gen_common.cc revision bfea9c29e809e04bde4a46591fea64c5a7b922fb
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "dex/compiler_ir.h"
18#include "dex/compiler_internals.h"
19#include "dex/quick/mir_to_lir-inl.h"
20#include "entrypoints/quick/quick_entrypoints.h"
21#include "mirror/array.h"
22#include "mirror/object-inl.h"
23#include "verifier/method_verifier.h"
24#include <functional>
25
26namespace art {
27
28/*
29 * This source files contains "gen" codegen routines that should
30 * be applicable to most targets.  Only mid-level support utilities
31 * and "op" calls may be used here.
32 */
33
34/*
35 * Generate a kPseudoBarrier marker to indicate the boundary of special
36 * blocks.
37 */
38void Mir2Lir::GenBarrier() {
39  LIR* barrier = NewLIR0(kPseudoBarrier);
40  /* Mark all resources as being clobbered */
41  DCHECK(!barrier->flags.use_def_invalid);
42  barrier->u.m.def_mask = ENCODE_ALL;
43}
44
45// TODO: need to do some work to split out targets with
46// condition codes and those without
47LIR* Mir2Lir::GenCheck(ConditionCode c_code, ThrowKind kind) {
48  DCHECK_NE(cu_->instruction_set, kMips);
49  LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind, current_dalvik_offset_);
50  LIR* branch = OpCondBranch(c_code, tgt);
51  // Remember branch target - will process later
52  throw_launchpads_.Insert(tgt);
53  return branch;
54}
55
56LIR* Mir2Lir::GenImmedCheck(ConditionCode c_code, int reg, int imm_val, ThrowKind kind) {
57  LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind, current_dalvik_offset_, reg, imm_val);
58  LIR* branch;
59  if (c_code == kCondAl) {
60    branch = OpUnconditionalBranch(tgt);
61  } else {
62    branch = OpCmpImmBranch(c_code, reg, imm_val, tgt);
63  }
64  // Remember branch target - will process later
65  throw_launchpads_.Insert(tgt);
66  return branch;
67}
68
69
70/* Perform null-check on a register.  */
71LIR* Mir2Lir::GenNullCheck(int m_reg, int opt_flags) {
72  if (Runtime::Current()->ExplicitNullChecks()) {
73    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
74      return NULL;
75    }
76    return GenImmedCheck(kCondEq, m_reg, 0, kThrowNullPointer);
77  }
78  return nullptr;
79}
80
81void Mir2Lir::MarkPossibleNullPointerException(int opt_flags) {
82  if (!Runtime::Current()->ExplicitNullChecks()) {
83    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
84      return;
85    }
86    MarkSafepointPC(last_lir_insn_);
87  }
88}
89
90void Mir2Lir::MarkPossibleStackOverflowException() {
91  if (!Runtime::Current()->ExplicitStackOverflowChecks()) {
92    MarkSafepointPC(last_lir_insn_);
93  }
94}
95
96void Mir2Lir::ForceImplicitNullCheck(int reg, int opt_flags) {
97  if (!Runtime::Current()->ExplicitNullChecks()) {
98    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
99      return;
100    }
101    // Force an implicit null check by performing a memory operation (load) from the given
102    // register with offset 0.  This will cause a signal if the register contains 0 (null).
103    int tmp = AllocTemp();
104    LIR* load = LoadWordDisp(reg, 0, tmp);
105    FreeTemp(tmp);
106    MarkSafepointPC(load);
107  }
108}
109
110/* Perform check on two registers */
111LIR* Mir2Lir::GenRegRegCheck(ConditionCode c_code, int reg1, int reg2,
112                             ThrowKind kind) {
113  LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind, current_dalvik_offset_, reg1, reg2);
114  LIR* branch = OpCmpBranch(c_code, reg1, reg2, tgt);
115  // Remember branch target - will process later
116  throw_launchpads_.Insert(tgt);
117  return branch;
118}
119
120void Mir2Lir::GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
121                                  RegLocation rl_src2, LIR* taken,
122                                  LIR* fall_through) {
123  ConditionCode cond;
124  switch (opcode) {
125    case Instruction::IF_EQ:
126      cond = kCondEq;
127      break;
128    case Instruction::IF_NE:
129      cond = kCondNe;
130      break;
131    case Instruction::IF_LT:
132      cond = kCondLt;
133      break;
134    case Instruction::IF_GE:
135      cond = kCondGe;
136      break;
137    case Instruction::IF_GT:
138      cond = kCondGt;
139      break;
140    case Instruction::IF_LE:
141      cond = kCondLe;
142      break;
143    default:
144      cond = static_cast<ConditionCode>(0);
145      LOG(FATAL) << "Unexpected opcode " << opcode;
146  }
147
148  // Normalize such that if either operand is constant, src2 will be constant
149  if (rl_src1.is_const) {
150    RegLocation rl_temp = rl_src1;
151    rl_src1 = rl_src2;
152    rl_src2 = rl_temp;
153    cond = FlipComparisonOrder(cond);
154  }
155
156  rl_src1 = LoadValue(rl_src1, kCoreReg);
157  // Is this really an immediate comparison?
158  if (rl_src2.is_const) {
159    // If it's already live in a register or not easily materialized, just keep going
160    RegLocation rl_temp = UpdateLoc(rl_src2);
161    if ((rl_temp.location == kLocDalvikFrame) &&
162        InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src2))) {
163      // OK - convert this to a compare immediate and branch
164      OpCmpImmBranch(cond, rl_src1.reg.GetReg(), mir_graph_->ConstantValue(rl_src2), taken);
165      return;
166    }
167  }
168  rl_src2 = LoadValue(rl_src2, kCoreReg);
169  OpCmpBranch(cond, rl_src1.reg.GetReg(), rl_src2.reg.GetReg(), taken);
170}
171
172void Mir2Lir::GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, LIR* taken,
173                                      LIR* fall_through) {
174  ConditionCode cond;
175  rl_src = LoadValue(rl_src, kCoreReg);
176  switch (opcode) {
177    case Instruction::IF_EQZ:
178      cond = kCondEq;
179      break;
180    case Instruction::IF_NEZ:
181      cond = kCondNe;
182      break;
183    case Instruction::IF_LTZ:
184      cond = kCondLt;
185      break;
186    case Instruction::IF_GEZ:
187      cond = kCondGe;
188      break;
189    case Instruction::IF_GTZ:
190      cond = kCondGt;
191      break;
192    case Instruction::IF_LEZ:
193      cond = kCondLe;
194      break;
195    default:
196      cond = static_cast<ConditionCode>(0);
197      LOG(FATAL) << "Unexpected opcode " << opcode;
198  }
199  OpCmpImmBranch(cond, rl_src.reg.GetReg(), 0, taken);
200}
201
202void Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) {
203  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
204  if (rl_src.location == kLocPhysReg) {
205    OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetReg());
206  } else {
207    LoadValueDirect(rl_src, rl_result.reg.GetReg());
208  }
209  OpRegRegImm(kOpAsr, rl_result.reg.GetHighReg(), rl_result.reg.GetReg(), 31);
210  StoreValueWide(rl_dest, rl_result);
211}
212
213void Mir2Lir::GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
214                              RegLocation rl_src) {
215  rl_src = LoadValue(rl_src, kCoreReg);
216  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
217  OpKind op = kOpInvalid;
218  switch (opcode) {
219    case Instruction::INT_TO_BYTE:
220      op = kOp2Byte;
221      break;
222    case Instruction::INT_TO_SHORT:
223       op = kOp2Short;
224       break;
225    case Instruction::INT_TO_CHAR:
226       op = kOp2Char;
227       break;
228    default:
229      LOG(ERROR) << "Bad int conversion type";
230  }
231  OpRegReg(op, rl_result.reg.GetReg(), rl_src.reg.GetReg());
232  StoreValue(rl_dest, rl_result);
233}
234
235/*
236 * Let helper function take care of everything.  Will call
237 * Array::AllocFromCode(type_idx, method, count);
238 * Note: AllocFromCode will handle checks for errNegativeArraySize.
239 */
240void Mir2Lir::GenNewArray(uint32_t type_idx, RegLocation rl_dest,
241                          RegLocation rl_src) {
242  FlushAllRegs();  /* Everything to home location */
243  ThreadOffset func_offset(-1);
244  const DexFile* dex_file = cu_->dex_file;
245  CompilerDriver* driver = cu_->compiler_driver;
246  if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *dex_file,
247                                                       type_idx)) {
248    bool is_type_initialized;  // Ignored as an array does not have an initializer.
249    bool use_direct_type_ptr;
250    uintptr_t direct_type_ptr;
251    if (kEmbedClassInCode &&
252        driver->CanEmbedTypeInCode(*dex_file, type_idx,
253                                   &is_type_initialized, &use_direct_type_ptr, &direct_type_ptr)) {
254      // The fast path.
255      if (!use_direct_type_ptr) {
256        LoadClassType(type_idx, kArg0);
257        func_offset = QUICK_ENTRYPOINT_OFFSET(pAllocArrayResolved);
258        CallRuntimeHelperRegMethodRegLocation(func_offset, TargetReg(kArg0), rl_src, true);
259      } else {
260        // Use the direct pointer.
261        func_offset = QUICK_ENTRYPOINT_OFFSET(pAllocArrayResolved);
262        CallRuntimeHelperImmMethodRegLocation(func_offset, direct_type_ptr, rl_src, true);
263      }
264    } else {
265      // The slow path.
266      DCHECK_EQ(func_offset.Int32Value(), -1);
267      func_offset = QUICK_ENTRYPOINT_OFFSET(pAllocArray);
268      CallRuntimeHelperImmMethodRegLocation(func_offset, type_idx, rl_src, true);
269    }
270    DCHECK_NE(func_offset.Int32Value(), -1);
271  } else {
272    func_offset= QUICK_ENTRYPOINT_OFFSET(pAllocArrayWithAccessCheck);
273    CallRuntimeHelperImmMethodRegLocation(func_offset, type_idx, rl_src, true);
274  }
275  RegLocation rl_result = GetReturn(false);
276  StoreValue(rl_dest, rl_result);
277}
278
279/*
280 * Similar to GenNewArray, but with post-allocation initialization.
281 * Verifier guarantees we're dealing with an array class.  Current
282 * code throws runtime exception "bad Filled array req" for 'D' and 'J'.
283 * Current code also throws internal unimp if not 'L', '[' or 'I'.
284 */
285void Mir2Lir::GenFilledNewArray(CallInfo* info) {
286  int elems = info->num_arg_words;
287  int type_idx = info->index;
288  FlushAllRegs();  /* Everything to home location */
289  ThreadOffset func_offset(-1);
290  if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file,
291                                                       type_idx)) {
292    func_offset = QUICK_ENTRYPOINT_OFFSET(pCheckAndAllocArray);
293  } else {
294    func_offset = QUICK_ENTRYPOINT_OFFSET(pCheckAndAllocArrayWithAccessCheck);
295  }
296  CallRuntimeHelperImmMethodImm(func_offset, type_idx, elems, true);
297  FreeTemp(TargetReg(kArg2));
298  FreeTemp(TargetReg(kArg1));
299  /*
300   * NOTE: the implicit target for Instruction::FILLED_NEW_ARRAY is the
301   * return region.  Because AllocFromCode placed the new array
302   * in kRet0, we'll just lock it into place.  When debugger support is
303   * added, it may be necessary to additionally copy all return
304   * values to a home location in thread-local storage
305   */
306  LockTemp(TargetReg(kRet0));
307
308  // TODO: use the correct component size, currently all supported types
309  // share array alignment with ints (see comment at head of function)
310  size_t component_size = sizeof(int32_t);
311
312  // Having a range of 0 is legal
313  if (info->is_range && (elems > 0)) {
314    /*
315     * Bit of ugliness here.  We're going generate a mem copy loop
316     * on the register range, but it is possible that some regs
317     * in the range have been promoted.  This is unlikely, but
318     * before generating the copy, we'll just force a flush
319     * of any regs in the source range that have been promoted to
320     * home location.
321     */
322    for (int i = 0; i < elems; i++) {
323      RegLocation loc = UpdateLoc(info->args[i]);
324      if (loc.location == kLocPhysReg) {
325        StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low),
326                      loc.reg.GetReg(), kWord);
327      }
328    }
329    /*
330     * TUNING note: generated code here could be much improved, but
331     * this is an uncommon operation and isn't especially performance
332     * critical.
333     */
334    int r_src = AllocTemp();
335    int r_dst = AllocTemp();
336    int r_idx = AllocTemp();
337    int r_val = INVALID_REG;
338    switch (cu_->instruction_set) {
339      case kThumb2:
340        r_val = TargetReg(kLr);
341        break;
342      case kX86:
343        FreeTemp(TargetReg(kRet0));
344        r_val = AllocTemp();
345        break;
346      case kMips:
347        r_val = AllocTemp();
348        break;
349      default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set;
350    }
351    // Set up source pointer
352    RegLocation rl_first = info->args[0];
353    OpRegRegImm(kOpAdd, r_src, TargetReg(kSp), SRegOffset(rl_first.s_reg_low));
354    // Set up the target pointer
355    OpRegRegImm(kOpAdd, r_dst, TargetReg(kRet0),
356                mirror::Array::DataOffset(component_size).Int32Value());
357    // Set up the loop counter (known to be > 0)
358    LoadConstant(r_idx, elems - 1);
359    // Generate the copy loop.  Going backwards for convenience
360    LIR* target = NewLIR0(kPseudoTargetLabel);
361    // Copy next element
362    LoadBaseIndexed(r_src, r_idx, r_val, 2, kWord);
363    StoreBaseIndexed(r_dst, r_idx, r_val, 2, kWord);
364    FreeTemp(r_val);
365    OpDecAndBranch(kCondGe, r_idx, target);
366    if (cu_->instruction_set == kX86) {
367      // Restore the target pointer
368      OpRegRegImm(kOpAdd, TargetReg(kRet0), r_dst,
369                  -mirror::Array::DataOffset(component_size).Int32Value());
370    }
371  } else if (!info->is_range) {
372    // TUNING: interleave
373    for (int i = 0; i < elems; i++) {
374      RegLocation rl_arg = LoadValue(info->args[i], kCoreReg);
375      StoreBaseDisp(TargetReg(kRet0),
376                    mirror::Array::DataOffset(component_size).Int32Value() +
377                    i * 4, rl_arg.reg.GetReg(), kWord);
378      // If the LoadValue caused a temp to be allocated, free it
379      if (IsTemp(rl_arg.reg.GetReg())) {
380        FreeTemp(rl_arg.reg.GetReg());
381      }
382    }
383  }
384  if (info->result.location != kLocInvalid) {
385    StoreValue(info->result, GetReturn(false /* not fp */));
386  }
387}
388
389//
390// Slow path to ensure a class is initialized for sget/sput.
391//
392class StaticFieldSlowPath : public Mir2Lir::LIRSlowPath {
393 public:
394  StaticFieldSlowPath(Mir2Lir* m2l, LIR* unresolved, LIR* uninit, LIR* cont,
395           int storage_index, int r_base) :
396    LIRSlowPath(m2l, m2l->GetCurrentDexPc(), unresolved, cont), uninit_(uninit), storage_index_(storage_index),
397    r_base_(r_base) {
398  }
399
400  void Compile() {
401    LIR* unresolved_target = GenerateTargetLabel();
402    uninit_->target = unresolved_target;
403    m2l_->CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeStaticStorage),
404                            storage_index_, true);
405    // Copy helper's result into r_base, a no-op on all but MIPS.
406    m2l_->OpRegCopy(r_base_,  m2l_->TargetReg(kRet0));
407
408    m2l_->OpUnconditionalBranch(cont_);
409  }
410
411 private:
412  LIR* const uninit_;
413  const int storage_index_;
414  const int r_base_;
415};
416
417void Mir2Lir::GenSput(MIR* mir, RegLocation rl_src, bool is_long_or_double,
418                      bool is_object) {
419  const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
420  cu_->compiler_driver->ProcessedStaticField(field_info.FastPut(), field_info.IsReferrersClass());
421  if (field_info.FastPut() && !SLOW_FIELD_PATH) {
422    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
423    int r_base;
424    if (field_info.IsReferrersClass()) {
425      // Fast path, static storage base is this method's class
426      RegLocation rl_method  = LoadCurrMethod();
427      r_base = AllocTemp();
428      LoadWordDisp(rl_method.reg.GetReg(),
429                   mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base);
430      if (IsTemp(rl_method.reg.GetReg())) {
431        FreeTemp(rl_method.reg.GetReg());
432      }
433    } else {
434      // Medium path, static storage base in a different class which requires checks that the other
435      // class is initialized.
436      // TODO: remove initialized check now that we are initializing classes in the compiler driver.
437      DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
438      // May do runtime call so everything to home locations.
439      FlushAllRegs();
440      // Using fixed register to sync with possible call to runtime support.
441      int r_method = TargetReg(kArg1);
442      LockTemp(r_method);
443      LoadCurrMethodDirect(r_method);
444      r_base = TargetReg(kArg0);
445      LockTemp(r_base);
446      LoadWordDisp(r_method,
447                   mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
448                   r_base);
449      LoadWordDisp(r_base, mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() +
450                   sizeof(int32_t*) * field_info.StorageIndex(), r_base);
451      // r_base now points at static storage (Class*) or NULL if the type is not yet resolved.
452      if (!field_info.IsInitialized() &&
453          (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) {
454        // Check if r_base is NULL or a not yet initialized class.
455
456        // The slow path is invoked if the r_base is NULL or the class pointed
457        // to by it is not initialized.
458        LIR* unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL);
459        int r_tmp = TargetReg(kArg2);
460        LockTemp(r_tmp);
461        LIR* uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
462                                          mirror::Class::StatusOffset().Int32Value(),
463                                          mirror::Class::kStatusInitialized, NULL);
464        LIR* cont = NewLIR0(kPseudoTargetLabel);
465
466        AddSlowPath(new (arena_) StaticFieldSlowPath(this,
467                                                     unresolved_branch, uninit_branch, cont,
468                                                     field_info.StorageIndex(), r_base));
469
470        FreeTemp(r_tmp);
471      }
472      FreeTemp(r_method);
473    }
474    // rBase now holds static storage base
475    if (is_long_or_double) {
476      rl_src = LoadValueWide(rl_src, kAnyReg);
477    } else {
478      rl_src = LoadValue(rl_src, kAnyReg);
479    }
480    if (field_info.IsVolatile()) {
481      GenMemBarrier(kStoreStore);
482    }
483    if (is_long_or_double) {
484      StoreBaseDispWide(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg.GetReg(),
485                        rl_src.reg.GetHighReg());
486    } else {
487      StoreWordDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg.GetReg());
488    }
489    if (field_info.IsVolatile()) {
490      GenMemBarrier(kStoreLoad);
491    }
492    if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) {
493      MarkGCCard(rl_src.reg.GetReg(), r_base);
494    }
495    FreeTemp(r_base);
496  } else {
497    FlushAllRegs();  // Everything to home locations
498    ThreadOffset setter_offset =
499        is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pSet64Static)
500                          : (is_object ? QUICK_ENTRYPOINT_OFFSET(pSetObjStatic)
501                                       : QUICK_ENTRYPOINT_OFFSET(pSet32Static));
502    CallRuntimeHelperImmRegLocation(setter_offset, field_info.FieldIndex(), rl_src, true);
503  }
504}
505
506void Mir2Lir::GenSget(MIR* mir, RegLocation rl_dest,
507                      bool is_long_or_double, bool is_object) {
508  const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
509  cu_->compiler_driver->ProcessedStaticField(field_info.FastGet(), field_info.IsReferrersClass());
510  if (field_info.FastGet() && !SLOW_FIELD_PATH) {
511    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
512    int r_base;
513    if (field_info.IsReferrersClass()) {
514      // Fast path, static storage base is this method's class
515      RegLocation rl_method  = LoadCurrMethod();
516      r_base = AllocTemp();
517      LoadWordDisp(rl_method.reg.GetReg(),
518                   mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base);
519    } else {
520      // Medium path, static storage base in a different class which requires checks that the other
521      // class is initialized
522      DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
523      // May do runtime call so everything to home locations.
524      FlushAllRegs();
525      // Using fixed register to sync with possible call to runtime support.
526      int r_method = TargetReg(kArg1);
527      LockTemp(r_method);
528      LoadCurrMethodDirect(r_method);
529      r_base = TargetReg(kArg0);
530      LockTemp(r_base);
531      LoadWordDisp(r_method,
532                   mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
533                   r_base);
534      LoadWordDisp(r_base, mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() +
535                   sizeof(int32_t*) * field_info.StorageIndex(), r_base);
536      // r_base now points at static storage (Class*) or NULL if the type is not yet resolved.
537      if (!field_info.IsInitialized() &&
538          (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) {
539        // Check if r_base is NULL or a not yet initialized class.
540
541        // The slow path is invoked if the r_base is NULL or the class pointed
542        // to by it is not initialized.
543        LIR* unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL);
544        int r_tmp = TargetReg(kArg2);
545        LockTemp(r_tmp);
546        LIR* uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
547                                          mirror::Class::StatusOffset().Int32Value(),
548                                          mirror::Class::kStatusInitialized, NULL);
549        LIR* cont = NewLIR0(kPseudoTargetLabel);
550
551        AddSlowPath(new (arena_) StaticFieldSlowPath(this,
552                                                     unresolved_branch, uninit_branch, cont,
553                                                     field_info.StorageIndex(), r_base));
554
555        FreeTemp(r_tmp);
556      }
557      FreeTemp(r_method);
558    }
559    // r_base now holds static storage base
560    RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
561    if (field_info.IsVolatile()) {
562      GenMemBarrier(kLoadLoad);
563    }
564    if (is_long_or_double) {
565      LoadBaseDispWide(r_base, field_info.FieldOffset().Int32Value(), rl_result.reg.GetReg(),
566                       rl_result.reg.GetHighReg(), INVALID_SREG);
567    } else {
568      LoadWordDisp(r_base, field_info.FieldOffset().Int32Value(), rl_result.reg.GetReg());
569    }
570    FreeTemp(r_base);
571    if (is_long_or_double) {
572      StoreValueWide(rl_dest, rl_result);
573    } else {
574      StoreValue(rl_dest, rl_result);
575    }
576  } else {
577    FlushAllRegs();  // Everything to home locations
578    ThreadOffset getterOffset =
579        is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pGet64Static)
580                          :(is_object ? QUICK_ENTRYPOINT_OFFSET(pGetObjStatic)
581                                      : QUICK_ENTRYPOINT_OFFSET(pGet32Static));
582    CallRuntimeHelperImm(getterOffset, field_info.FieldIndex(), true);
583    if (is_long_or_double) {
584      RegLocation rl_result = GetReturnWide(rl_dest.fp);
585      StoreValueWide(rl_dest, rl_result);
586    } else {
587      RegLocation rl_result = GetReturn(rl_dest.fp);
588      StoreValue(rl_dest, rl_result);
589    }
590  }
591}
592
593// Generate code for all slow paths.
594void Mir2Lir::HandleSlowPaths() {
595  int n = slow_paths_.Size();
596  for (int i = 0; i < n; ++i) {
597    LIRSlowPath* slowpath = slow_paths_.Get(i);
598    slowpath->Compile();
599  }
600  slow_paths_.Reset();
601}
602
603void Mir2Lir::HandleSuspendLaunchPads() {
604  int num_elems = suspend_launchpads_.Size();
605  ThreadOffset helper_offset = QUICK_ENTRYPOINT_OFFSET(pTestSuspend);
606  for (int i = 0; i < num_elems; i++) {
607    ResetRegPool();
608    ResetDefTracking();
609    LIR* lab = suspend_launchpads_.Get(i);
610    LIR* resume_lab = reinterpret_cast<LIR*>(UnwrapPointer(lab->operands[0]));
611    current_dalvik_offset_ = lab->operands[1];
612    AppendLIR(lab);
613    int r_tgt = CallHelperSetup(helper_offset);
614    CallHelper(r_tgt, helper_offset, true /* MarkSafepointPC */);
615    OpUnconditionalBranch(resume_lab);
616  }
617}
618
619void Mir2Lir::HandleThrowLaunchPads() {
620  int num_elems = throw_launchpads_.Size();
621  for (int i = 0; i < num_elems; i++) {
622    ResetRegPool();
623    ResetDefTracking();
624    LIR* lab = throw_launchpads_.Get(i);
625    current_dalvik_offset_ = lab->operands[1];
626    AppendLIR(lab);
627    ThreadOffset func_offset(-1);
628    int v1 = lab->operands[2];
629    int v2 = lab->operands[3];
630    bool target_x86 = (cu_->instruction_set == kX86);
631    switch (lab->operands[0]) {
632      case kThrowNullPointer:
633        func_offset = QUICK_ENTRYPOINT_OFFSET(pThrowNullPointer);
634        break;
635      case kThrowConstantArrayBounds:  // v1 is length reg (for Arm/Mips), v2 constant index
636        // v1 holds the constant array index.  Mips/Arm uses v2 for length, x86 reloads.
637        if (target_x86) {
638          OpRegMem(kOpMov, TargetReg(kArg1), v1, mirror::Array::LengthOffset().Int32Value());
639        } else {
640          OpRegCopy(TargetReg(kArg1), v1);
641        }
642        // Make sure the following LoadConstant doesn't mess with kArg1.
643        LockTemp(TargetReg(kArg1));
644        LoadConstant(TargetReg(kArg0), v2);
645        func_offset = QUICK_ENTRYPOINT_OFFSET(pThrowArrayBounds);
646        break;
647      case kThrowArrayBounds:
648        // Move v1 (array index) to kArg0 and v2 (array length) to kArg1
649        if (v2 != TargetReg(kArg0)) {
650          OpRegCopy(TargetReg(kArg0), v1);
651          if (target_x86) {
652            // x86 leaves the array pointer in v2, so load the array length that the handler expects
653            OpRegMem(kOpMov, TargetReg(kArg1), v2, mirror::Array::LengthOffset().Int32Value());
654          } else {
655            OpRegCopy(TargetReg(kArg1), v2);
656          }
657        } else {
658          if (v1 == TargetReg(kArg1)) {
659            // Swap v1 and v2, using kArg2 as a temp
660            OpRegCopy(TargetReg(kArg2), v1);
661            if (target_x86) {
662              // x86 leaves the array pointer in v2; load the array length that the handler expects
663              OpRegMem(kOpMov, TargetReg(kArg1), v2, mirror::Array::LengthOffset().Int32Value());
664            } else {
665              OpRegCopy(TargetReg(kArg1), v2);
666            }
667            OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));
668          } else {
669            if (target_x86) {
670              // x86 leaves the array pointer in v2; load the array length that the handler expects
671              OpRegMem(kOpMov, TargetReg(kArg1), v2, mirror::Array::LengthOffset().Int32Value());
672            } else {
673              OpRegCopy(TargetReg(kArg1), v2);
674            }
675            OpRegCopy(TargetReg(kArg0), v1);
676          }
677        }
678        func_offset = QUICK_ENTRYPOINT_OFFSET(pThrowArrayBounds);
679        break;
680      case kThrowDivZero:
681        func_offset = QUICK_ENTRYPOINT_OFFSET(pThrowDivZero);
682        break;
683      case kThrowNoSuchMethod:
684        OpRegCopy(TargetReg(kArg0), v1);
685        func_offset =
686          QUICK_ENTRYPOINT_OFFSET(pThrowNoSuchMethod);
687        break;
688      case kThrowStackOverflow:
689        func_offset = QUICK_ENTRYPOINT_OFFSET(pThrowStackOverflow);
690        // Restore stack alignment
691        if (target_x86) {
692          OpRegImm(kOpAdd, TargetReg(kSp), frame_size_);
693        } else {
694          OpRegImm(kOpAdd, TargetReg(kSp), (num_core_spills_ + num_fp_spills_) * 4);
695        }
696        break;
697      default:
698        LOG(FATAL) << "Unexpected throw kind: " << lab->operands[0];
699    }
700    ClobberCallerSave();
701    int r_tgt = CallHelperSetup(func_offset);
702    CallHelper(r_tgt, func_offset, true /* MarkSafepointPC */);
703  }
704}
705
706void Mir2Lir::GenIGet(MIR* mir, int opt_flags, OpSize size,
707                      RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double,
708                      bool is_object) {
709  const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
710  cu_->compiler_driver->ProcessedInstanceField(field_info.FastGet());
711  if (field_info.FastGet() && !SLOW_FIELD_PATH) {
712    RegLocation rl_result;
713    RegisterClass reg_class = oat_reg_class_by_size(size);
714    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
715    rl_obj = LoadValue(rl_obj, kCoreReg);
716    if (is_long_or_double) {
717      DCHECK(rl_dest.wide);
718      GenNullCheck(rl_obj.reg.GetReg(), opt_flags);
719      if (cu_->instruction_set == kX86) {
720        rl_result = EvalLoc(rl_dest, reg_class, true);
721        GenNullCheck(rl_obj.reg.GetReg(), opt_flags);
722        LoadBaseDispWide(rl_obj.reg.GetReg(), field_info.FieldOffset().Int32Value(),
723                         rl_result.reg.GetReg(),
724                         rl_result.reg.GetHighReg(), rl_obj.s_reg_low);
725        MarkPossibleNullPointerException(opt_flags);
726        if (field_info.IsVolatile()) {
727          GenMemBarrier(kLoadLoad);
728        }
729      } else {
730        int reg_ptr = AllocTemp();
731        OpRegRegImm(kOpAdd, reg_ptr, rl_obj.reg.GetReg(), field_info.FieldOffset().Int32Value());
732        rl_result = EvalLoc(rl_dest, reg_class, true);
733        LoadBaseDispWide(reg_ptr, 0, rl_result.reg.GetReg(), rl_result.reg.GetHighReg(),
734                         INVALID_SREG);
735        if (field_info.IsVolatile()) {
736          GenMemBarrier(kLoadLoad);
737        }
738        FreeTemp(reg_ptr);
739      }
740      StoreValueWide(rl_dest, rl_result);
741    } else {
742      rl_result = EvalLoc(rl_dest, reg_class, true);
743      GenNullCheck(rl_obj.reg.GetReg(), opt_flags);
744      LoadBaseDisp(rl_obj.reg.GetReg(), field_info.FieldOffset().Int32Value(),
745                   rl_result.reg.GetReg(), kWord, rl_obj.s_reg_low);
746      MarkPossibleNullPointerException(opt_flags);
747      if (field_info.IsVolatile()) {
748        GenMemBarrier(kLoadLoad);
749      }
750      StoreValue(rl_dest, rl_result);
751    }
752  } else {
753    ThreadOffset getterOffset =
754        is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pGet64Instance)
755                          : (is_object ? QUICK_ENTRYPOINT_OFFSET(pGetObjInstance)
756                                       : QUICK_ENTRYPOINT_OFFSET(pGet32Instance));
757    CallRuntimeHelperImmRegLocation(getterOffset, field_info.FieldIndex(), rl_obj, true);
758    if (is_long_or_double) {
759      RegLocation rl_result = GetReturnWide(rl_dest.fp);
760      StoreValueWide(rl_dest, rl_result);
761    } else {
762      RegLocation rl_result = GetReturn(rl_dest.fp);
763      StoreValue(rl_dest, rl_result);
764    }
765  }
766}
767
768void Mir2Lir::GenIPut(MIR* mir, int opt_flags, OpSize size,
769                      RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double,
770                      bool is_object) {
771  const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
772  cu_->compiler_driver->ProcessedInstanceField(field_info.FastPut());
773  if (field_info.FastPut() && !SLOW_FIELD_PATH) {
774    RegisterClass reg_class = oat_reg_class_by_size(size);
775    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
776    rl_obj = LoadValue(rl_obj, kCoreReg);
777    if (is_long_or_double) {
778      int reg_ptr;
779      rl_src = LoadValueWide(rl_src, kAnyReg);
780      GenNullCheck(rl_obj.reg.GetReg(), opt_flags);
781      reg_ptr = AllocTemp();
782      OpRegRegImm(kOpAdd, reg_ptr, rl_obj.reg.GetReg(), field_info.FieldOffset().Int32Value());
783      if (field_info.IsVolatile()) {
784        GenMemBarrier(kStoreStore);
785      }
786      StoreBaseDispWide(reg_ptr, 0, rl_src.reg.GetReg(), rl_src.reg.GetHighReg());
787      MarkPossibleNullPointerException(opt_flags);
788      if (field_info.IsVolatile()) {
789        GenMemBarrier(kLoadLoad);
790      }
791      FreeTemp(reg_ptr);
792    } else {
793      rl_src = LoadValue(rl_src, reg_class);
794      GenNullCheck(rl_obj.reg.GetReg(), opt_flags);
795      if (field_info.IsVolatile()) {
796        GenMemBarrier(kStoreStore);
797      }
798      StoreBaseDisp(rl_obj.reg.GetReg(), field_info.FieldOffset().Int32Value(),
799        rl_src.reg.GetReg(), kWord);
800      MarkPossibleNullPointerException(opt_flags);
801      if (field_info.IsVolatile()) {
802        GenMemBarrier(kLoadLoad);
803      }
804      if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) {
805        MarkGCCard(rl_src.reg.GetReg(), rl_obj.reg.GetReg());
806      }
807    }
808  } else {
809    ThreadOffset setter_offset =
810        is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pSet64Instance)
811                          : (is_object ? QUICK_ENTRYPOINT_OFFSET(pSetObjInstance)
812                                       : QUICK_ENTRYPOINT_OFFSET(pSet32Instance));
813    CallRuntimeHelperImmRegLocationRegLocation(setter_offset, field_info.FieldIndex(),
814                                               rl_obj, rl_src, true);
815  }
816}
817
818void Mir2Lir::GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
819                             RegLocation rl_src) {
820  bool needs_range_check = !(opt_flags & MIR_IGNORE_RANGE_CHECK);
821  bool needs_null_check = !((cu_->disable_opt & (1 << kNullCheckElimination)) &&
822      (opt_flags & MIR_IGNORE_NULL_CHECK));
823  ThreadOffset helper = needs_range_check
824      ? (needs_null_check ? QUICK_ENTRYPOINT_OFFSET(pAputObjectWithNullAndBoundCheck)
825                          : QUICK_ENTRYPOINT_OFFSET(pAputObjectWithBoundCheck))
826      : QUICK_ENTRYPOINT_OFFSET(pAputObject);
827  CallRuntimeHelperRegLocationRegLocationRegLocation(helper, rl_array, rl_index, rl_src, true);
828}
829
830void Mir2Lir::GenConstClass(uint32_t type_idx, RegLocation rl_dest) {
831  RegLocation rl_method = LoadCurrMethod();
832  int res_reg = AllocTemp();
833  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
834  if (!cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
835                                                   *cu_->dex_file,
836                                                   type_idx)) {
837    // Call out to helper which resolves type and verifies access.
838    // Resolved type returned in kRet0.
839    CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccess),
840                            type_idx, rl_method.reg.GetReg(), true);
841    RegLocation rl_result = GetReturn(false);
842    StoreValue(rl_dest, rl_result);
843  } else {
844    // We're don't need access checks, load type from dex cache
845    int32_t dex_cache_offset =
846        mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value();
847    LoadWordDisp(rl_method.reg.GetReg(), dex_cache_offset, res_reg);
848    int32_t offset_of_type =
849        mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*)
850                          * type_idx);
851    LoadWordDisp(res_reg, offset_of_type, rl_result.reg.GetReg());
852    if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file,
853        type_idx) || SLOW_TYPE_PATH) {
854      // Slow path, at runtime test if type is null and if so initialize
855      FlushAllRegs();
856      LIR* branch = OpCmpImmBranch(kCondEq, rl_result.reg.GetReg(), 0, NULL);
857      LIR* cont = NewLIR0(kPseudoTargetLabel);
858
859      // Object to generate the slow path for class resolution.
860      class SlowPath : public LIRSlowPath {
861       public:
862        SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, const int type_idx,
863                 const RegLocation& rl_method, const RegLocation& rl_result) :
864                   LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), type_idx_(type_idx),
865                   rl_method_(rl_method), rl_result_(rl_result) {
866        }
867
868        void Compile() {
869          GenerateTargetLabel();
870
871          m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(pInitializeType), type_idx_,
872                                        rl_method_.reg.GetReg(), true);
873          m2l_->OpRegCopy(rl_result_.reg.GetReg(),  m2l_->TargetReg(kRet0));
874
875          m2l_->OpUnconditionalBranch(cont_);
876        }
877
878       private:
879        const int type_idx_;
880        const RegLocation rl_method_;
881        const RegLocation rl_result_;
882      };
883
884      // Add to list for future.
885      AddSlowPath(new (arena_) SlowPath(this, branch, cont,
886                                        type_idx, rl_method, rl_result));
887
888      StoreValue(rl_dest, rl_result);
889     } else {
890      // Fast path, we're done - just store result
891      StoreValue(rl_dest, rl_result);
892    }
893  }
894}
895
896void Mir2Lir::GenConstString(uint32_t string_idx, RegLocation rl_dest) {
897  /* NOTE: Most strings should be available at compile time */
898  int32_t offset_of_string = mirror::Array::DataOffset(sizeof(mirror::String*)).Int32Value() +
899                 (sizeof(mirror::String*) * string_idx);
900  if (!cu_->compiler_driver->CanAssumeStringIsPresentInDexCache(
901      *cu_->dex_file, string_idx) || SLOW_STRING_PATH) {
902    // slow path, resolve string if not in dex cache
903    FlushAllRegs();
904    LockCallTemps();  // Using explicit registers
905
906    // If the Method* is already in a register, we can save a copy.
907    RegLocation rl_method = mir_graph_->GetMethodLoc();
908    int r_method;
909    if (rl_method.location == kLocPhysReg) {
910      // A temp would conflict with register use below.
911      DCHECK(!IsTemp(rl_method.reg.GetReg()));
912      r_method = rl_method.reg.GetReg();
913    } else {
914      r_method = TargetReg(kArg2);
915      LoadCurrMethodDirect(r_method);
916    }
917    LoadWordDisp(r_method, mirror::ArtMethod::DexCacheStringsOffset().Int32Value(),
918                 TargetReg(kArg0));
919
920    // Might call out to helper, which will return resolved string in kRet0
921    LoadWordDisp(TargetReg(kArg0), offset_of_string, TargetReg(kRet0));
922    if (cu_->instruction_set == kThumb2 ||
923        cu_->instruction_set == kMips) {
924      //  OpRegImm(kOpCmp, TargetReg(kRet0), 0);  // Is resolved?
925      LoadConstant(TargetReg(kArg1), string_idx);
926      LIR* fromfast = OpCmpImmBranch(kCondEq, TargetReg(kRet0), 0, NULL);
927      LIR* cont = NewLIR0(kPseudoTargetLabel);
928      GenBarrier();
929
930      // Object to generate the slow path for string resolution.
931      class SlowPath : public LIRSlowPath {
932       public:
933        SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, int r_method) :
934          LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), r_method_(r_method) {
935        }
936
937        void Compile() {
938          GenerateTargetLabel();
939
940          int r_tgt = m2l_->CallHelperSetup(QUICK_ENTRYPOINT_OFFSET(pResolveString));
941
942          m2l_->OpRegCopy(m2l_->TargetReg(kArg0), r_method_);   // .eq
943          LIR* call_inst = m2l_->OpReg(kOpBlx, r_tgt);
944          m2l_->MarkSafepointPC(call_inst);
945          m2l_->FreeTemp(r_tgt);
946
947          m2l_->OpUnconditionalBranch(cont_);
948        }
949
950       private:
951         int r_method_;
952      };
953
954      // Add to list for future.
955      AddSlowPath(new (arena_) SlowPath(this, fromfast, cont, r_method));
956    } else {
957      DCHECK_EQ(cu_->instruction_set, kX86);
958      LIR* branch = OpCmpImmBranch(kCondNe, TargetReg(kRet0), 0, NULL);
959      LoadConstant(TargetReg(kArg1), string_idx);
960      CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(pResolveString), r_method,
961                              TargetReg(kArg1), true);
962      LIR* target = NewLIR0(kPseudoTargetLabel);
963      branch->target = target;
964    }
965    GenBarrier();
966    StoreValue(rl_dest, GetReturn(false));
967  } else {
968    RegLocation rl_method = LoadCurrMethod();
969    int res_reg = AllocTemp();
970    RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
971    LoadWordDisp(rl_method.reg.GetReg(),
972                 mirror::ArtMethod::DexCacheStringsOffset().Int32Value(), res_reg);
973    LoadWordDisp(res_reg, offset_of_string, rl_result.reg.GetReg());
974    StoreValue(rl_dest, rl_result);
975  }
976}
977
978/*
979 * Let helper function take care of everything.  Will
980 * call Class::NewInstanceFromCode(type_idx, method);
981 */
982void Mir2Lir::GenNewInstance(uint32_t type_idx, RegLocation rl_dest) {
983  FlushAllRegs();  /* Everything to home location */
984  // alloc will always check for resolution, do we also need to verify
985  // access because the verifier was unable to?
986  ThreadOffset func_offset(-1);
987  const DexFile* dex_file = cu_->dex_file;
988  CompilerDriver* driver = cu_->compiler_driver;
989  if (driver->CanAccessInstantiableTypeWithoutChecks(
990      cu_->method_idx, *dex_file, type_idx)) {
991    bool is_type_initialized;
992    bool use_direct_type_ptr;
993    uintptr_t direct_type_ptr;
994    if (kEmbedClassInCode &&
995        driver->CanEmbedTypeInCode(*dex_file, type_idx,
996                                   &is_type_initialized, &use_direct_type_ptr, &direct_type_ptr)) {
997      // The fast path.
998      if (!use_direct_type_ptr) {
999        LoadClassType(type_idx, kArg0);
1000        if (!is_type_initialized) {
1001          func_offset = QUICK_ENTRYPOINT_OFFSET(pAllocObjectResolved);
1002          CallRuntimeHelperRegMethod(func_offset, TargetReg(kArg0), true);
1003        } else {
1004          func_offset = QUICK_ENTRYPOINT_OFFSET(pAllocObjectInitialized);
1005          CallRuntimeHelperRegMethod(func_offset, TargetReg(kArg0), true);
1006        }
1007      } else {
1008        // Use the direct pointer.
1009        if (!is_type_initialized) {
1010          func_offset = QUICK_ENTRYPOINT_OFFSET(pAllocObjectResolved);
1011          CallRuntimeHelperImmMethod(func_offset, direct_type_ptr, true);
1012        } else {
1013          func_offset = QUICK_ENTRYPOINT_OFFSET(pAllocObjectInitialized);
1014          CallRuntimeHelperImmMethod(func_offset, direct_type_ptr, true);
1015        }
1016      }
1017    } else {
1018      // The slow path.
1019      DCHECK_EQ(func_offset.Int32Value(), -1);
1020      func_offset = QUICK_ENTRYPOINT_OFFSET(pAllocObject);
1021      CallRuntimeHelperImmMethod(func_offset, type_idx, true);
1022    }
1023    DCHECK_NE(func_offset.Int32Value(), -1);
1024  } else {
1025    func_offset = QUICK_ENTRYPOINT_OFFSET(pAllocObjectWithAccessCheck);
1026    CallRuntimeHelperImmMethod(func_offset, type_idx, true);
1027  }
1028  RegLocation rl_result = GetReturn(false);
1029  StoreValue(rl_dest, rl_result);
1030}
1031
1032void Mir2Lir::GenThrow(RegLocation rl_src) {
1033  FlushAllRegs();
1034  CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(pDeliverException), rl_src, true);
1035}
1036
1037// For final classes there are no sub-classes to check and so we can answer the instance-of
1038// question with simple comparisons.
1039void Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
1040                                 RegLocation rl_src) {
1041  // X86 has its own implementation.
1042  DCHECK_NE(cu_->instruction_set, kX86);
1043
1044  RegLocation object = LoadValue(rl_src, kCoreReg);
1045  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1046  int result_reg = rl_result.reg.GetReg();
1047  if (result_reg == object.reg.GetReg()) {
1048    result_reg = AllocTypedTemp(false, kCoreReg);
1049  }
1050  LoadConstant(result_reg, 0);     // assume false
1051  LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg.GetReg(), 0, NULL);
1052
1053  int check_class = AllocTypedTemp(false, kCoreReg);
1054  int object_class = AllocTypedTemp(false, kCoreReg);
1055
1056  LoadCurrMethodDirect(check_class);
1057  if (use_declaring_class) {
1058    LoadWordDisp(check_class, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1059                 check_class);
1060    LoadWordDisp(object.reg.GetReg(),  mirror::Object::ClassOffset().Int32Value(), object_class);
1061  } else {
1062    LoadWordDisp(check_class, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1063                 check_class);
1064    LoadWordDisp(object.reg.GetReg(),  mirror::Object::ClassOffset().Int32Value(), object_class);
1065    int32_t offset_of_type =
1066      mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() +
1067      (sizeof(mirror::Class*) * type_idx);
1068    LoadWordDisp(check_class, offset_of_type, check_class);
1069  }
1070
1071  LIR* ne_branchover = NULL;
1072  if (cu_->instruction_set == kThumb2) {
1073    OpRegReg(kOpCmp, check_class, object_class);  // Same?
1074    OpIT(kCondEq, "");   // if-convert the test
1075    LoadConstant(result_reg, 1);     // .eq case - load true
1076  } else {
1077    ne_branchover = OpCmpBranch(kCondNe, check_class, object_class, NULL);
1078    LoadConstant(result_reg, 1);     // eq case - load true
1079  }
1080  LIR* target = NewLIR0(kPseudoTargetLabel);
1081  null_branchover->target = target;
1082  if (ne_branchover != NULL) {
1083    ne_branchover->target = target;
1084  }
1085  FreeTemp(object_class);
1086  FreeTemp(check_class);
1087  if (IsTemp(result_reg)) {
1088    OpRegCopy(rl_result.reg.GetReg(), result_reg);
1089    FreeTemp(result_reg);
1090  }
1091  StoreValue(rl_dest, rl_result);
1092}
1093
1094void Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1095                                         bool type_known_abstract, bool use_declaring_class,
1096                                         bool can_assume_type_is_in_dex_cache,
1097                                         uint32_t type_idx, RegLocation rl_dest,
1098                                         RegLocation rl_src) {
1099  // X86 has its own implementation.
1100  DCHECK_NE(cu_->instruction_set, kX86);
1101
1102  FlushAllRegs();
1103  // May generate a call - use explicit registers
1104  LockCallTemps();
1105  LoadCurrMethodDirect(TargetReg(kArg1));  // kArg1 <= current Method*
1106  int class_reg = TargetReg(kArg2);  // kArg2 will hold the Class*
1107  if (needs_access_check) {
1108    // Check we have access to type_idx and if not throw IllegalAccessError,
1109    // returns Class* in kArg0
1110    CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccess),
1111                         type_idx, true);
1112    OpRegCopy(class_reg, TargetReg(kRet0));  // Align usage with fast path
1113    LoadValueDirectFixed(rl_src, TargetReg(kArg0));  // kArg0 <= ref
1114  } else if (use_declaring_class) {
1115    LoadValueDirectFixed(rl_src, TargetReg(kArg0));  // kArg0 <= ref
1116    LoadWordDisp(TargetReg(kArg1),
1117                 mirror::ArtMethod::DeclaringClassOffset().Int32Value(), class_reg);
1118  } else {
1119    // Load dex cache entry into class_reg (kArg2)
1120    LoadValueDirectFixed(rl_src, TargetReg(kArg0));  // kArg0 <= ref
1121    LoadWordDisp(TargetReg(kArg1),
1122                 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg);
1123    int32_t offset_of_type =
1124        mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*)
1125        * type_idx);
1126    LoadWordDisp(class_reg, offset_of_type, class_reg);
1127    if (!can_assume_type_is_in_dex_cache) {
1128      // Need to test presence of type in dex cache at runtime
1129      LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL);
1130      // Not resolved
1131      // Call out to helper, which will return resolved type in kRet0
1132      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeType), type_idx, true);
1133      OpRegCopy(TargetReg(kArg2), TargetReg(kRet0));  // Align usage with fast path
1134      LoadValueDirectFixed(rl_src, TargetReg(kArg0));  /* reload Ref */
1135      // Rejoin code paths
1136      LIR* hop_target = NewLIR0(kPseudoTargetLabel);
1137      hop_branch->target = hop_target;
1138    }
1139  }
1140  /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result */
1141  RegLocation rl_result = GetReturn(false);
1142  if (cu_->instruction_set == kMips) {
1143    // On MIPS rArg0 != rl_result, place false in result if branch is taken.
1144    LoadConstant(rl_result.reg.GetReg(), 0);
1145  }
1146  LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL);
1147
1148  /* load object->klass_ */
1149  DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1150  LoadWordDisp(TargetReg(kArg0),  mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
1151  /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class */
1152  LIR* branchover = NULL;
1153  if (type_known_final) {
1154    // rl_result == ref == null == 0.
1155    if (cu_->instruction_set == kThumb2) {
1156      OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2));  // Same?
1157      OpIT(kCondEq, "E");   // if-convert the test
1158      LoadConstant(rl_result.reg.GetReg(), 1);     // .eq case - load true
1159      LoadConstant(rl_result.reg.GetReg(), 0);     // .ne case - load false
1160    } else {
1161      LoadConstant(rl_result.reg.GetReg(), 0);     // ne case - load false
1162      branchover = OpCmpBranch(kCondNe, TargetReg(kArg1), TargetReg(kArg2), NULL);
1163      LoadConstant(rl_result.reg.GetReg(), 1);     // eq case - load true
1164    }
1165  } else {
1166    if (cu_->instruction_set == kThumb2) {
1167      int r_tgt = LoadHelper(QUICK_ENTRYPOINT_OFFSET(pInstanceofNonTrivial));
1168      if (!type_known_abstract) {
1169      /* Uses conditional nullification */
1170        OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2));  // Same?
1171        OpIT(kCondEq, "EE");   // if-convert the test
1172        LoadConstant(TargetReg(kArg0), 1);     // .eq case - load true
1173      }
1174      OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));    // .ne case - arg0 <= class
1175      OpReg(kOpBlx, r_tgt);    // .ne case: helper(class, ref->class)
1176      FreeTemp(r_tgt);
1177    } else {
1178      if (!type_known_abstract) {
1179        /* Uses branchovers */
1180        LoadConstant(rl_result.reg.GetReg(), 1);     // assume true
1181        branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL);
1182      }
1183      int r_tgt = LoadHelper(QUICK_ENTRYPOINT_OFFSET(pInstanceofNonTrivial));
1184      OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));    // .ne case - arg0 <= class
1185      OpReg(kOpBlx, r_tgt);    // .ne case: helper(class, ref->class)
1186      FreeTemp(r_tgt);
1187    }
1188  }
1189  // TODO: only clobber when type isn't final?
1190  ClobberCallerSave();
1191  /* branch targets here */
1192  LIR* target = NewLIR0(kPseudoTargetLabel);
1193  StoreValue(rl_dest, rl_result);
1194  branch1->target = target;
1195  if (branchover != NULL) {
1196    branchover->target = target;
1197  }
1198}
1199
1200void Mir2Lir::GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) {
1201  bool type_known_final, type_known_abstract, use_declaring_class;
1202  bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
1203                                                                              *cu_->dex_file,
1204                                                                              type_idx,
1205                                                                              &type_known_final,
1206                                                                              &type_known_abstract,
1207                                                                              &use_declaring_class);
1208  bool can_assume_type_is_in_dex_cache = !needs_access_check &&
1209      cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx);
1210
1211  if ((use_declaring_class || can_assume_type_is_in_dex_cache) && type_known_final) {
1212    GenInstanceofFinal(use_declaring_class, type_idx, rl_dest, rl_src);
1213  } else {
1214    GenInstanceofCallingHelper(needs_access_check, type_known_final, type_known_abstract,
1215                               use_declaring_class, can_assume_type_is_in_dex_cache,
1216                               type_idx, rl_dest, rl_src);
1217  }
1218}
1219
1220void Mir2Lir::GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src) {
1221  bool type_known_final, type_known_abstract, use_declaring_class;
1222  bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
1223                                                                              *cu_->dex_file,
1224                                                                              type_idx,
1225                                                                              &type_known_final,
1226                                                                              &type_known_abstract,
1227                                                                              &use_declaring_class);
1228  // Note: currently type_known_final is unused, as optimizing will only improve the performance
1229  // of the exception throw path.
1230  DexCompilationUnit* cu = mir_graph_->GetCurrentDexCompilationUnit();
1231  if (!needs_access_check && cu_->compiler_driver->IsSafeCast(cu, insn_idx)) {
1232    // Verifier type analysis proved this check cast would never cause an exception.
1233    return;
1234  }
1235  FlushAllRegs();
1236  // May generate a call - use explicit registers
1237  LockCallTemps();
1238  LoadCurrMethodDirect(TargetReg(kArg1));  // kArg1 <= current Method*
1239  int class_reg = TargetReg(kArg2);  // kArg2 will hold the Class*
1240  if (needs_access_check) {
1241    // Check we have access to type_idx and if not throw IllegalAccessError,
1242    // returns Class* in kRet0
1243    // InitializeTypeAndVerifyAccess(idx, method)
1244    CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccess),
1245                            type_idx, TargetReg(kArg1), true);
1246    OpRegCopy(class_reg, TargetReg(kRet0));  // Align usage with fast path
1247  } else if (use_declaring_class) {
1248    LoadWordDisp(TargetReg(kArg1),
1249                 mirror::ArtMethod::DeclaringClassOffset().Int32Value(), class_reg);
1250  } else {
1251    // Load dex cache entry into class_reg (kArg2)
1252    LoadWordDisp(TargetReg(kArg1),
1253                 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg);
1254    int32_t offset_of_type =
1255        mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() +
1256        (sizeof(mirror::Class*) * type_idx);
1257    LoadWordDisp(class_reg, offset_of_type, class_reg);
1258    if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx)) {
1259      // Need to test presence of type in dex cache at runtime
1260      LIR* hop_branch = OpCmpImmBranch(kCondEq, class_reg, 0, NULL);
1261      LIR* cont = NewLIR0(kPseudoTargetLabel);
1262
1263      // Slow path to initialize the type.  Executed if the type is NULL.
1264      class SlowPath : public LIRSlowPath {
1265       public:
1266        SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, const int type_idx,
1267                 const int class_reg) :
1268                   LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), type_idx_(type_idx),
1269                   class_reg_(class_reg) {
1270        }
1271
1272        void Compile() {
1273          GenerateTargetLabel();
1274
1275          // Call out to helper, which will return resolved type in kArg0
1276          // InitializeTypeFromCode(idx, method)
1277          m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(pInitializeType), type_idx_,
1278                                        m2l_->TargetReg(kArg1), true);
1279          m2l_->OpRegCopy(class_reg_, m2l_->TargetReg(kRet0));  // Align usage with fast path
1280          m2l_->OpUnconditionalBranch(cont_);
1281        }
1282       public:
1283        const int type_idx_;
1284        const int class_reg_;
1285      };
1286
1287      AddSlowPath(new (arena_) SlowPath(this, hop_branch, cont,
1288                                        type_idx, class_reg));
1289    }
1290  }
1291  // At this point, class_reg (kArg2) has class
1292  LoadValueDirectFixed(rl_src, TargetReg(kArg0));  // kArg0 <= ref
1293
1294  // Slow path for the case where the classes are not equal.  In this case we need
1295  // to call a helper function to do the check.
1296  class SlowPath : public LIRSlowPath {
1297   public:
1298    SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, bool load):
1299               LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), load_(load) {
1300    }
1301
1302    void Compile() {
1303      GenerateTargetLabel();
1304
1305      if (load_) {
1306        m2l_->LoadWordDisp(m2l_->TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(),
1307                           m2l_->TargetReg(kArg1));
1308      }
1309      m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(pCheckCast), m2l_->TargetReg(kArg2),
1310                                    m2l_->TargetReg(kArg1), true);
1311
1312      m2l_->OpUnconditionalBranch(cont_);
1313    }
1314
1315   private:
1316    bool load_;
1317  };
1318
1319  if (type_known_abstract) {
1320    // Easier case, run slow path if target is non-null (slow path will load from target)
1321    LIR* branch = OpCmpImmBranch(kCondNe, TargetReg(kArg0), 0, NULL);
1322    LIR* cont = NewLIR0(kPseudoTargetLabel);
1323    AddSlowPath(new (arena_) SlowPath(this, branch, cont, true));
1324  } else {
1325    // Harder, more common case.  We need to generate a forward branch over the load
1326    // if the target is null.  If it's non-null we perform the load and branch to the
1327    // slow path if the classes are not equal.
1328
1329    /* Null is OK - continue */
1330    LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL);
1331    /* load object->klass_ */
1332    DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1333    LoadWordDisp(TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(),
1334                    TargetReg(kArg1));
1335
1336    LIR* branch2 = OpCmpBranch(kCondNe, TargetReg(kArg1), class_reg, NULL);
1337    LIR* cont = NewLIR0(kPseudoTargetLabel);
1338
1339    // Add the slow path that will not perform load since this is already done.
1340    AddSlowPath(new (arena_) SlowPath(this, branch2, cont, false));
1341
1342    // Set the null check to branch to the continuation.
1343    branch1->target = cont;
1344  }
1345}
1346
1347void Mir2Lir::GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
1348                           RegLocation rl_src1, RegLocation rl_src2) {
1349  RegLocation rl_result;
1350  if (cu_->instruction_set == kThumb2) {
1351    /*
1352     * NOTE:  This is the one place in the code in which we might have
1353     * as many as six live temporary registers.  There are 5 in the normal
1354     * set for Arm.  Until we have spill capabilities, temporarily add
1355     * lr to the temp set.  It is safe to do this locally, but note that
1356     * lr is used explicitly elsewhere in the code generator and cannot
1357     * normally be used as a general temp register.
1358     */
1359    MarkTemp(TargetReg(kLr));   // Add lr to the temp pool
1360    FreeTemp(TargetReg(kLr));   // and make it available
1361  }
1362  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1363  rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1364  rl_result = EvalLoc(rl_dest, kCoreReg, true);
1365  // The longs may overlap - use intermediate temp if so
1366  if ((rl_result.reg.GetReg() == rl_src1.reg.GetHighReg()) || (rl_result.reg.GetReg() == rl_src2.reg.GetHighReg())) {
1367    int t_reg = AllocTemp();
1368    OpRegRegReg(first_op, t_reg, rl_src1.reg.GetReg(), rl_src2.reg.GetReg());
1369    OpRegRegReg(second_op, rl_result.reg.GetHighReg(), rl_src1.reg.GetHighReg(), rl_src2.reg.GetHighReg());
1370    OpRegCopy(rl_result.reg.GetReg(), t_reg);
1371    FreeTemp(t_reg);
1372  } else {
1373    OpRegRegReg(first_op, rl_result.reg.GetReg(), rl_src1.reg.GetReg(), rl_src2.reg.GetReg());
1374    OpRegRegReg(second_op, rl_result.reg.GetHighReg(), rl_src1.reg.GetHighReg(),
1375                rl_src2.reg.GetHighReg());
1376  }
1377  /*
1378   * NOTE: If rl_dest refers to a frame variable in a large frame, the
1379   * following StoreValueWide might need to allocate a temp register.
1380   * To further work around the lack of a spill capability, explicitly
1381   * free any temps from rl_src1 & rl_src2 that aren't still live in rl_result.
1382   * Remove when spill is functional.
1383   */
1384  FreeRegLocTemps(rl_result, rl_src1);
1385  FreeRegLocTemps(rl_result, rl_src2);
1386  StoreValueWide(rl_dest, rl_result);
1387  if (cu_->instruction_set == kThumb2) {
1388    Clobber(TargetReg(kLr));
1389    UnmarkTemp(TargetReg(kLr));  // Remove lr from the temp pool
1390  }
1391}
1392
1393
1394void Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
1395                             RegLocation rl_src1, RegLocation rl_shift) {
1396  ThreadOffset func_offset(-1);
1397
1398  switch (opcode) {
1399    case Instruction::SHL_LONG:
1400    case Instruction::SHL_LONG_2ADDR:
1401      func_offset = QUICK_ENTRYPOINT_OFFSET(pShlLong);
1402      break;
1403    case Instruction::SHR_LONG:
1404    case Instruction::SHR_LONG_2ADDR:
1405      func_offset = QUICK_ENTRYPOINT_OFFSET(pShrLong);
1406      break;
1407    case Instruction::USHR_LONG:
1408    case Instruction::USHR_LONG_2ADDR:
1409      func_offset = QUICK_ENTRYPOINT_OFFSET(pUshrLong);
1410      break;
1411    default:
1412      LOG(FATAL) << "Unexpected case";
1413  }
1414  FlushAllRegs();   /* Send everything to home location */
1415  CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_shift, false);
1416  RegLocation rl_result = GetReturnWide(false);
1417  StoreValueWide(rl_dest, rl_result);
1418}
1419
1420
1421void Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
1422                            RegLocation rl_src1, RegLocation rl_src2) {
1423  DCHECK_NE(cu_->instruction_set, kX86);
1424  OpKind op = kOpBkpt;
1425  bool is_div_rem = false;
1426  bool check_zero = false;
1427  bool unary = false;
1428  RegLocation rl_result;
1429  bool shift_op = false;
1430  switch (opcode) {
1431    case Instruction::NEG_INT:
1432      op = kOpNeg;
1433      unary = true;
1434      break;
1435    case Instruction::NOT_INT:
1436      op = kOpMvn;
1437      unary = true;
1438      break;
1439    case Instruction::ADD_INT:
1440    case Instruction::ADD_INT_2ADDR:
1441      op = kOpAdd;
1442      break;
1443    case Instruction::SUB_INT:
1444    case Instruction::SUB_INT_2ADDR:
1445      op = kOpSub;
1446      break;
1447    case Instruction::MUL_INT:
1448    case Instruction::MUL_INT_2ADDR:
1449      op = kOpMul;
1450      break;
1451    case Instruction::DIV_INT:
1452    case Instruction::DIV_INT_2ADDR:
1453      check_zero = true;
1454      op = kOpDiv;
1455      is_div_rem = true;
1456      break;
1457    /* NOTE: returns in kArg1 */
1458    case Instruction::REM_INT:
1459    case Instruction::REM_INT_2ADDR:
1460      check_zero = true;
1461      op = kOpRem;
1462      is_div_rem = true;
1463      break;
1464    case Instruction::AND_INT:
1465    case Instruction::AND_INT_2ADDR:
1466      op = kOpAnd;
1467      break;
1468    case Instruction::OR_INT:
1469    case Instruction::OR_INT_2ADDR:
1470      op = kOpOr;
1471      break;
1472    case Instruction::XOR_INT:
1473    case Instruction::XOR_INT_2ADDR:
1474      op = kOpXor;
1475      break;
1476    case Instruction::SHL_INT:
1477    case Instruction::SHL_INT_2ADDR:
1478      shift_op = true;
1479      op = kOpLsl;
1480      break;
1481    case Instruction::SHR_INT:
1482    case Instruction::SHR_INT_2ADDR:
1483      shift_op = true;
1484      op = kOpAsr;
1485      break;
1486    case Instruction::USHR_INT:
1487    case Instruction::USHR_INT_2ADDR:
1488      shift_op = true;
1489      op = kOpLsr;
1490      break;
1491    default:
1492      LOG(FATAL) << "Invalid word arith op: " << opcode;
1493  }
1494  if (!is_div_rem) {
1495    if (unary) {
1496      rl_src1 = LoadValue(rl_src1, kCoreReg);
1497      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1498      OpRegReg(op, rl_result.reg.GetReg(), rl_src1.reg.GetReg());
1499    } else {
1500      if (shift_op) {
1501        int t_reg = INVALID_REG;
1502        rl_src2 = LoadValue(rl_src2, kCoreReg);
1503        t_reg = AllocTemp();
1504        OpRegRegImm(kOpAnd, t_reg, rl_src2.reg.GetReg(), 31);
1505        rl_src1 = LoadValue(rl_src1, kCoreReg);
1506        rl_result = EvalLoc(rl_dest, kCoreReg, true);
1507        OpRegRegReg(op, rl_result.reg.GetReg(), rl_src1.reg.GetReg(), t_reg);
1508        FreeTemp(t_reg);
1509      } else {
1510        rl_src1 = LoadValue(rl_src1, kCoreReg);
1511        rl_src2 = LoadValue(rl_src2, kCoreReg);
1512        rl_result = EvalLoc(rl_dest, kCoreReg, true);
1513        OpRegRegReg(op, rl_result.reg.GetReg(), rl_src1.reg.GetReg(), rl_src2.reg.GetReg());
1514      }
1515    }
1516    StoreValue(rl_dest, rl_result);
1517  } else {
1518    bool done = false;      // Set to true if we happen to find a way to use a real instruction.
1519    if (cu_->instruction_set == kMips) {
1520      rl_src1 = LoadValue(rl_src1, kCoreReg);
1521      rl_src2 = LoadValue(rl_src2, kCoreReg);
1522      if (check_zero) {
1523          GenImmedCheck(kCondEq, rl_src2.reg.GetReg(), 0, kThrowDivZero);
1524      }
1525      rl_result = GenDivRem(rl_dest, rl_src1.reg.GetReg(), rl_src2.reg.GetReg(), op == kOpDiv);
1526      done = true;
1527    } else if (cu_->instruction_set == kThumb2) {
1528      if (cu_->GetInstructionSetFeatures().HasDivideInstruction()) {
1529        // Use ARM SDIV instruction for division.  For remainder we also need to
1530        // calculate using a MUL and subtract.
1531        rl_src1 = LoadValue(rl_src1, kCoreReg);
1532        rl_src2 = LoadValue(rl_src2, kCoreReg);
1533        if (check_zero) {
1534            GenImmedCheck(kCondEq, rl_src2.reg.GetReg(), 0, kThrowDivZero);
1535        }
1536        rl_result = GenDivRem(rl_dest, rl_src1.reg.GetReg(), rl_src2.reg.GetReg(), op == kOpDiv);
1537        done = true;
1538      }
1539    }
1540
1541    // If we haven't already generated the code use the callout function.
1542    if (!done) {
1543      ThreadOffset func_offset = QUICK_ENTRYPOINT_OFFSET(pIdivmod);
1544      FlushAllRegs();   /* Send everything to home location */
1545      LoadValueDirectFixed(rl_src2, TargetReg(kArg1));
1546      int r_tgt = CallHelperSetup(func_offset);
1547      LoadValueDirectFixed(rl_src1, TargetReg(kArg0));
1548      if (check_zero) {
1549        GenImmedCheck(kCondEq, TargetReg(kArg1), 0, kThrowDivZero);
1550      }
1551      // NOTE: callout here is not a safepoint.
1552      CallHelper(r_tgt, func_offset, false /* not a safepoint */);
1553      if (op == kOpDiv)
1554        rl_result = GetReturn(false);
1555      else
1556        rl_result = GetReturnAlt();
1557    }
1558    StoreValue(rl_dest, rl_result);
1559  }
1560}
1561
1562/*
1563 * The following are the first-level codegen routines that analyze the format
1564 * of each bytecode then either dispatch special purpose codegen routines
1565 * or produce corresponding Thumb instructions directly.
1566 */
1567
1568// Returns true if no more than two bits are set in 'x'.
1569static bool IsPopCountLE2(unsigned int x) {
1570  x &= x - 1;
1571  return (x & (x - 1)) == 0;
1572}
1573
1574// Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit'
1575// and store the result in 'rl_dest'.
1576bool Mir2Lir::HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
1577                               RegLocation rl_src, RegLocation rl_dest, int lit) {
1578  if ((lit < 2) || ((cu_->instruction_set != kThumb2) && !IsPowerOfTwo(lit))) {
1579    return false;
1580  }
1581  // No divide instruction for Arm, so check for more special cases
1582  if ((cu_->instruction_set == kThumb2) && !IsPowerOfTwo(lit)) {
1583    return SmallLiteralDivRem(dalvik_opcode, is_div, rl_src, rl_dest, lit);
1584  }
1585  int k = LowestSetBit(lit);
1586  if (k >= 30) {
1587    // Avoid special cases.
1588    return false;
1589  }
1590  rl_src = LoadValue(rl_src, kCoreReg);
1591  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1592  if (is_div) {
1593    int t_reg = AllocTemp();
1594    if (lit == 2) {
1595      // Division by 2 is by far the most common division by constant.
1596      OpRegRegImm(kOpLsr, t_reg, rl_src.reg.GetReg(), 32 - k);
1597      OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg.GetReg());
1598      OpRegRegImm(kOpAsr, rl_result.reg.GetReg(), t_reg, k);
1599    } else {
1600      OpRegRegImm(kOpAsr, t_reg, rl_src.reg.GetReg(), 31);
1601      OpRegRegImm(kOpLsr, t_reg, t_reg, 32 - k);
1602      OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg.GetReg());
1603      OpRegRegImm(kOpAsr, rl_result.reg.GetReg(), t_reg, k);
1604    }
1605  } else {
1606    int t_reg1 = AllocTemp();
1607    int t_reg2 = AllocTemp();
1608    if (lit == 2) {
1609      OpRegRegImm(kOpLsr, t_reg1, rl_src.reg.GetReg(), 32 - k);
1610      OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg.GetReg());
1611      OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit -1);
1612      OpRegRegReg(kOpSub, rl_result.reg.GetReg(), t_reg2, t_reg1);
1613    } else {
1614      OpRegRegImm(kOpAsr, t_reg1, rl_src.reg.GetReg(), 31);
1615      OpRegRegImm(kOpLsr, t_reg1, t_reg1, 32 - k);
1616      OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg.GetReg());
1617      OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit - 1);
1618      OpRegRegReg(kOpSub, rl_result.reg.GetReg(), t_reg2, t_reg1);
1619    }
1620  }
1621  StoreValue(rl_dest, rl_result);
1622  return true;
1623}
1624
1625// Returns true if it added instructions to 'cu' to multiply 'rl_src' by 'lit'
1626// and store the result in 'rl_dest'.
1627bool Mir2Lir::HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
1628  // Can we simplify this multiplication?
1629  bool power_of_two = false;
1630  bool pop_count_le2 = false;
1631  bool power_of_two_minus_one = false;
1632  if (lit < 2) {
1633    // Avoid special cases.
1634    return false;
1635  } else if (IsPowerOfTwo(lit)) {
1636    power_of_two = true;
1637  } else if (IsPopCountLE2(lit)) {
1638    pop_count_le2 = true;
1639  } else if (IsPowerOfTwo(lit + 1)) {
1640    power_of_two_minus_one = true;
1641  } else {
1642    return false;
1643  }
1644  rl_src = LoadValue(rl_src, kCoreReg);
1645  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1646  if (power_of_two) {
1647    // Shift.
1648    OpRegRegImm(kOpLsl, rl_result.reg.GetReg(), rl_src.reg.GetReg(), LowestSetBit(lit));
1649  } else if (pop_count_le2) {
1650    // Shift and add and shift.
1651    int first_bit = LowestSetBit(lit);
1652    int second_bit = LowestSetBit(lit ^ (1 << first_bit));
1653    GenMultiplyByTwoBitMultiplier(rl_src, rl_result, lit, first_bit, second_bit);
1654  } else {
1655    // Reverse subtract: (src << (shift + 1)) - src.
1656    DCHECK(power_of_two_minus_one);
1657    // TUNING: rsb dst, src, src lsl#LowestSetBit(lit + 1)
1658    int t_reg = AllocTemp();
1659    OpRegRegImm(kOpLsl, t_reg, rl_src.reg.GetReg(), LowestSetBit(lit + 1));
1660    OpRegRegReg(kOpSub, rl_result.reg.GetReg(), t_reg, rl_src.reg.GetReg());
1661  }
1662  StoreValue(rl_dest, rl_result);
1663  return true;
1664}
1665
1666void Mir2Lir::GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src,
1667                               int lit) {
1668  RegLocation rl_result;
1669  OpKind op = static_cast<OpKind>(0);    /* Make gcc happy */
1670  int shift_op = false;
1671  bool is_div = false;
1672
1673  switch (opcode) {
1674    case Instruction::RSUB_INT_LIT8:
1675    case Instruction::RSUB_INT: {
1676      rl_src = LoadValue(rl_src, kCoreReg);
1677      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1678      if (cu_->instruction_set == kThumb2) {
1679        OpRegRegImm(kOpRsub, rl_result.reg.GetReg(), rl_src.reg.GetReg(), lit);
1680      } else {
1681        OpRegReg(kOpNeg, rl_result.reg.GetReg(), rl_src.reg.GetReg());
1682        OpRegImm(kOpAdd, rl_result.reg.GetReg(), lit);
1683      }
1684      StoreValue(rl_dest, rl_result);
1685      return;
1686    }
1687
1688    case Instruction::SUB_INT:
1689    case Instruction::SUB_INT_2ADDR:
1690      lit = -lit;
1691      // Intended fallthrough
1692    case Instruction::ADD_INT:
1693    case Instruction::ADD_INT_2ADDR:
1694    case Instruction::ADD_INT_LIT8:
1695    case Instruction::ADD_INT_LIT16:
1696      op = kOpAdd;
1697      break;
1698    case Instruction::MUL_INT:
1699    case Instruction::MUL_INT_2ADDR:
1700    case Instruction::MUL_INT_LIT8:
1701    case Instruction::MUL_INT_LIT16: {
1702      if (HandleEasyMultiply(rl_src, rl_dest, lit)) {
1703        return;
1704      }
1705      op = kOpMul;
1706      break;
1707    }
1708    case Instruction::AND_INT:
1709    case Instruction::AND_INT_2ADDR:
1710    case Instruction::AND_INT_LIT8:
1711    case Instruction::AND_INT_LIT16:
1712      op = kOpAnd;
1713      break;
1714    case Instruction::OR_INT:
1715    case Instruction::OR_INT_2ADDR:
1716    case Instruction::OR_INT_LIT8:
1717    case Instruction::OR_INT_LIT16:
1718      op = kOpOr;
1719      break;
1720    case Instruction::XOR_INT:
1721    case Instruction::XOR_INT_2ADDR:
1722    case Instruction::XOR_INT_LIT8:
1723    case Instruction::XOR_INT_LIT16:
1724      op = kOpXor;
1725      break;
1726    case Instruction::SHL_INT_LIT8:
1727    case Instruction::SHL_INT:
1728    case Instruction::SHL_INT_2ADDR:
1729      lit &= 31;
1730      shift_op = true;
1731      op = kOpLsl;
1732      break;
1733    case Instruction::SHR_INT_LIT8:
1734    case Instruction::SHR_INT:
1735    case Instruction::SHR_INT_2ADDR:
1736      lit &= 31;
1737      shift_op = true;
1738      op = kOpAsr;
1739      break;
1740    case Instruction::USHR_INT_LIT8:
1741    case Instruction::USHR_INT:
1742    case Instruction::USHR_INT_2ADDR:
1743      lit &= 31;
1744      shift_op = true;
1745      op = kOpLsr;
1746      break;
1747
1748    case Instruction::DIV_INT:
1749    case Instruction::DIV_INT_2ADDR:
1750    case Instruction::DIV_INT_LIT8:
1751    case Instruction::DIV_INT_LIT16:
1752    case Instruction::REM_INT:
1753    case Instruction::REM_INT_2ADDR:
1754    case Instruction::REM_INT_LIT8:
1755    case Instruction::REM_INT_LIT16: {
1756      if (lit == 0) {
1757        GenImmedCheck(kCondAl, 0, 0, kThrowDivZero);
1758        return;
1759      }
1760      if ((opcode == Instruction::DIV_INT) ||
1761          (opcode == Instruction::DIV_INT_2ADDR) ||
1762          (opcode == Instruction::DIV_INT_LIT8) ||
1763          (opcode == Instruction::DIV_INT_LIT16)) {
1764        is_div = true;
1765      } else {
1766        is_div = false;
1767      }
1768      if (HandleEasyDivRem(opcode, is_div, rl_src, rl_dest, lit)) {
1769        return;
1770      }
1771
1772      bool done = false;
1773      if (cu_->instruction_set == kMips) {
1774        rl_src = LoadValue(rl_src, kCoreReg);
1775        rl_result = GenDivRemLit(rl_dest, rl_src.reg.GetReg(), lit, is_div);
1776        done = true;
1777      } else if (cu_->instruction_set == kX86) {
1778        rl_result = GenDivRemLit(rl_dest, rl_src, lit, is_div);
1779        done = true;
1780      } else if (cu_->instruction_set == kThumb2) {
1781        if (cu_->GetInstructionSetFeatures().HasDivideInstruction()) {
1782          // Use ARM SDIV instruction for division.  For remainder we also need to
1783          // calculate using a MUL and subtract.
1784          rl_src = LoadValue(rl_src, kCoreReg);
1785          rl_result = GenDivRemLit(rl_dest, rl_src.reg.GetReg(), lit, is_div);
1786          done = true;
1787        }
1788      }
1789
1790      if (!done) {
1791        FlushAllRegs();   /* Everything to home location. */
1792        LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1793        Clobber(TargetReg(kArg0));
1794        ThreadOffset func_offset = QUICK_ENTRYPOINT_OFFSET(pIdivmod);
1795        CallRuntimeHelperRegImm(func_offset, TargetReg(kArg0), lit, false);
1796        if (is_div)
1797          rl_result = GetReturn(false);
1798        else
1799          rl_result = GetReturnAlt();
1800      }
1801      StoreValue(rl_dest, rl_result);
1802      return;
1803    }
1804    default:
1805      LOG(FATAL) << "Unexpected opcode " << opcode;
1806  }
1807  rl_src = LoadValue(rl_src, kCoreReg);
1808  rl_result = EvalLoc(rl_dest, kCoreReg, true);
1809  // Avoid shifts by literal 0 - no support in Thumb.  Change to copy.
1810  if (shift_op && (lit == 0)) {
1811    OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetReg());
1812  } else {
1813    OpRegRegImm(op, rl_result.reg.GetReg(), rl_src.reg.GetReg(), lit);
1814  }
1815  StoreValue(rl_dest, rl_result);
1816}
1817
1818void Mir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
1819                             RegLocation rl_src1, RegLocation rl_src2) {
1820  RegLocation rl_result;
1821  OpKind first_op = kOpBkpt;
1822  OpKind second_op = kOpBkpt;
1823  bool call_out = false;
1824  bool check_zero = false;
1825  ThreadOffset func_offset(-1);
1826  int ret_reg = TargetReg(kRet0);
1827
1828  switch (opcode) {
1829    case Instruction::NOT_LONG:
1830      rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1831      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1832      // Check for destructive overlap
1833      if (rl_result.reg.GetReg() == rl_src2.reg.GetHighReg()) {
1834        int t_reg = AllocTemp();
1835        OpRegCopy(t_reg, rl_src2.reg.GetHighReg());
1836        OpRegReg(kOpMvn, rl_result.reg.GetReg(), rl_src2.reg.GetReg());
1837        OpRegReg(kOpMvn, rl_result.reg.GetHighReg(), t_reg);
1838        FreeTemp(t_reg);
1839      } else {
1840        OpRegReg(kOpMvn, rl_result.reg.GetReg(), rl_src2.reg.GetReg());
1841        OpRegReg(kOpMvn, rl_result.reg.GetHighReg(), rl_src2.reg.GetHighReg());
1842      }
1843      StoreValueWide(rl_dest, rl_result);
1844      return;
1845    case Instruction::ADD_LONG:
1846    case Instruction::ADD_LONG_2ADDR:
1847      if (cu_->instruction_set != kThumb2) {
1848        GenAddLong(opcode, rl_dest, rl_src1, rl_src2);
1849        return;
1850      }
1851      first_op = kOpAdd;
1852      second_op = kOpAdc;
1853      break;
1854    case Instruction::SUB_LONG:
1855    case Instruction::SUB_LONG_2ADDR:
1856      if (cu_->instruction_set != kThumb2) {
1857        GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
1858        return;
1859      }
1860      first_op = kOpSub;
1861      second_op = kOpSbc;
1862      break;
1863    case Instruction::MUL_LONG:
1864    case Instruction::MUL_LONG_2ADDR:
1865      if (cu_->instruction_set != kMips) {
1866        GenMulLong(opcode, rl_dest, rl_src1, rl_src2);
1867        return;
1868      } else {
1869        call_out = true;
1870        ret_reg = TargetReg(kRet0);
1871        func_offset = QUICK_ENTRYPOINT_OFFSET(pLmul);
1872      }
1873      break;
1874    case Instruction::DIV_LONG:
1875    case Instruction::DIV_LONG_2ADDR:
1876      call_out = true;
1877      check_zero = true;
1878      ret_reg = TargetReg(kRet0);
1879      func_offset = QUICK_ENTRYPOINT_OFFSET(pLdiv);
1880      break;
1881    case Instruction::REM_LONG:
1882    case Instruction::REM_LONG_2ADDR:
1883      call_out = true;
1884      check_zero = true;
1885      func_offset = QUICK_ENTRYPOINT_OFFSET(pLmod);
1886      /* NOTE - for Arm, result is in kArg2/kArg3 instead of kRet0/kRet1 */
1887      ret_reg = (cu_->instruction_set == kThumb2) ? TargetReg(kArg2) : TargetReg(kRet0);
1888      break;
1889    case Instruction::AND_LONG_2ADDR:
1890    case Instruction::AND_LONG:
1891      if (cu_->instruction_set == kX86) {
1892        return GenAndLong(opcode, rl_dest, rl_src1, rl_src2);
1893      }
1894      first_op = kOpAnd;
1895      second_op = kOpAnd;
1896      break;
1897    case Instruction::OR_LONG:
1898    case Instruction::OR_LONG_2ADDR:
1899      if (cu_->instruction_set == kX86) {
1900        GenOrLong(opcode, rl_dest, rl_src1, rl_src2);
1901        return;
1902      }
1903      first_op = kOpOr;
1904      second_op = kOpOr;
1905      break;
1906    case Instruction::XOR_LONG:
1907    case Instruction::XOR_LONG_2ADDR:
1908      if (cu_->instruction_set == kX86) {
1909        GenXorLong(opcode, rl_dest, rl_src1, rl_src2);
1910        return;
1911      }
1912      first_op = kOpXor;
1913      second_op = kOpXor;
1914      break;
1915    case Instruction::NEG_LONG: {
1916      GenNegLong(rl_dest, rl_src2);
1917      return;
1918    }
1919    default:
1920      LOG(FATAL) << "Invalid long arith op";
1921  }
1922  if (!call_out) {
1923    GenLong3Addr(first_op, second_op, rl_dest, rl_src1, rl_src2);
1924  } else {
1925    FlushAllRegs();   /* Send everything to home location */
1926    if (check_zero) {
1927      LoadValueDirectWideFixed(rl_src2, TargetReg(kArg2), TargetReg(kArg3));
1928      int r_tgt = CallHelperSetup(func_offset);
1929      GenDivZeroCheck(TargetReg(kArg2), TargetReg(kArg3));
1930      LoadValueDirectWideFixed(rl_src1, TargetReg(kArg0), TargetReg(kArg1));
1931      // NOTE: callout here is not a safepoint
1932      CallHelper(r_tgt, func_offset, false /* not safepoint */);
1933    } else {
1934      CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_src2, false);
1935    }
1936    // Adjust return regs in to handle case of rem returning kArg2/kArg3
1937    if (ret_reg == TargetReg(kRet0))
1938      rl_result = GetReturnWide(false);
1939    else
1940      rl_result = GetReturnWideAlt();
1941    StoreValueWide(rl_dest, rl_result);
1942  }
1943}
1944
1945void Mir2Lir::GenConversionCall(ThreadOffset func_offset,
1946                                RegLocation rl_dest, RegLocation rl_src) {
1947  /*
1948   * Don't optimize the register usage since it calls out to support
1949   * functions
1950   */
1951  FlushAllRegs();   /* Send everything to home location */
1952  CallRuntimeHelperRegLocation(func_offset, rl_src, false);
1953  if (rl_dest.wide) {
1954    RegLocation rl_result;
1955    rl_result = GetReturnWide(rl_dest.fp);
1956    StoreValueWide(rl_dest, rl_result);
1957  } else {
1958    RegLocation rl_result;
1959    rl_result = GetReturn(rl_dest.fp);
1960    StoreValue(rl_dest, rl_result);
1961  }
1962}
1963
1964/* Check if we need to check for pending suspend request */
1965void Mir2Lir::GenSuspendTest(int opt_flags) {
1966  if (Runtime::Current()->ExplicitSuspendChecks()) {
1967    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
1968      return;
1969    }
1970    FlushAllRegs();
1971    LIR* branch = OpTestSuspend(NULL);
1972    LIR* ret_lab = NewLIR0(kPseudoTargetLabel);
1973    LIR* target = RawLIR(current_dalvik_offset_, kPseudoSuspendTarget, WrapPointer(ret_lab),
1974                         current_dalvik_offset_);
1975    branch->target = target;
1976    suspend_launchpads_.Insert(target);
1977  } else {
1978    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
1979      return;
1980    }
1981    FlushAllRegs();     // TODO: needed?
1982    LIR* inst = CheckSuspendUsingLoad();
1983    MarkSafepointPC(inst);
1984  }
1985}
1986
1987/* Check if we need to check for pending suspend request */
1988void Mir2Lir::GenSuspendTestAndBranch(int opt_flags, LIR* target) {
1989  if (Runtime::Current()->ExplicitSuspendChecks()) {
1990    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
1991      OpUnconditionalBranch(target);
1992      return;
1993    }
1994    OpTestSuspend(target);
1995    LIR* launch_pad =
1996        RawLIR(current_dalvik_offset_, kPseudoSuspendTarget, WrapPointer(target),
1997               current_dalvik_offset_);
1998    FlushAllRegs();
1999    OpUnconditionalBranch(launch_pad);
2000    suspend_launchpads_.Insert(launch_pad);
2001  } else {
2002    // For the implicit suspend check, just perform the trigger
2003    // load and branch to the target.
2004    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2005      OpUnconditionalBranch(target);
2006      return;
2007    }
2008    FlushAllRegs();
2009    LIR* inst = CheckSuspendUsingLoad();
2010    MarkSafepointPC(inst);
2011    OpUnconditionalBranch(target);
2012  }
2013}
2014
2015/* Call out to helper assembly routine that will null check obj and then lock it. */
2016void Mir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) {
2017  FlushAllRegs();
2018  CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(pLockObject), rl_src, true);
2019}
2020
2021/* Call out to helper assembly routine that will null check obj and then unlock it. */
2022void Mir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) {
2023  FlushAllRegs();
2024  CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(pUnlockObject), rl_src, true);
2025}
2026
2027/* Generic code for generating a wide constant into a VR. */
2028void Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
2029  RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
2030  LoadConstantWide(rl_result.reg.GetReg(), rl_result.reg.GetHighReg(), value);
2031  StoreValueWide(rl_dest, rl_result);
2032}
2033
2034}  // namespace art
2035