LOG(FATAL) << "Unexpected case";
1507      target = kQuickShlLong;
1508  }
1509  FlushAllRegs();   /* Send everything to home location */
1510  CallRuntimeHelperRegLocationRegLocation(target, rl_src1, rl_shift, false);
1511  RegLocation rl_result = GetReturnWide(kCoreReg);
1512  StoreValueWide(rl_dest, rl_result);
1513}
1514
1515
1516void Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
1517                            RegLocation rl_src1, RegLocation rl_src2, int flags) {
1518  DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
1519  OpKind op = kOpBkpt;
1520  bool is_div_rem = false;
1521  bool check_zero = false;
1522  bool unary = false;
1523  RegLocation rl_result;
1524  bool shift_op = false;
1525  switch (opcode) {
1526    case Instruction::NEG_INT:
1527      op = kOpNeg;
1528      unary = true;
1529      break;
1530    case Instruction::NOT_INT:
1531      op = kOpMvn;
1532      unary = true;
1533      break;
1534    case Instruction::ADD_INT:
1535    case Instruction::ADD_INT_2ADDR:
1536      op = kOpAdd;
1537      break;
1538    case Instruction::SUB_INT:
1539    case Instruction::SUB_INT_2ADDR:
1540      op = kOpSub;
1541      break;
1542    case Instruction::MUL_INT:
1543    case Instruction::MUL_INT_2ADDR:
1544      op = kOpMul;
1545      break;
1546    case Instruction::DIV_INT:
1547    case Instruction::DIV_INT_2ADDR:
1548      check_zero = true;
1549      op = kOpDiv;
1550      is_div_rem = true;
1551      break;
1552    /* NOTE: returns in kArg1 */
1553    case Instruction::REM_INT:
1554    case Instruction::REM_INT_2ADDR:
1555      check_zero = true;
1556      op = kOpRem;
1557      is_div_rem = true;
1558      break;
1559    case Instruction::AND_INT:
1560    case Instruction::AND_INT_2ADDR:
1561      op = kOpAnd;
1562      break;
1563    case Instruction::OR_INT:
1564    case Instruction::OR_INT_2ADDR:
1565      op = kOpOr;
1566      break;
1567    case Instruction::XOR_INT:
1568    case Instruction::XOR_INT_2ADDR:
1569      op = kOpXor;
1570      break;
1571    case Instruction::SHL_INT:
1572    case Instruction::SHL_INT_2ADDR:
1573      shift_op = true;
1574      op = kOpLsl;
1575      break;
1576    case Instruction::SHR_INT:
1577    case Instruction::SHR_INT_2ADDR:
1578      shift_op = true;
1579      op = kOpAsr;
1580      break;
1581    case Instruction::USHR_INT:
1582    case Instruction::USHR_INT_2ADDR:
1583      shift_op = true;
1584      op = kOpLsr;
1585      break;
1586    default:
1587      LOG(FATAL) << "Invalid word arith op: " << opcode;
1588  }
1589  if (!is_div_rem) {
1590    if (unary) {
1591      rl_src1 = LoadValue(rl_src1, kCoreReg);
1592      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1593      OpRegReg(op, rl_result.reg, rl_src1.reg);
1594    } else {
1595      if ((shift_op) && (cu_->instruction_set != kArm64)) {
1596        rl_src2 = LoadValue(rl_src2, kCoreReg);
1597        RegStorage t_reg = AllocTemp();
1598        OpRegRegImm(kOpAnd, t_reg, rl_src2.reg, 31);
1599        rl_src1 = LoadValue(rl_src1, kCoreReg);
1600        rl_result = EvalLoc(rl_dest, kCoreReg, true);
1601        OpRegRegReg(op, rl_result.reg, rl_src1.reg, t_reg);
1602        FreeTemp(t_reg);
1603      } else {
1604        rl_src1 = LoadValue(rl_src1, kCoreReg);
1605        rl_src2 = LoadValue(rl_src2, kCoreReg);
1606        rl_result = EvalLoc(rl_dest, kCoreReg, true);
1607        OpRegRegReg(op, rl_result.reg, rl_src1.reg, rl_src2.reg);
1608      }
1609    }
1610    StoreValue(rl_dest, rl_result);
1611  } else {
1612    bool done = false;      // Set to true if we happen to find a way to use a real instruction.
1613    if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64 ||
1614        cu_->instruction_set == kArm64) {
1615      rl_src1 = LoadValue(rl_src1, kCoreReg);
1616      rl_src2 = LoadValue(rl_src2, kCoreReg);
1617      if (check_zero && (flags & MIR_IGNORE_DIV_ZERO_CHECK) == 0) {
1618        GenDivZeroCheck(rl_src2.reg);
1619      }
1620      rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
1621      done = true;
1622    } else if (cu_->instruction_set == kThumb2) {
1623      if (cu_->compiler_driver->GetInstructionSetFeatures()->AsArmInstructionSetFeatures()->
1624              HasDivideInstruction()) {
1625        // Use ARM SDIV instruction for division.  For remainder we also need to
1626        // calculate using a MUL and subtract.
1627        rl_src1 = LoadValue(rl_src1, kCoreReg);
1628        rl_src2 = LoadValue(rl_src2, kCoreReg);
1629        if (check_zero && (flags & MIR_IGNORE_DIV_ZERO_CHECK) == 0) {
1630          GenDivZeroCheck(rl_src2.reg);
1631        }
1632        rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
1633        done = true;
1634      }
1635    }
1636
1637    // If we haven't already generated the code use the callout function.
1638    if (!done) {
1639      FlushAllRegs();   /* Send everything to home location */
1640      LoadValueDirectFixed(rl_src2, TargetReg(kArg1, kNotWide));
1641      RegStorage r_tgt = CallHelperSetup(kQuickIdivmod);
1642      LoadValueDirectFixed(rl_src1, TargetReg(kArg0, kNotWide));
1643      if (check_zero && (flags & MIR_IGNORE_DIV_ZERO_CHECK) == 0) {
1644        GenDivZeroCheck(TargetReg(kArg1, kNotWide));
1645      }
1646      // NOTE: callout here is not a safepoint.
1647      CallHelper(r_tgt, kQuickIdivmod, false /* not a safepoint */);
1648      if (op == kOpDiv)
1649        rl_result = GetReturn(kCoreReg);
1650      else
1651        rl_result = GetReturnAlt();
1652    }
1653    StoreValue(rl_dest, rl_result);
1654  }
1655}
1656
1657/*
1658 * The following are the first-level codegen routines that analyze the format
1659 * of each bytecode then either dispatch special purpose codegen routines
1660 * or produce corresponding Thumb instructions directly.
1661 */
1662
1663// Returns true if no more than two bits are set in 'x'.
1664static bool IsPopCountLE2(unsigned int x) {
1665  x &= x - 1;
1666  return (x & (x - 1)) == 0;
1667}
1668
1669// Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit'
1670// and store the result in 'rl_dest'.
1671bool Mir2Lir::HandleEasyDivRem(Instruction::Code dalvik_opcode ATTRIBUTE_UNUSED, bool is_div,
1672                               RegLocation rl_src, RegLocation rl_dest, int lit) {
1673  if ((lit < 2) || (!IsPowerOfTwo(lit))) {
1674    return false;
1675  }
1676  int k = CTZ(lit);
1677  if (k >= 30) {
1678    // Avoid special cases.
1679    return false;
1680  }
1681  rl_src = LoadValue(rl_src, kCoreReg);
1682  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1683  if (is_div) {
1684    RegStorage t_reg = AllocTemp();
1685    if (lit == 2) {
1686      // Division by 2 is by far the most common division by constant.
1687      OpRegRegImm(kOpLsr, t_reg, rl_src.reg, 32 - k);
1688      OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
1689      OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
1690    } else {
1691      OpRegRegImm(kOpAsr, t_reg, rl_src.reg, 31);
1692      OpRegRegImm(kOpLsr, t_reg, t_reg, 32 - k);
1693      OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
1694      OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
1695    }
1696  } else {
1697    RegStorage t_reg1 = AllocTemp();
1698    RegStorage t_reg2 = AllocTemp();
1699    if (lit == 2) {
1700      OpRegRegImm(kOpLsr, t_reg1, rl_src.reg, 32 - k);
1701      OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
1702      OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit -1);
1703      OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
1704    } else {
1705      OpRegRegImm(kOpAsr, t_reg1, rl_src.reg, 31);
1706      OpRegRegImm(kOpLsr, t_reg1, t_reg1, 32 - k);
1707      OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
1708      OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit - 1);
1709      OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
1710    }
1711  }
1712  StoreValue(rl_dest, rl_result);
1713  return true;
1714}
1715
1716// Returns true if it added instructions to 'cu' to multiply 'rl_src' by 'lit'
1717// and store the result in 'rl_dest'.
1718bool Mir2Lir::HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
1719  if (lit < 0) {
1720    return false;
1721  }
1722  if (lit == 0) {
1723    RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1724    LoadConstant(rl_result.reg, 0);
1725    StoreValue(rl_dest, rl_result);
1726    return true;
1727  }
1728  if (lit == 1) {
1729    rl_src = LoadValue(rl_src, kCoreReg);
1730    RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1731    OpRegCopy(rl_result.reg, rl_src.reg);
1732    StoreValue(rl_dest, rl_result);
1733    return true;
1734  }
1735  // There is RegRegRegShift on Arm, so check for more special cases
1736  if (cu_->instruction_set == kThumb2) {
1737    return EasyMultiply(rl_src, rl_dest, lit);
1738  }
1739  // Can we simplify this multiplication?
1740  bool power_of_two = false;
1741  bool pop_count_le2 = false;
1742  bool power_of_two_minus_one = false;
1743  if (IsPowerOfTwo(lit)) {
1744    power_of_two = true;
1745  } else if (IsPopCountLE2(lit)) {
1746    pop_count_le2 = true;
1747  } else if (IsPowerOfTwo(lit + 1)) {
1748    power_of_two_minus_one = true;
1749  } else {
1750    return false;
1751  }
1752  rl_src = LoadValue(rl_src, kCoreReg);
1753  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1754  if (power_of_two) {
1755    // Shift.
1756    OpRegRegImm(kOpLsl, rl_result.reg, rl_src.reg, CTZ(lit));
1757  } else if (pop_count_le2) {
1758    // Shift and add and shift.
1759    int first_bit = CTZ(lit);
1760    int second_bit = CTZ(lit ^ (1 << first_bit));
1761    GenMultiplyByTwoBitMultiplier(rl_src, rl_result, lit, first_bit, second_bit);
1762  } else {
1763    // Reverse subtract: (src << (shift + 1)) - src.
1764    DCHECK(power_of_two_minus_one);
1765    // TUNING: rsb dst, src, src lsl#CTZ(lit + 1)
1766    RegStorage t_reg = AllocTemp();
1767    OpRegRegImm(kOpLsl, t_reg, rl_src.reg, CTZ(lit + 1));
1768    OpRegRegReg(kOpSub, rl_result.reg, t_reg, rl_src.reg);
1769  }
1770  StoreValue(rl_dest, rl_result);
1771  return true;
1772}
1773
1774// Returns true if it generates instructions.
1775bool Mir2Lir::HandleEasyFloatingPointDiv(RegLocation rl_dest, RegLocation rl_src1,
1776                                         RegLocation rl_src2) {
1777  if (!rl_src2.is_const ||
1778      ((cu_->instruction_set != kThumb2) && (cu_->instruction_set != kArm64))) {
1779    return false;
1780  }
1781
1782  if (!rl_src2.wide) {
1783    int32_t divisor = mir_graph_->ConstantValue(rl_src2);
1784    if (CanDivideByReciprocalMultiplyFloat(divisor)) {
1785      // Generate multiply by reciprocal instead of div.
1786      float recip = 1.0f/bit_cast<float, int32_t>(divisor);
1787      GenMultiplyByConstantFloat(rl_dest, rl_src1, bit_cast<int32_t, float>(recip));
1788      return true;
1789    }
1790  } else {
1791    int64_t divisor = mir_graph_->ConstantValueWide(rl_src2);
1792    if (CanDivideByReciprocalMultiplyDouble(divisor)) {
1793      // Generate multiply by reciprocal instead of div.
1794      double recip = 1.0/bit_cast<double, int64_t>(divisor);
1795      GenMultiplyByConstantDouble(rl_dest, rl_src1, bit_cast<int64_t, double>(recip));
1796      return true;
1797    }
1798  }
1799  return false;
1800}
1801
1802void Mir2Lir::GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src,
1803                               int lit) {
1804  RegLocation rl_result;
1805  OpKind op = static_cast<OpKind>(0);    /* Make gcc happy */
1806  int shift_op = false;
1807  bool is_div = false;
1808
1809  switch (opcode) {
1810    case Instruction::RSUB_INT_LIT8:
1811    case Instruction::RSUB_INT: {
1812      rl_src = LoadValue(rl_src, kCoreReg);
1813      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1814      if (cu_->instruction_set == kThumb2) {
1815        OpRegRegImm(kOpRsub, rl_result.reg, rl_src.reg, lit);
1816      } else {
1817        OpRegReg(kOpNeg, rl_result.reg, rl_src.reg);
1818        OpRegImm(kOpAdd, rl_result.reg, lit);
1819      }
1820      StoreValue(rl_dest, rl_result);
1821      return;
1822    }
1823
1824    case Instruction::SUB_INT:
1825    case Instruction::SUB_INT_2ADDR:
1826      lit = -lit;
1827      FALLTHROUGH_INTENDED;
1828    case Instruction::ADD_INT:
1829    case Instruction::ADD_INT_2ADDR:
1830    case Instruction::ADD_INT_LIT8:
1831    case Instruction::ADD_INT_LIT16:
1832      op = kOpAdd;
1833      break;
1834    case Instruction::MUL_INT:
1835    case Instruction::MUL_INT_2ADDR:
1836    case Instruction::MUL_INT_LIT8:
1837    case Instruction::MUL_INT_LIT16: {
1838      if (HandleEasyMultiply(rl_src, rl_dest, lit)) {
1839        return;
1840      }
1841      op = kOpMul;
1842      break;
1843    }
1844    case Instruction::AND_INT:
1845    case Instruction::AND_INT_2ADDR:
1846    case Instruction::AND_INT_LIT8:
1847    case Instruction::AND_INT_LIT16:
1848      op = kOpAnd;
1849      break;
1850    case Instruction::OR_INT:
1851    case Instruction::OR_INT_2ADDR:
1852    case Instruction::OR_INT_LIT8:
1853    case Instruction::OR_INT_LIT16:
1854      op = kOpOr;
1855      break;
1856    case Instruction::XOR_INT:
1857    case Instruction::XOR_INT_2ADDR:
1858    case Instruction::XOR_INT_LIT8:
1859    case Instruction::XOR_INT_LIT16:
1860      op = kOpXor;
1861      break;
1862    case Instruction::SHL_INT_LIT8:
1863    case Instruction::SHL_INT:
1864    case Instruction::SHL_INT_2ADDR:
1865      lit &= 31;
1866      shift_op = true;
1867      op = kOpLsl;
1868      break;
1869    case Instruction::SHR_INT_LIT8:
1870    case Instruction::SHR_INT:
1871    case Instruction::SHR_INT_2ADDR:
1872      lit &= 31;
1873      shift_op = true;
1874      op = kOpAsr;
1875      break;
1876    case Instruction::USHR_INT_LIT8:
1877    case Instruction::USHR_INT:
1878    case Instruction::USHR_INT_2ADDR:
1879      lit &= 31;
1880      shift_op = true;
1881      op = kOpLsr;
1882      break;
1883
1884    case Instruction::DIV_INT:
1885    case Instruction::DIV_INT_2ADDR:
1886    case Instruction::DIV_INT_LIT8:
1887    case Instruction::DIV_INT_LIT16:
1888    case Instruction::REM_INT:
1889    case Instruction::REM_INT_2ADDR:
1890    case Instruction::REM_INT_LIT8:
1891    case Instruction::REM_INT_LIT16: {
1892      if (lit == 0) {
1893        GenDivZeroException();
1894        return;
1895      }
1896      if ((opcode == Instruction::DIV_INT) ||
1897          (opcode == Instruction::DIV_INT_2ADDR) ||
1898          (opcode == Instruction::DIV_INT_LIT8) ||
1899          (opcode == Instruction::DIV_INT_LIT16)) {
1900        is_div = true;
1901      } else {
1902        is_div = false;
1903      }
1904      if (HandleEasyDivRem(opcode, is_div, rl_src, rl_dest, lit)) {
1905        return;
1906      }
1907
1908      bool done = false;
1909      if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64 ||
1910          cu_->instruction_set == kArm64) {
1911        rl_src = LoadValue(rl_src, kCoreReg);
1912        rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
1913        done = true;
1914      } else if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
1915        rl_result = GenDivRemLit(rl_dest, rl_src, lit, is_div);
1916        done = true;
1917      } else if (cu_->instruction_set == kThumb2) {
1918        if (cu_->compiler_driver->GetInstructionSetFeatures()->AsArmInstructionSetFeatures()->
1919                HasDivideInstruction()) {
1920          // Use ARM SDIV instruction for division.  For remainder we also need to
1921          // calculate using a MUL and subtract.
1922          rl_src = LoadValue(rl_src, kCoreReg);
1923          rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
1924          done = true;
1925        }
1926      }
1927
1928      if (!done) {
1929        FlushAllRegs();   /* Everything to home location. */
1930        LoadValueDirectFixed(rl_src, TargetReg(kArg0, kNotWide));
1931        Clobber(TargetReg(kArg0, kNotWide));
1932        CallRuntimeHelperRegImm(kQuickIdivmod, TargetReg(kArg0, kNotWide), lit, false);
1933        if (is_div)
1934          rl_result = GetReturn(kCoreReg);
1935        else
1936          rl_result = GetReturnAlt();
1937      }
1938      StoreValue(rl_dest, rl_result);
1939      return;
1940    }
1941    default:
1942      LOG(FATAL) << "Unexpected opcode " << opcode;
1943  }
1944  rl_src = LoadValue(rl_src, kCoreReg);
1945  rl_result = EvalLoc(rl_dest, kCoreReg, true);
1946  // Avoid shifts by literal 0 - no support in Thumb.  Change to copy.
1947  if (shift_op && (lit == 0)) {
1948    OpRegCopy(rl_result.reg, rl_src.reg);
1949  } else {
1950    OpRegRegImm(op, rl_result.reg, rl_src.reg, lit);
1951  }
1952  StoreValue(rl_dest, rl_result);
1953}
1954
1955void Mir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
1956                             RegLocation rl_src1, RegLocation rl_src2, int flags) {
1957  RegLocation rl_result;
1958  OpKind first_op = kOpBkpt;
1959  OpKind second_op = kOpBkpt;
1960  bool call_out = false;
1961  bool check_zero = false;
1962  int ret_reg = TargetReg(kRet0, kNotWide).GetReg();
1963  QuickEntrypointEnum target;
1964
1965  switch (opcode) {
1966    case Instruction::NOT_LONG:
1967      rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1968      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1969      // Check for destructive overlap
1970      if (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg()) {
1971        RegStorage t_reg = AllocTemp();
1972        OpRegCopy(t_reg, rl_src2.reg.GetHigh());
1973        OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
1974        OpRegReg(kOpMvn, rl_result.reg.GetHigh(), t_reg);
1975        FreeTemp(t_reg);
1976      } else {
1977        OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
1978        OpRegReg(kOpMvn, rl_result.reg.GetHigh(), rl_src2.reg.GetHigh());
1979      }
1980      StoreValueWide(rl_dest, rl_result);
1981      return;
1982    case Instruction::ADD_LONG:
1983    case Instruction::ADD_LONG_2ADDR:
1984      first_op = kOpAdd;
1985      second_op = kOpAdc;
1986      break;
1987    case Instruction::SUB_LONG:
1988    case Instruction::SUB_LONG_2ADDR:
1989      first_op = kOpSub;
1990      second_op = kOpSbc;
1991      break;
1992    case Instruction::MUL_LONG:
1993    case Instruction::MUL_LONG_2ADDR:
1994      call_out = true;
1995      ret_reg = TargetReg(kRet0, kNotWide).GetReg();
1996      target = kQuickLmul;
1997      break;
1998    case Instruction::DIV_LONG:
1999    case Instruction::DIV_LONG_2ADDR:
2000      call_out = true;
2001      check_zero = true;
2002      ret_reg = TargetReg(kRet0, kNotWide).GetReg();
2003      target = kQuickLdiv;
2004      break;
2005    case Instruction::REM_LONG:
2006    case Instruction::REM_LONG_2ADDR:
2007      call_out = true;
2008      check_zero = true;
2009      target = kQuickLmod;
2010      /* NOTE - for Arm, result is in kArg2/kArg3 instead of kRet0/kRet1 */
2011      ret_reg = (cu_->instruction_set == kThumb2) ? TargetReg(kArg2, kNotWide).GetReg() :
2012          TargetReg(kRet0, kNotWide).GetReg();
2013      break;
2014    case Instruction::AND_LONG_2ADDR:
2015    case Instruction::AND_LONG:
2016      first_op = kOpAnd;
2017      second_op = kOpAnd;
2018      break;
2019    case Instruction::OR_LONG:
2020    case Instruction::OR_LONG_2ADDR:
2021      first_op = kOpOr;
2022      second_op = kOpOr;
2023      break;
2024    case Instruction::XOR_LONG:
2025    case Instruction::XOR_LONG_2ADDR:
2026      first_op = kOpXor;
2027      second_op = kOpXor;
2028      break;
2029    default:
2030      LOG(FATAL) << "Invalid long arith op";
2031  }
2032  if (!call_out) {
2033    GenLong3Addr(first_op, second_op, rl_dest, rl_src1, rl_src2);
2034  } else {
2035    FlushAllRegs();   /* Send everything to home location */
2036    if (check_zero) {
2037      RegStorage r_tmp1 = TargetReg(kArg0, kWide);
2038      RegStorage r_tmp2 = TargetReg(kArg2, kWide);
2039      LoadValueDirectWideFixed(rl_src2, r_tmp2);
2040      RegStorage r_tgt = CallHelperSetup(target);
2041      if ((flags & MIR_IGNORE_DIV_ZERO_CHECK) == 0) {
2042        GenDivZeroCheckWide(r_tmp2);
2043      }
2044      LoadValueDirectWideFixed(rl_src1, r_tmp1);
2045      // NOTE: callout here is not a safepoint
2046      CallHelper(r_tgt, target, false /* not safepoint */);
2047    } else {
2048      CallRuntimeHelperRegLocationRegLocation(target, rl_src1, rl_src2, false);
2049    }
2050    // Adjust return regs in to handle case of rem returning kArg2/kArg3
2051    if (ret_reg == TargetReg(kRet0, kNotWide).GetReg())
2052      rl_result = GetReturnWide(kCoreReg);
2053    else
2054      rl_result = GetReturnWideAlt();
2055    StoreValueWide(rl_dest, rl_result);
2056  }
2057}
2058
2059void Mir2Lir::GenConst(RegLocation rl_dest, int value) {
2060  RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
2061  LoadConstantNoClobber(rl_result.reg, value);
2062  StoreValue(rl_dest, rl_result);
2063}
2064
2065void Mir2Lir::GenConversionCall(QuickEntrypointEnum trampoline, RegLocation rl_dest,
2066                                RegLocation rl_src, RegisterClass return_reg_class) {
2067  /*
2068   * Don't optimize the register usage since it calls out to support
2069   * functions
2070   */
2071
2072  FlushAllRegs();   /* Send everything to home location */
2073  CallRuntimeHelperRegLocation(trampoline, rl_src, false);
2074  if (rl_dest.wide) {
2075    RegLocation rl_result = GetReturnWide(return_reg_class);
2076    StoreValueWide(rl_dest, rl_result);
2077  } else {
2078    RegLocation rl_result = GetReturn(return_reg_class);
2079    StoreValue(rl_dest, rl_result);
2080  }
2081}
2082
2083class Mir2Lir::SuspendCheckSlowPath : public Mir2Lir::LIRSlowPath {
2084 public:
2085  SuspendCheckSlowPath(Mir2Lir* m2l, LIR* branch, LIR* cont)
2086      : LIRSlowPath(m2l, branch, cont) {
2087  }
2088
2089  void Compile() OVERRIDE {
2090    m2l_->ResetRegPool();
2091    m2l_->ResetDefTracking();
2092    GenerateTargetLabel(kPseudoSuspendTarget);
2093    m2l_->CallRuntimeHelper(kQuickTestSuspend, true);
2094    if (cont_ != nullptr) {
2095      m2l_->OpUnconditionalBranch(cont_);
2096    }
2097  }
2098};
2099
2100/* Check if we need to check for pending suspend request */
2101void Mir2Lir::GenSuspendTest(int opt_flags) {
2102  if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK) != 0) {
2103    return;
2104  }
2105  if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitSuspendChecks()) {
2106    FlushAllRegs();
2107    LIR* branch = OpTestSuspend(nullptr);
2108    LIR* cont = NewLIR0(kPseudoTargetLabel);
2109    AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, cont));
2110  } else {
2111    FlushAllRegs();     // TODO: needed?
2112    LIR* inst = CheckSuspendUsingLoad();
2113    MarkSafepointPC(inst);
2114  }
2115}
2116
2117/* Check if we need to check for pending suspend request */
2118void Mir2Lir::GenSuspendTestAndBranch(int opt_flags, LIR* target) {
2119  if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK) != 0) {
2120    OpUnconditionalBranch(target);
2121    return;
2122  }
2123  if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitSuspendChecks()) {
2124    OpTestSuspend(target);
2125    FlushAllRegs();
2126    LIR* branch = OpUnconditionalBranch(nullptr);
2127    AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, target));
2128  } else {
2129    // For the implicit suspend check, just perform the trigger
2130    // load and branch to the target.
2131    FlushAllRegs();
2132    LIR* inst = CheckSuspendUsingLoad();
2133    MarkSafepointPC(inst);
2134    OpUnconditionalBranch(target);
2135  }
2136}
2137
2138/* Call out to helper assembly routine that will null check obj and then lock it. */
2139void Mir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) {
2140  UNUSED(opt_flags);  // TODO: avoid null check with specialized non-null helper.
2141  FlushAllRegs();
2142  CallRuntimeHelperRegLocation(kQuickLockObject, rl_src, true);
2143}
2144
2145/* Call out to helper assembly routine that will null check obj and then unlock it. */
2146void Mir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) {
2147  UNUSED(opt_flags);  // TODO: avoid null check with specialized non-null helper.
2148  FlushAllRegs();
2149  CallRuntimeHelperRegLocation(kQuickUnlockObject, rl_src, true);
2150}
2151
2152/* Generic code for generating a wide constant into a VR. */
2153void Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
2154  RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
2155  LoadConstantWide(rl_result.reg, value);
2156  StoreValueWide(rl_dest, rl_result);
2157}
2158
2159void Mir2Lir::GenSmallPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
2160  BasicBlock* bb = mir_graph_->GetBasicBlock(mir->bb);
2161  DCHECK(bb != nullptr);
2162  ArenaVector<SuccessorBlockInfo*>::const_iterator succ_bb_iter = bb->successor_blocks.cbegin();
2163  const uint16_t* table = mir_graph_->GetTable(mir, table_offset);
2164  const uint16_t entries = table[1];
2165  // Chained cmp-and-branch.
2166  const int32_t* as_int32 = reinterpret_cast<const int32_t*>(&table[2]);
2167  int32_t starting_key = as_int32[0];
2168  rl_src = LoadValue(rl_src, kCoreReg);
2169  int i = 0;
2170  for (; i < entries; ++i, ++succ_bb_iter) {
2171    if (!InexpensiveConstantInt(starting_key + i, Instruction::Code::IF_EQ)) {
2172      // Switch to using a temp and add.
2173      break;
2174    }
2175    SuccessorBlockInfo* successor_block_info = *succ_bb_iter;
2176    DCHECK(successor_block_info != nullptr);
2177    int case_block_id = successor_block_info->block;
2178    DCHECK_EQ(starting_key + i, successor_block_info->key);
2179    OpCmpImmBranch(kCondEq, rl_src.reg, starting_key + i, &block_label_list_[case_block_id]);
2180  }
2181  if (i < entries) {
2182    // The rest do not seem to be inexpensive. Try to allocate a temp and use add.
2183    RegStorage key_temp = AllocTypedTemp(false, kCoreReg, false);
2184    if (key_temp.Valid()) {
2185      LoadConstantNoClobber(key_temp, starting_key + i);
2186      for (; i < entries - 1; ++i, ++succ_bb_iter) {
2187        SuccessorBlockInfo* successor_block_info = *succ_bb_iter;
2188        DCHECK(successor_block_info != nullptr);
2189        int case_block_id = successor_block_info->block;
2190        DCHECK_EQ(starting_key + i, successor_block_info->key);
2191        OpCmpBranch(kCondEq, rl_src.reg, key_temp, &block_label_list_[case_block_id]);
2192        OpRegImm(kOpAdd, key_temp, 1);  // Increment key.
2193      }
2194      SuccessorBlockInfo* successor_block_info = *succ_bb_iter;
2195      DCHECK(successor_block_info != nullptr);
2196      int case_block_id = successor_block_info->block;
2197      DCHECK_EQ(starting_key + i, successor_block_info->key);
2198      OpCmpBranch(kCondEq, rl_src.reg, key_temp, &block_label_list_[case_block_id]);
2199    } else {
2200      // No free temp, just finish the old loop.
2201      for (; i < entries; ++i, ++succ_bb_iter) {
2202        SuccessorBlockInfo* successor_block_info = *succ_bb_iter;
2203        DCHECK(successor_block_info != nullptr);
2204        int case_block_id = successor_block_info->block;
2205        DCHECK_EQ(starting_key + i, successor_block_info->key);
2206        OpCmpImmBranch(kCondEq, rl_src.reg, starting_key + i, &block_label_list_[case_block_id]);
2207      }
2208    }
2209  }
2210}
2211
2212void Mir2Lir::GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
2213  const uint16_t* table = mir_graph_->GetTable(mir, table_offset);
2214  if (cu_->verbose) {
2215    DumpPackedSwitchTable(table);
2216  }
2217
2218  const uint16_t entries = table[1];
2219  if (entries <= kSmallSwitchThreshold) {
2220    GenSmallPackedSwitch(mir, table_offset, rl_src);
2221  } else {
2222    // Use the backend-specific implementation.
2223    GenLargePackedSwitch(mir, table_offset, rl_src);
2224  }
2225}
2226
2227void Mir2Lir::GenSmallSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
2228  BasicBlock* bb = mir_graph_->GetBasicBlock(mir->bb);
2229  DCHECK(bb != nullptr);
2230  const uint16_t* table = mir_graph_->GetTable(mir, table_offset);
2231  const uint16_t entries = table[1];
2232  // Chained cmp-and-branch.
2233  rl_src = LoadValue(rl_src, kCoreReg);
2234  int i = 0;
2235  for (SuccessorBlockInfo* successor_block_info : bb->successor_blocks) {
2236    int case_block_id = successor_block_info->block;
2237    int key = successor_block_info->key;
2238    OpCmpImmBranch(kCondEq, rl_src.reg, key, &block_label_list_[case_block_id]);
2239    i++;
2240  }
2241  DCHECK_EQ(i, entries);
2242}
2243
2244void Mir2Lir::GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
2245  const uint16_t* table = mir_graph_->GetTable(mir, table_offset);
2246  if (cu_->verbose) {
2247    DumpSparseSwitchTable(table);
2248  }
2249
2250  const uint16_t entries = table[1];
2251  if (entries <= kSmallSwitchThreshold) {
2252    GenSmallSparseSwitch(mir, table_offset, rl_src);
2253  } else {
2254    // Use the backend-specific implementation.
2255    GenLargeSparseSwitch(mir, table_offset, rl_src);
2256  }
2257}
2258
2259bool Mir2Lir::SizeMatchesTypeForEntrypoint(OpSize size, Primitive::Type type) {
2260  switch (size) {
2261    case kReference:
2262      return type == Primitive::kPrimNot;
2263    case k64:
2264    case kDouble:
2265      return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
2266    case k32:
2267    case kSingle:
2268      return type == Primitive::kPrimInt || type == Primitive::kPrimFloat;
2269    case kSignedHalf:
2270      return type == Primitive::kPrimShort;
2271    case kUnsignedHalf:
2272      return type == Primitive::kPrimChar;
2273    case kSignedByte:
2274      return type == Primitive::kPrimByte;
2275    case kUnsignedByte:
2276      return type == Primitive::kPrimBoolean;
2277    case kWord:  // Intentional fallthrough.
2278    default:
2279      return false;  // There are no sane types with this op size.
2280  }
2281}
2282
2283}  // namespace art
2284