gen_invoke.cc revision bfe400bb1a28cde991cdb3e39bc27bae6b04b8c2
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "arm/codegen_arm.h"
18#include "dex/compiler_ir.h"
19#include "dex/frontend.h"
20#include "dex/quick/dex_file_method_inliner.h"
21#include "dex/quick/dex_file_to_method_inliner_map.h"
22#include "dex_file-inl.h"
23#include "entrypoints/quick/quick_entrypoints.h"
24#include "invoke_type.h"
25#include "mirror/array.h"
26#include "mirror/class-inl.h"
27#include "mirror/dex_cache.h"
28#include "mirror/object_array-inl.h"
29#include "mirror/string.h"
30#include "mir_to_lir-inl.h"
31#include "scoped_thread_state_change.h"
32
33namespace art {
34
35// Shortcuts to repeatedly used long types.
36typedef mirror::ObjectArray<mirror::Object> ObjArray;
37
38/*
39 * This source files contains "gen" codegen routines that should
40 * be applicable to most targets.  Only mid-level support utilities
41 * and "op" calls may be used here.
42 */
43
44void Mir2Lir::AddIntrinsicSlowPath(CallInfo* info, LIR* branch, LIR* resume) {
45  class IntrinsicSlowPathPath : public Mir2Lir::LIRSlowPath {
46   public:
47    IntrinsicSlowPathPath(Mir2Lir* m2l, CallInfo* info_in, LIR* branch_in, LIR* resume_in)
48        : LIRSlowPath(m2l, info_in->offset, branch_in, resume_in), info_(info_in) {
49    }
50
51    void Compile() {
52      m2l_->ResetRegPool();
53      m2l_->ResetDefTracking();
54      GenerateTargetLabel(kPseudoIntrinsicRetry);
55      // NOTE: GenInvokeNoInline() handles MarkSafepointPC.
56      m2l_->GenInvokeNoInline(info_);
57      if (cont_ != nullptr) {
58        m2l_->OpUnconditionalBranch(cont_);
59      }
60    }
61
62   private:
63    CallInfo* const info_;
64  };
65
66  AddSlowPath(new (arena_) IntrinsicSlowPathPath(this, info, branch, resume));
67}
68
69/*
70 * To save scheduling time, helper calls are broken into two parts: generation of
71 * the helper target address, and the actual call to the helper.  Because x86
72 * has a memory call operation, part 1 is a NOP for x86.  For other targets,
73 * load arguments between the two parts.
74 */
75// template <size_t pointer_size>
76RegStorage Mir2Lir::CallHelperSetup(QuickEntrypointEnum trampoline) {
77  if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
78    return RegStorage::InvalidReg();
79  } else {
80    return LoadHelper(trampoline);
81  }
82}
83
84LIR* Mir2Lir::CallHelper(RegStorage r_tgt, QuickEntrypointEnum trampoline, bool safepoint_pc,
85                         bool use_link) {
86  LIR* call_inst = InvokeTrampoline(use_link ? kOpBlx : kOpBx, r_tgt, trampoline);
87
88  if (r_tgt.Valid()) {
89    FreeTemp(r_tgt);
90  }
91
92  if (safepoint_pc) {
93    MarkSafepointPC(call_inst);
94  }
95  return call_inst;
96}
97
98void Mir2Lir::CallRuntimeHelper(QuickEntrypointEnum trampoline, bool safepoint_pc) {
99  RegStorage r_tgt = CallHelperSetup(trampoline);
100  ClobberCallerSave();
101  CallHelper(r_tgt, trampoline, safepoint_pc);
102}
103
104void Mir2Lir::CallRuntimeHelperImm(QuickEntrypointEnum trampoline, int arg0, bool safepoint_pc) {
105  RegStorage r_tgt = CallHelperSetup(trampoline);
106  LoadConstant(TargetReg(kArg0, kNotWide), arg0);
107  ClobberCallerSave();
108  CallHelper(r_tgt, trampoline, safepoint_pc);
109}
110
111void Mir2Lir::CallRuntimeHelperReg(QuickEntrypointEnum trampoline, RegStorage arg0,
112                                   bool safepoint_pc) {
113  RegStorage r_tgt = CallHelperSetup(trampoline);
114  OpRegCopy(TargetReg(kArg0, arg0.GetWideKind()), arg0);
115  ClobberCallerSave();
116  CallHelper(r_tgt, trampoline, safepoint_pc);
117}
118
119void Mir2Lir::CallRuntimeHelperRegLocation(QuickEntrypointEnum trampoline, RegLocation arg0,
120                                           bool safepoint_pc) {
121  RegStorage r_tgt = CallHelperSetup(trampoline);
122  if (arg0.wide == 0) {
123    LoadValueDirectFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, arg0));
124  } else {
125    LoadValueDirectWideFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, kWide));
126  }
127  ClobberCallerSave();
128  CallHelper(r_tgt, trampoline, safepoint_pc);
129}
130
131void Mir2Lir::CallRuntimeHelperImmImm(QuickEntrypointEnum trampoline, int arg0, int arg1,
132                                      bool safepoint_pc) {
133  RegStorage r_tgt = CallHelperSetup(trampoline);
134  LoadConstant(TargetReg(kArg0, kNotWide), arg0);
135  LoadConstant(TargetReg(kArg1, kNotWide), arg1);
136  ClobberCallerSave();
137  CallHelper(r_tgt, trampoline, safepoint_pc);
138}
139
140void Mir2Lir::CallRuntimeHelperImmRegLocation(QuickEntrypointEnum trampoline, int arg0,
141                                              RegLocation arg1, bool safepoint_pc) {
142  RegStorage r_tgt = CallHelperSetup(trampoline);
143  if (arg1.wide == 0) {
144    LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1));
145  } else {
146    RegStorage r_tmp = TargetReg(cu_->instruction_set == kMips ? kArg2 : kArg1, kWide);
147    LoadValueDirectWideFixed(arg1, r_tmp);
148  }
149  LoadConstant(TargetReg(kArg0, kNotWide), arg0);
150  ClobberCallerSave();
151  CallHelper(r_tgt, trampoline, safepoint_pc);
152}
153
154void Mir2Lir::CallRuntimeHelperRegLocationImm(QuickEntrypointEnum trampoline, RegLocation arg0,
155                                              int arg1, bool safepoint_pc) {
156  RegStorage r_tgt = CallHelperSetup(trampoline);
157  DCHECK(!arg0.wide);
158  LoadValueDirectFixed(arg0, TargetReg(kArg0, arg0));
159  LoadConstant(TargetReg(kArg1, kNotWide), arg1);
160  ClobberCallerSave();
161  CallHelper(r_tgt, trampoline, safepoint_pc);
162}
163
164void Mir2Lir::CallRuntimeHelperImmReg(QuickEntrypointEnum trampoline, int arg0, RegStorage arg1,
165                                      bool safepoint_pc) {
166  RegStorage r_tgt = CallHelperSetup(trampoline);
167  OpRegCopy(TargetReg(kArg1, arg1.GetWideKind()), arg1);
168  LoadConstant(TargetReg(kArg0, kNotWide), arg0);
169  ClobberCallerSave();
170  CallHelper(r_tgt, trampoline, safepoint_pc);
171}
172
173void Mir2Lir::CallRuntimeHelperRegImm(QuickEntrypointEnum trampoline, RegStorage arg0, int arg1,
174                                      bool safepoint_pc) {
175  RegStorage r_tgt = CallHelperSetup(trampoline);
176  OpRegCopy(TargetReg(kArg0, arg0.GetWideKind()), arg0);
177  LoadConstant(TargetReg(kArg1, kNotWide), arg1);
178  ClobberCallerSave();
179  CallHelper(r_tgt, trampoline, safepoint_pc);
180}
181
182void Mir2Lir::CallRuntimeHelperImmMethod(QuickEntrypointEnum trampoline, int arg0,
183                                         bool safepoint_pc) {
184  RegStorage r_tgt = CallHelperSetup(trampoline);
185  LoadCurrMethodDirect(TargetReg(kArg1, kRef));
186  LoadConstant(TargetReg(kArg0, kNotWide), arg0);
187  ClobberCallerSave();
188  CallHelper(r_tgt, trampoline, safepoint_pc);
189}
190
191void Mir2Lir::CallRuntimeHelperRegMethod(QuickEntrypointEnum trampoline, RegStorage arg0,
192                                         bool safepoint_pc) {
193  RegStorage r_tgt = CallHelperSetup(trampoline);
194  DCHECK(!IsSameReg(TargetReg(kArg1, arg0.GetWideKind()), arg0));
195  RegStorage r_tmp = TargetReg(kArg0, arg0.GetWideKind());
196  if (r_tmp.NotExactlyEquals(arg0)) {
197    OpRegCopy(r_tmp, arg0);
198  }
199  LoadCurrMethodDirect(TargetReg(kArg1, kRef));
200  ClobberCallerSave();
201  CallHelper(r_tgt, trampoline, safepoint_pc);
202}
203
204void Mir2Lir::CallRuntimeHelperRegMethodRegLocation(QuickEntrypointEnum trampoline, RegStorage arg0,
205                                                    RegLocation arg2, bool safepoint_pc) {
206  RegStorage r_tgt = CallHelperSetup(trampoline);
207  DCHECK(!IsSameReg(TargetReg(kArg1, arg0.GetWideKind()), arg0));
208  RegStorage r_tmp = TargetReg(kArg0, arg0.GetWideKind());
209  if (r_tmp.NotExactlyEquals(arg0)) {
210    OpRegCopy(r_tmp, arg0);
211  }
212  LoadCurrMethodDirect(TargetReg(kArg1, kRef));
213  LoadValueDirectFixed(arg2, TargetReg(kArg2, arg2));
214  ClobberCallerSave();
215  CallHelper(r_tgt, trampoline, safepoint_pc);
216}
217
218void Mir2Lir::CallRuntimeHelperRegLocationRegLocation(QuickEntrypointEnum trampoline,
219                                                      RegLocation arg0, RegLocation arg1,
220                                                      bool safepoint_pc) {
221  RegStorage r_tgt = CallHelperSetup(trampoline);
222  if (cu_->instruction_set == kArm64 || cu_->instruction_set == kX86_64) {
223    RegStorage arg0_reg = TargetReg((arg0.fp) ? kFArg0 : kArg0, arg0);
224
225    RegStorage arg1_reg;
226    if (arg1.fp == arg0.fp) {
227      arg1_reg = TargetReg((arg1.fp) ? kFArg1 : kArg1, arg1);
228    } else {
229      arg1_reg = TargetReg((arg1.fp) ? kFArg0 : kArg0, arg1);
230    }
231
232    if (arg0.wide == 0) {
233      LoadValueDirectFixed(arg0, arg0_reg);
234    } else {
235      LoadValueDirectWideFixed(arg0, arg0_reg);
236    }
237
238    if (arg1.wide == 0) {
239      LoadValueDirectFixed(arg1, arg1_reg);
240    } else {
241      LoadValueDirectWideFixed(arg1, arg1_reg);
242    }
243  } else {
244    DCHECK(!cu_->target64);
245    if (arg0.wide == 0) {
246      LoadValueDirectFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, kNotWide));
247      if (arg1.wide == 0) {
248        if (cu_->instruction_set == kMips) {
249          LoadValueDirectFixed(arg1, TargetReg(arg1.fp ? kFArg2 : kArg1, kNotWide));
250        } else {
251          LoadValueDirectFixed(arg1, TargetReg(arg1.fp ? kFArg1 : kArg1, kNotWide));
252        }
253      } else {
254        if (cu_->instruction_set == kMips) {
255          LoadValueDirectWideFixed(arg1, TargetReg(arg1.fp ? kFArg2 : kArg2, kWide));
256        } else {
257          LoadValueDirectWideFixed(arg1, TargetReg(arg1.fp ? kFArg1 : kArg1, kWide));
258        }
259      }
260    } else {
261      LoadValueDirectWideFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, kWide));
262      if (arg1.wide == 0) {
263        LoadValueDirectFixed(arg1, TargetReg(arg1.fp ? kFArg2 : kArg2, kNotWide));
264      } else {
265        LoadValueDirectWideFixed(arg1, TargetReg(arg1.fp ? kFArg2 : kArg2, kWide));
266      }
267    }
268  }
269  ClobberCallerSave();
270  CallHelper(r_tgt, trampoline, safepoint_pc);
271}
272
273void Mir2Lir::CopyToArgumentRegs(RegStorage arg0, RegStorage arg1) {
274  WideKind arg0_kind = arg0.GetWideKind();
275  WideKind arg1_kind = arg1.GetWideKind();
276  if (IsSameReg(arg1, TargetReg(kArg0, arg1_kind))) {
277    if (IsSameReg(arg0, TargetReg(kArg1, arg0_kind))) {
278      // Swap kArg0 and kArg1 with kArg2 as temp.
279      OpRegCopy(TargetReg(kArg2, arg1_kind), arg1);
280      OpRegCopy(TargetReg(kArg0, arg0_kind), arg0);
281      OpRegCopy(TargetReg(kArg1, arg1_kind), TargetReg(kArg2, arg1_kind));
282    } else {
283      OpRegCopy(TargetReg(kArg1, arg1_kind), arg1);
284      OpRegCopy(TargetReg(kArg0, arg0_kind), arg0);
285    }
286  } else {
287    OpRegCopy(TargetReg(kArg0, arg0_kind), arg0);
288    OpRegCopy(TargetReg(kArg1, arg1_kind), arg1);
289  }
290}
291
292void Mir2Lir::CallRuntimeHelperRegReg(QuickEntrypointEnum trampoline, RegStorage arg0,
293                                      RegStorage arg1, bool safepoint_pc) {
294  RegStorage r_tgt = CallHelperSetup(trampoline);
295  CopyToArgumentRegs(arg0, arg1);
296  ClobberCallerSave();
297  CallHelper(r_tgt, trampoline, safepoint_pc);
298}
299
300void Mir2Lir::CallRuntimeHelperRegRegImm(QuickEntrypointEnum trampoline, RegStorage arg0,
301                                         RegStorage arg1, int arg2, bool safepoint_pc) {
302  RegStorage r_tgt = CallHelperSetup(trampoline);
303  CopyToArgumentRegs(arg0, arg1);
304  LoadConstant(TargetReg(kArg2, kNotWide), arg2);
305  ClobberCallerSave();
306  CallHelper(r_tgt, trampoline, safepoint_pc);
307}
308
309void Mir2Lir::CallRuntimeHelperImmMethodRegLocation(QuickEntrypointEnum trampoline, int arg0,
310                                                    RegLocation arg2, bool safepoint_pc) {
311  RegStorage r_tgt = CallHelperSetup(trampoline);
312  LoadValueDirectFixed(arg2, TargetReg(kArg2, arg2));
313  LoadCurrMethodDirect(TargetReg(kArg1, kRef));
314  LoadConstant(TargetReg(kArg0, kNotWide), arg0);
315  ClobberCallerSave();
316  CallHelper(r_tgt, trampoline, safepoint_pc);
317}
318
319void Mir2Lir::CallRuntimeHelperImmMethodImm(QuickEntrypointEnum trampoline, int arg0, int arg2,
320                                            bool safepoint_pc) {
321  RegStorage r_tgt = CallHelperSetup(trampoline);
322  LoadCurrMethodDirect(TargetReg(kArg1, kRef));
323  LoadConstant(TargetReg(kArg2, kNotWide), arg2);
324  LoadConstant(TargetReg(kArg0, kNotWide), arg0);
325  ClobberCallerSave();
326  CallHelper(r_tgt, trampoline, safepoint_pc);
327}
328
329void Mir2Lir::CallRuntimeHelperImmRegLocationRegLocation(QuickEntrypointEnum trampoline, int arg0,
330                                                         RegLocation arg1,
331                                                         RegLocation arg2, bool safepoint_pc) {
332  RegStorage r_tgt = CallHelperSetup(trampoline);
333  DCHECK_EQ(static_cast<unsigned int>(arg1.wide), 0U);  // The static_cast works around an
334                                                        // instantiation bug in GCC.
335  LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1));
336  if (arg2.wide == 0) {
337    LoadValueDirectFixed(arg2, TargetReg(kArg2, arg2));
338  } else {
339    LoadValueDirectWideFixed(arg2, TargetReg(kArg2, kWide));
340  }
341  LoadConstant(TargetReg(kArg0, kNotWide), arg0);
342  ClobberCallerSave();
343  CallHelper(r_tgt, trampoline, safepoint_pc);
344}
345
346void Mir2Lir::CallRuntimeHelperRegLocationRegLocationRegLocation(
347    QuickEntrypointEnum trampoline,
348    RegLocation arg0,
349    RegLocation arg1,
350    RegLocation arg2,
351    bool safepoint_pc) {
352  RegStorage r_tgt = CallHelperSetup(trampoline);
353  LoadValueDirectFixed(arg0, TargetReg(kArg0, arg0));
354  LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1));
355  LoadValueDirectFixed(arg2, TargetReg(kArg2, arg2));
356  ClobberCallerSave();
357  CallHelper(r_tgt, trampoline, safepoint_pc);
358}
359
360/*
361 * If there are any ins passed in registers that have not been promoted
362 * to a callee-save register, flush them to the frame.  Perform initial
363 * assignment of promoted arguments.
364 *
365 * ArgLocs is an array of location records describing the incoming arguments
366 * with one location record per word of argument.
367 */
368// TODO: Support 64-bit argument registers.
369void Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
370  /*
371   * Dummy up a RegLocation for the incoming StackReference<mirror::ArtMethod>
372   * It will attempt to keep kArg0 live (or copy it to home location
373   * if promoted).
374   */
375  RegLocation rl_src = rl_method;
376  rl_src.location = kLocPhysReg;
377  rl_src.reg = TargetReg(kArg0, kRef);
378  rl_src.home = false;
379  MarkLive(rl_src);
380  StoreValue(rl_method, rl_src);
381  // If Method* has been promoted, explicitly flush
382  if (rl_method.location == kLocPhysReg) {
383    StoreRefDisp(TargetPtrReg(kSp), 0, rl_src.reg, kNotVolatile);
384  }
385
386  if (mir_graph_->GetNumOfInVRs() == 0) {
387    return;
388  }
389
390  int start_vreg = mir_graph_->GetFirstInVR();
391  /*
392   * Copy incoming arguments to their proper home locations.
393   * NOTE: an older version of dx had an issue in which
394   * it would reuse static method argument registers.
395   * This could result in the same Dalvik virtual register
396   * being promoted to both core and fp regs. To account for this,
397   * we only copy to the corresponding promoted physical register
398   * if it matches the type of the SSA name for the incoming
399   * argument.  It is also possible that long and double arguments
400   * end up half-promoted.  In those cases, we must flush the promoted
401   * half to memory as well.
402   */
403  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
404  RegLocation* t_loc = nullptr;
405  for (uint32_t i = 0; i < mir_graph_->GetNumOfInVRs(); i += t_loc->wide ? 2 : 1) {
406    // get reg corresponding to input
407    RegStorage reg = GetArgMappingToPhysicalReg(i);
408    t_loc = &ArgLocs[i];
409
410    // If the wide input appeared as single, flush it and go
411    // as it comes from memory.
412    if (t_loc->wide && reg.Valid() && !reg.Is64Bit()) {
413      StoreBaseDisp(TargetPtrReg(kSp), SRegOffset(start_vreg + i), reg, k32, kNotVolatile);
414      reg = RegStorage::InvalidReg();
415    }
416
417    if (reg.Valid()) {
418      // If arriving in register.
419
420      // We have already updated the arg location with promoted info
421      // so we can be based on it.
422      if (t_loc->location == kLocPhysReg) {
423        // Just copy it.
424        if (t_loc->wide) {
425          OpRegCopyWide(t_loc->reg, reg);
426        } else {
427          OpRegCopy(t_loc->reg, reg);
428        }
429      } else {
430        // Needs flush.
431        int offset = SRegOffset(start_vreg + i);
432        if (t_loc->ref) {
433          StoreRefDisp(TargetPtrReg(kSp), offset, reg, kNotVolatile);
434        } else {
435          StoreBaseDisp(TargetPtrReg(kSp), offset, reg, t_loc->wide ? k64 : k32, kNotVolatile);
436        }
437      }
438    } else {
439      // If arriving in frame & promoted.
440      if (t_loc->location == kLocPhysReg) {
441        int offset = SRegOffset(start_vreg + i);
442        if (t_loc->ref) {
443          LoadRefDisp(TargetPtrReg(kSp), offset, t_loc->reg, kNotVolatile);
444        } else {
445          LoadBaseDisp(TargetPtrReg(kSp), offset, t_loc->reg, t_loc->wide ? k64 : k32,
446                       kNotVolatile);
447        }
448      }
449    }
450  }
451}
452
453static void CommonCallCodeLoadThisIntoArg1(const CallInfo* info, Mir2Lir* cg) {
454  RegLocation rl_arg = info->args[0];
455  cg->LoadValueDirectFixed(rl_arg, cg->TargetReg(kArg1, kRef));
456}
457
458static void CommonCallCodeLoadClassIntoArg0(const CallInfo* info, Mir2Lir* cg) {
459  cg->GenNullCheck(cg->TargetReg(kArg1, kRef), info->opt_flags);
460  // get this->klass_ [use kArg1, set kArg0]
461  cg->LoadRefDisp(cg->TargetReg(kArg1, kRef), mirror::Object::ClassOffset().Int32Value(),
462                  cg->TargetReg(kArg0, kRef),
463                  kNotVolatile);
464  cg->MarkPossibleNullPointerException(info->opt_flags);
465}
466
467static bool CommonCallCodeLoadCodePointerIntoInvokeTgt(const RegStorage* alt_from,
468                                                       const CompilationUnit* cu, Mir2Lir* cg) {
469  if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) {
470    int32_t offset = mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset(
471        InstructionSetPointerSize(cu->instruction_set)).Int32Value();
472    // Get the compiled code address [use *alt_from or kArg0, set kInvokeTgt]
473    cg->LoadWordDisp(alt_from == nullptr ? cg->TargetReg(kArg0, kRef) : *alt_from, offset,
474                     cg->TargetPtrReg(kInvokeTgt));
475    return true;
476  }
477  return false;
478}
479
480/*
481 * Bit of a hack here - in the absence of a real scheduling pass,
482 * emit the next instruction in static & direct invoke sequences.
483 */
484static int NextSDCallInsn(CompilationUnit* cu, CallInfo* info,
485                          int state, const MethodReference& target_method,
486                          uint32_t,
487                          uintptr_t direct_code, uintptr_t direct_method,
488                          InvokeType type) {
489  UNUSED(info);
490  DCHECK(cu->instruction_set != kX86 && cu->instruction_set != kX86_64 &&
491         cu->instruction_set != kThumb2 && cu->instruction_set != kArm &&
492         cu->instruction_set != kArm64);
493  Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
494  if (direct_code != 0 && direct_method != 0) {
495    switch (state) {
496    case 0:  // Get the current Method* [sets kArg0]
497      if (direct_code != static_cast<uintptr_t>(-1)) {
498        cg->LoadConstant(cg->TargetPtrReg(kInvokeTgt), direct_code);
499      } else {
500        cg->LoadCodeAddress(target_method, type, kInvokeTgt);
501      }
502      if (direct_method != static_cast<uintptr_t>(-1)) {
503        cg->LoadConstant(cg->TargetReg(kArg0, kRef), direct_method);
504      } else {
505        cg->LoadMethodAddress(target_method, type, kArg0);
506      }
507      break;
508    default:
509      return -1;
510    }
511  } else {
512    RegStorage arg0_ref = cg->TargetReg(kArg0, kRef);
513    switch (state) {
514    case 0:  // Get the current Method* [sets kArg0]
515      // TUNING: we can save a reg copy if Method* has been promoted.
516      cg->LoadCurrMethodDirect(arg0_ref);
517      break;
518    case 1:  // Get method->dex_cache_resolved_methods_
519      cg->LoadRefDisp(arg0_ref,
520                      mirror::ArtMethod::DexCacheResolvedMethodsOffset().Int32Value(),
521                      arg0_ref,
522                      kNotVolatile);
523      // Set up direct code if known.
524      if (direct_code != 0) {
525        if (direct_code != static_cast<uintptr_t>(-1)) {
526          cg->LoadConstant(cg->TargetPtrReg(kInvokeTgt), direct_code);
527        } else {
528          CHECK_LT(target_method.dex_method_index, target_method.dex_file->NumMethodIds());
529          cg->LoadCodeAddress(target_method, type, kInvokeTgt);
530        }
531      }
532      break;
533    case 2:  // Grab target method*
534      CHECK_EQ(cu->dex_file, target_method.dex_file);
535      cg->LoadRefDisp(arg0_ref,
536                      ObjArray::OffsetOfElement(target_method.dex_method_index).Int32Value(),
537                      arg0_ref,
538                      kNotVolatile);
539      break;
540    case 3:  // Grab the code from the method*
541      if (direct_code == 0) {
542        if (CommonCallCodeLoadCodePointerIntoInvokeTgt(&arg0_ref, cu, cg)) {
543          break;                                    // kInvokeTgt := arg0_ref->entrypoint
544        }
545      } else {
546        break;
547      }
548      DCHECK(cu->instruction_set == kX86 || cu->instruction_set == kX86_64);
549      FALLTHROUGH_INTENDED;
550    default:
551      return -1;
552    }
553  }
554  return state + 1;
555}
556
557/*
558 * Bit of a hack here - in the absence of a real scheduling pass,
559 * emit the next instruction in a virtual invoke sequence.
560 * We can use kLr as a temp prior to target address loading
561 * Note also that we'll load the first argument ("this") into
562 * kArg1 here rather than the standard GenDalvikArgs.
563 */
564static int NextVCallInsn(CompilationUnit* cu, CallInfo* info,
565                         int state, const MethodReference& target_method,
566                         uint32_t method_idx, uintptr_t, uintptr_t,
567                         InvokeType) {
568  UNUSED(target_method);
569  Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
570  /*
571   * This is the fast path in which the target virtual method is
572   * fully resolved at compile time.
573   */
574  switch (state) {
575    case 0:
576      CommonCallCodeLoadThisIntoArg1(info, cg);   // kArg1 := this
577      break;
578    case 1:
579      CommonCallCodeLoadClassIntoArg0(info, cg);  // kArg0 := kArg1->class
580                                                  // Includes a null-check.
581      break;
582    case 2: {
583      // Get this->klass_.embedded_vtable[method_idx] [usr kArg0, set kArg0]
584      int32_t offset = mirror::Class::EmbeddedVTableOffset().Uint32Value() +
585          method_idx * sizeof(mirror::Class::VTableEntry);
586      // Load target method from embedded vtable to kArg0 [use kArg0, set kArg0]
587      cg->LoadRefDisp(cg->TargetReg(kArg0, kRef), offset, cg->TargetReg(kArg0, kRef), kNotVolatile);
588      break;
589    }
590    case 3:
591      if (CommonCallCodeLoadCodePointerIntoInvokeTgt(nullptr, cu, cg)) {
592        break;                                    // kInvokeTgt := kArg0->entrypoint
593      }
594      DCHECK(cu->instruction_set == kX86 || cu->instruction_set == kX86_64);
595      FALLTHROUGH_INTENDED;
596    default:
597      return -1;
598  }
599  return state + 1;
600}
601
602/*
603 * Emit the next instruction in an invoke interface sequence. This will do a lookup in the
604 * class's IMT, calling either the actual method or art_quick_imt_conflict_trampoline if
605 * more than one interface method map to the same index. Note also that we'll load the first
606 * argument ("this") into kArg1 here rather than the standard GenDalvikArgs.
607 */
608static int NextInterfaceCallInsn(CompilationUnit* cu, CallInfo* info, int state,
609                                 const MethodReference& target_method,
610                                 uint32_t method_idx, uintptr_t, uintptr_t, InvokeType) {
611  Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
612
613  switch (state) {
614    case 0:  // Set target method index in case of conflict [set kHiddenArg, kHiddenFpArg (x86)]
615      CHECK_LT(target_method.dex_method_index, target_method.dex_file->NumMethodIds());
616      cg->LoadConstant(cg->TargetReg(kHiddenArg, kNotWide), target_method.dex_method_index);
617      if (cu->instruction_set == kX86) {
618        cg->OpRegCopy(cg->TargetReg(kHiddenFpArg, kNotWide), cg->TargetReg(kHiddenArg, kNotWide));
619      }
620      break;
621    case 1:
622      CommonCallCodeLoadThisIntoArg1(info, cg);   // kArg1 := this
623      break;
624    case 2:
625      CommonCallCodeLoadClassIntoArg0(info, cg);  // kArg0 := kArg1->class
626                                                  // Includes a null-check.
627      break;
628    case 3: {  // Get target method [use kInvokeTgt, set kArg0]
629      int32_t offset = mirror::Class::EmbeddedImTableOffset().Uint32Value() +
630          (method_idx % mirror::Class::kImtSize) * sizeof(mirror::Class::ImTableEntry);
631      // Load target method from embedded imtable to kArg0 [use kArg0, set kArg0]
632      cg->LoadRefDisp(cg->TargetReg(kArg0, kRef), offset, cg->TargetReg(kArg0, kRef), kNotVolatile);
633      break;
634    }
635    case 4:
636      if (CommonCallCodeLoadCodePointerIntoInvokeTgt(nullptr, cu, cg)) {
637        break;                                    // kInvokeTgt := kArg0->entrypoint
638      }
639      DCHECK(cu->instruction_set == kX86 || cu->instruction_set == kX86_64);
640      FALLTHROUGH_INTENDED;
641    default:
642      return -1;
643  }
644  return state + 1;
645}
646
647static int NextInvokeInsnSP(CompilationUnit* cu, CallInfo* info,
648                            QuickEntrypointEnum trampoline, int state,
649                            const MethodReference& target_method, uint32_t method_idx) {
650  UNUSED(info, method_idx);
651  Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
652
653  /*
654   * This handles the case in which the base method is not fully
655   * resolved at compile time, we bail to a runtime helper.
656   */
657  if (state == 0) {
658    if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) {
659      // Load trampoline target
660      int32_t disp;
661      if (cu->target64) {
662        disp = GetThreadOffset<8>(trampoline).Int32Value();
663      } else {
664        disp = GetThreadOffset<4>(trampoline).Int32Value();
665      }
666      cg->LoadWordDisp(cg->TargetPtrReg(kSelf), disp, cg->TargetPtrReg(kInvokeTgt));
667    }
668    // Load kArg0 with method index
669    CHECK_EQ(cu->dex_file, target_method.dex_file);
670    cg->LoadConstant(cg->TargetReg(kArg0, kNotWide), target_method.dex_method_index);
671    return 1;
672  }
673  return -1;
674}
675
676static int NextStaticCallInsnSP(CompilationUnit* cu, CallInfo* info,
677                                int state,
678                                const MethodReference& target_method,
679                                uint32_t, uintptr_t, uintptr_t, InvokeType) {
680  return NextInvokeInsnSP(cu, info, kQuickInvokeStaticTrampolineWithAccessCheck, state,
681                          target_method, 0);
682}
683
684static int NextDirectCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
685                                const MethodReference& target_method,
686                                uint32_t, uintptr_t, uintptr_t, InvokeType) {
687  return NextInvokeInsnSP(cu, info, kQuickInvokeDirectTrampolineWithAccessCheck, state,
688                          target_method, 0);
689}
690
691static int NextSuperCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
692                               const MethodReference& target_method,
693                               uint32_t, uintptr_t, uintptr_t, InvokeType) {
694  return NextInvokeInsnSP(cu, info, kQuickInvokeSuperTrampolineWithAccessCheck, state,
695                          target_method, 0);
696}
697
698static int NextVCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
699                           const MethodReference& target_method,
700                           uint32_t, uintptr_t, uintptr_t, InvokeType) {
701  return NextInvokeInsnSP(cu, info, kQuickInvokeVirtualTrampolineWithAccessCheck, state,
702                          target_method, 0);
703}
704
705static int NextInterfaceCallInsnWithAccessCheck(CompilationUnit* cu,
706                                                CallInfo* info, int state,
707                                                const MethodReference& target_method,
708                                                uint32_t, uintptr_t, uintptr_t, InvokeType) {
709  return NextInvokeInsnSP(cu, info, kQuickInvokeInterfaceTrampolineWithAccessCheck, state,
710                          target_method, 0);
711}
712
713// Default implementation of implicit null pointer check.
714// Overridden by arch specific as necessary.
715void Mir2Lir::GenImplicitNullCheck(RegStorage reg, int opt_flags) {
716  if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
717    return;
718  }
719  RegStorage tmp = AllocTemp();
720  Load32Disp(reg, 0, tmp);
721  MarkPossibleNullPointerException(opt_flags);
722  FreeTemp(tmp);
723}
724
725/**
726 * @brief Used to flush promoted registers if they are used as argument
727 * in an invocation.
728 * @param info the infromation about arguments for invocation.
729 * @param start the first argument we should start to look from.
730 */
731void Mir2Lir::GenDalvikArgsFlushPromoted(CallInfo* info, int start) {
732  if (cu_->disable_opt & (1 << kPromoteRegs)) {
733    // This make sense only if promotion is enabled.
734    return;
735  }
736  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
737  // Scan the rest of the args - if in phys_reg flush to memory
738  for (int next_arg = start; next_arg < info->num_arg_words;) {
739    RegLocation loc = info->args[next_arg];
740    if (loc.wide) {
741      loc = UpdateLocWide(loc);
742      if (loc.location == kLocPhysReg) {
743        StoreBaseDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k64, kNotVolatile);
744      }
745      next_arg += 2;
746    } else {
747      loc = UpdateLoc(loc);
748      if (loc.location == kLocPhysReg) {
749        if (loc.ref) {
750          StoreRefDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, kNotVolatile);
751        } else {
752          StoreBaseDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k32,
753                        kNotVolatile);
754        }
755      }
756      next_arg++;
757    }
758  }
759}
760
761/**
762 * @brief Used to optimize the copying of VRs which are arguments of invocation.
763 * Please note that you should flush promoted registers first if you copy.
764 * If implementation does copying it may skip several of the first VRs but must copy
765 * till the end. Implementation must return the number of skipped VRs
766 * (it might be all VRs).
767 * @see GenDalvikArgsFlushPromoted
768 * @param info the information about arguments for invocation.
769 * @param first the first argument we should start to look from.
770 * @param count the number of remaining arguments we can handle.
771 * @return the number of arguments which we did not handle. Unhandled arguments
772 * must be attached to the first one.
773 */
774int Mir2Lir::GenDalvikArgsBulkCopy(CallInfo* info, int first, int count) {
775  // call is pretty expensive, let's use it if count is big.
776  if (count > 16) {
777    GenDalvikArgsFlushPromoted(info, first);
778    int start_offset = SRegOffset(info->args[first].s_reg_low);
779    int outs_offset = StackVisitor::GetOutVROffset(first, cu_->instruction_set);
780
781    OpRegRegImm(kOpAdd, TargetReg(kArg0, kRef), TargetPtrReg(kSp), outs_offset);
782    OpRegRegImm(kOpAdd, TargetReg(kArg1, kRef), TargetPtrReg(kSp), start_offset);
783    CallRuntimeHelperRegRegImm(kQuickMemcpy, TargetReg(kArg0, kRef), TargetReg(kArg1, kRef),
784                               count * 4, false);
785    count = 0;
786  }
787  return count;
788}
789
790int Mir2Lir::GenDalvikArgs(CallInfo* info, int call_state,
791                           LIR** pcrLabel, NextCallInsn next_call_insn,
792                           const MethodReference& target_method,
793                           uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
794                           InvokeType type, bool skip_this) {
795  // If no arguments, just return.
796  if (info->num_arg_words == 0)
797    return call_state;
798
799  const int start_index = skip_this ? 1 : 0;
800
801  // Get architecture dependent mapping between output VRs and physical registers
802  // basing on shorty of method to call.
803  InToRegStorageMapping in_to_reg_storage_mapping(arena_);
804  {
805    const char* target_shorty = mir_graph_->GetShortyFromMethodReference(target_method);
806    ShortyIterator shorty_iterator(target_shorty, type == kStatic);
807    in_to_reg_storage_mapping.Initialize(&shorty_iterator, GetResetedInToRegStorageMapper());
808  }
809
810  int stack_map_start = std::max(in_to_reg_storage_mapping.GetMaxMappedIn() + 1, start_index);
811  if ((stack_map_start < info->num_arg_words) && info->args[stack_map_start].high_word) {
812    // It is possible that the last mapped reg is 32 bit while arg is 64-bit.
813    // It will be handled together with low part mapped to register.
814    stack_map_start++;
815  }
816  int regs_left_to_pass_via_stack = info->num_arg_words - stack_map_start;
817
818  // If it is a range case we can try to copy remaining VRs (not mapped to physical registers)
819  // using more optimal algorithm.
820  if (info->is_range && regs_left_to_pass_via_stack > 1) {
821    regs_left_to_pass_via_stack = GenDalvikArgsBulkCopy(info, stack_map_start,
822                                                        regs_left_to_pass_via_stack);
823  }
824
825  // Now handle any remaining VRs mapped to stack.
826  if (in_to_reg_storage_mapping.HasArgumentsOnStack()) {
827    // Two temps but do not use kArg1, it might be this which we can skip.
828    // Separate single and wide - it can give some advantage.
829    RegStorage regRef = TargetReg(kArg3, kRef);
830    RegStorage regSingle = TargetReg(kArg3, kNotWide);
831    RegStorage regWide = TargetReg(kArg2, kWide);
832    for (int i = start_index;
833         i < stack_map_start + regs_left_to_pass_via_stack; i++) {
834      RegLocation rl_arg = info->args[i];
835      rl_arg = UpdateRawLoc(rl_arg);
836      RegStorage reg = in_to_reg_storage_mapping.Get(i);
837      if (!reg.Valid()) {
838        int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
839        {
840          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
841          if (rl_arg.wide) {
842            if (rl_arg.location == kLocPhysReg) {
843              StoreBaseDisp(TargetPtrReg(kSp), out_offset, rl_arg.reg, k64, kNotVolatile);
844            } else {
845              LoadValueDirectWideFixed(rl_arg, regWide);
846              StoreBaseDisp(TargetPtrReg(kSp), out_offset, regWide, k64, kNotVolatile);
847            }
848          } else {
849            if (rl_arg.location == kLocPhysReg) {
850              if (rl_arg.ref) {
851                StoreRefDisp(TargetPtrReg(kSp), out_offset, rl_arg.reg, kNotVolatile);
852              } else {
853                StoreBaseDisp(TargetPtrReg(kSp), out_offset, rl_arg.reg, k32, kNotVolatile);
854              }
855            } else {
856              if (rl_arg.ref) {
857                LoadValueDirectFixed(rl_arg, regRef);
858                StoreRefDisp(TargetPtrReg(kSp), out_offset, regRef, kNotVolatile);
859              } else {
860                LoadValueDirectFixed(rl_arg, regSingle);
861                StoreBaseDisp(TargetPtrReg(kSp), out_offset, regSingle, k32, kNotVolatile);
862              }
863            }
864          }
865        }
866        call_state = next_call_insn(cu_, info, call_state, target_method,
867                                    vtable_idx, direct_code, direct_method, type);
868      }
869      if (rl_arg.wide) {
870        i++;
871      }
872    }
873  }
874
875  // Finish with VRs mapped to physical registers.
876  for (int i = start_index; i < stack_map_start; i++) {
877    RegLocation rl_arg = info->args[i];
878    rl_arg = UpdateRawLoc(rl_arg);
879    RegStorage reg = in_to_reg_storage_mapping.Get(i);
880    if (reg.Valid()) {
881      if (rl_arg.wide) {
882        // if reg is not 64-bit (it is half of 64-bit) then handle it separately.
883        if (!reg.Is64Bit()) {
884          // TODO: REVISIT: This adds a spill of low part while we could just copy it.
885          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
886          if (rl_arg.location == kLocPhysReg) {
887            int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
888            // Dump it to memory and then load only low part
889            StoreBaseDisp(TargetPtrReg(kSp), out_offset, rl_arg.reg, k64, kNotVolatile);
890            LoadBaseDisp(TargetPtrReg(kSp), out_offset, reg, k32, kNotVolatile);
891          } else {
892            int out_offset = StackVisitor::GetOutVROffset(i + 1, cu_->instruction_set);
893            // First, use target reg for high part.
894            LoadBaseDisp(TargetPtrReg(kSp), SRegOffset(rl_arg.s_reg_low + 1), reg, k32,
895                         kNotVolatile);
896            StoreBaseDisp(TargetPtrReg(kSp), out_offset, reg, k32, kNotVolatile);
897            // Now load target reg with low part.
898            LoadBaseDisp(TargetPtrReg(kSp), SRegOffset(rl_arg.s_reg_low), reg, k32, kNotVolatile);
899          }
900        } else {
901          LoadValueDirectWideFixed(rl_arg, reg);
902        }
903      } else {
904        LoadValueDirectFixed(rl_arg, reg);
905      }
906      call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
907                               direct_code, direct_method, type);
908    }
909    if (rl_arg.wide) {
910      i++;
911    }
912  }
913
914  call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
915                           direct_code, direct_method, type);
916  if (pcrLabel) {
917    if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
918      *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags);
919    } else {
920      *pcrLabel = nullptr;
921      GenImplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags);
922    }
923  }
924  return call_state;
925}
926
927RegStorage Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
928  if (!in_to_reg_storage_mapping_.IsInitialized()) {
929    ShortyIterator shorty_iterator(cu_->shorty, cu_->invoke_type == kStatic);
930    in_to_reg_storage_mapping_.Initialize(&shorty_iterator, GetResetedInToRegStorageMapper());
931  }
932  return in_to_reg_storage_mapping_.Get(arg_num);
933}
934
935RegLocation Mir2Lir::InlineTarget(CallInfo* info) {
936  RegLocation res;
937  if (info->result.location == kLocInvalid) {
938    // If result is unused, return a sink target based on type of invoke target.
939    res = GetReturn(ShortyToRegClass(mir_graph_->GetShortyFromTargetIdx(info->index)[0]));
940  } else {
941    res = info->result;
942    DCHECK_EQ(LocToRegClass(res),
943              ShortyToRegClass(mir_graph_->GetShortyFromTargetIdx(info->index)[0]));
944  }
945  return res;
946}
947
948RegLocation Mir2Lir::InlineTargetWide(CallInfo* info) {
949  RegLocation res;
950  if (info->result.location == kLocInvalid) {
951    // If result is unused, return a sink target based on type of invoke target.
952    res = GetReturnWide(ShortyToRegClass(mir_graph_->GetShortyFromTargetIdx(info->index)[0]));
953  } else {
954    res = info->result;
955    DCHECK_EQ(LocToRegClass(res),
956              ShortyToRegClass(mir_graph_->GetShortyFromTargetIdx(info->index)[0]));
957  }
958  return res;
959}
960
961bool Mir2Lir::GenInlinedReferenceGetReferent(CallInfo* info) {
962  if (cu_->instruction_set == kMips) {
963    // TODO - add Mips implementation
964    return false;
965  }
966
967  bool use_direct_type_ptr;
968  uintptr_t direct_type_ptr;
969  ClassReference ref;
970  if (!cu_->compiler_driver->CanEmbedReferenceTypeInCode(&ref,
971        &use_direct_type_ptr, &direct_type_ptr)) {
972    return false;
973  }
974
975  RegStorage reg_class = TargetReg(kArg1, kRef);
976  Clobber(reg_class);
977  LockTemp(reg_class);
978  if (use_direct_type_ptr) {
979    LoadConstant(reg_class, direct_type_ptr);
980  } else {
981    uint16_t type_idx = ref.first->GetClassDef(ref.second).class_idx_;
982    LoadClassType(*ref.first, type_idx, kArg1);
983  }
984
985  uint32_t slow_path_flag_offset = cu_->compiler_driver->GetReferenceSlowFlagOffset();
986  uint32_t disable_flag_offset = cu_->compiler_driver->GetReferenceDisableFlagOffset();
987  CHECK(slow_path_flag_offset && disable_flag_offset &&
988        (slow_path_flag_offset != disable_flag_offset));
989
990  // intrinsic logic start.
991  RegLocation rl_obj = info->args[0];
992  rl_obj = LoadValue(rl_obj, kRefReg);
993
994  RegStorage reg_slow_path = AllocTemp();
995  RegStorage reg_disabled = AllocTemp();
996  Load8Disp(reg_class, slow_path_flag_offset, reg_slow_path);
997  Load8Disp(reg_class, disable_flag_offset, reg_disabled);
998  FreeTemp(reg_class);
999  LIR* or_inst = OpRegRegReg(kOpOr, reg_slow_path, reg_slow_path, reg_disabled);
1000  FreeTemp(reg_disabled);
1001
1002  // if slow path, jump to JNI path target
1003  LIR* slow_path_branch;
1004  if (or_inst->u.m.def_mask->HasBit(ResourceMask::kCCode)) {
1005    // Generate conditional branch only, as the OR set a condition state (we are interested in a 'Z' flag).
1006    slow_path_branch = OpCondBranch(kCondNe, nullptr);
1007  } else {
1008    // Generate compare and branch.
1009    slow_path_branch = OpCmpImmBranch(kCondNe, reg_slow_path, 0, nullptr);
1010  }
1011  FreeTemp(reg_slow_path);
1012
1013  // slow path not enabled, simply load the referent of the reference object
1014  RegLocation rl_dest = InlineTarget(info);
1015  RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
1016  GenNullCheck(rl_obj.reg, info->opt_flags);
1017  LoadRefDisp(rl_obj.reg, mirror::Reference::ReferentOffset().Int32Value(), rl_result.reg,
1018      kNotVolatile);
1019  MarkPossibleNullPointerException(info->opt_flags);
1020  StoreValue(rl_dest, rl_result);
1021
1022  LIR* intrinsic_finish = NewLIR0(kPseudoTargetLabel);
1023  AddIntrinsicSlowPath(info, slow_path_branch, intrinsic_finish);
1024  ClobberCallerSave();  // We must clobber everything because slow path will return here
1025  return true;
1026}
1027
1028bool Mir2Lir::GenInlinedCharAt(CallInfo* info) {
1029  if (cu_->instruction_set == kMips) {
1030    // TODO - add Mips implementation
1031    return false;
1032  }
1033  // Location of reference to data array
1034  int value_offset = mirror::String::ValueOffset().Int32Value();
1035  // Location of count
1036  int count_offset = mirror::String::CountOffset().Int32Value();
1037  // Starting offset within data array
1038  int offset_offset = mirror::String::OffsetOffset().Int32Value();
1039  // Start of char data with array_
1040  int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
1041
1042  RegLocation rl_obj = info->args[0];
1043  RegLocation rl_idx = info->args[1];
1044  rl_obj = LoadValue(rl_obj, kRefReg);
1045  rl_idx = LoadValue(rl_idx, kCoreReg);
1046  RegStorage reg_max;
1047  GenNullCheck(rl_obj.reg, info->opt_flags);
1048  bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK));
1049  LIR* range_check_branch = nullptr;
1050  RegStorage reg_off;
1051  RegStorage reg_ptr;
1052  reg_off = AllocTemp();
1053  reg_ptr = AllocTempRef();
1054  if (range_check) {
1055    reg_max = AllocTemp();
1056    Load32Disp(rl_obj.reg, count_offset, reg_max);
1057    MarkPossibleNullPointerException(info->opt_flags);
1058  }
1059  Load32Disp(rl_obj.reg, offset_offset, reg_off);
1060  MarkPossibleNullPointerException(info->opt_flags);
1061  LoadRefDisp(rl_obj.reg, value_offset, reg_ptr, kNotVolatile);
1062  if (range_check) {
1063    // Set up a slow path to allow retry in case of bounds violation */
1064    OpRegReg(kOpCmp, rl_idx.reg, reg_max);
1065    FreeTemp(reg_max);
1066    range_check_branch = OpCondBranch(kCondUge, nullptr);
1067  }
1068  OpRegImm(kOpAdd, reg_ptr, data_offset);
1069  if (rl_idx.is_const) {
1070    OpRegImm(kOpAdd, reg_off, mir_graph_->ConstantValue(rl_idx.orig_sreg));
1071  } else {
1072    OpRegReg(kOpAdd, reg_off, rl_idx.reg);
1073  }
1074  FreeTemp(rl_obj.reg);
1075  if (rl_idx.location == kLocPhysReg) {
1076    FreeTemp(rl_idx.reg);
1077  }
1078  RegLocation rl_dest = InlineTarget(info);
1079  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1080  LoadBaseIndexed(reg_ptr, reg_off, rl_result.reg, 1, kUnsignedHalf);
1081  FreeTemp(reg_off);
1082  FreeTemp(reg_ptr);
1083  StoreValue(rl_dest, rl_result);
1084  if (range_check) {
1085    DCHECK(range_check_branch != nullptr);
1086    info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've already null checked.
1087    AddIntrinsicSlowPath(info, range_check_branch);
1088  }
1089  return true;
1090}
1091
1092// Generates an inlined String.is_empty or String.length.
1093bool Mir2Lir::GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty) {
1094  if (cu_->instruction_set == kMips) {
1095    // TODO - add Mips implementation
1096    return false;
1097  }
1098  // dst = src.length();
1099  RegLocation rl_obj = info->args[0];
1100  rl_obj = LoadValue(rl_obj, kRefReg);
1101  RegLocation rl_dest = InlineTarget(info);
1102  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1103  GenNullCheck(rl_obj.reg, info->opt_flags);
1104  Load32Disp(rl_obj.reg, mirror::String::CountOffset().Int32Value(), rl_result.reg);
1105  MarkPossibleNullPointerException(info->opt_flags);
1106  if (is_empty) {
1107    // dst = (dst == 0);
1108    if (cu_->instruction_set == kThumb2) {
1109      RegStorage t_reg = AllocTemp();
1110      OpRegReg(kOpNeg, t_reg, rl_result.reg);
1111      OpRegRegReg(kOpAdc, rl_result.reg, rl_result.reg, t_reg);
1112    } else if (cu_->instruction_set == kArm64) {
1113      OpRegImm(kOpSub, rl_result.reg, 1);
1114      OpRegRegImm(kOpLsr, rl_result.reg, rl_result.reg, 31);
1115    } else {
1116      DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
1117      OpRegImm(kOpSub, rl_result.reg, 1);
1118      OpRegImm(kOpLsr, rl_result.reg, 31);
1119    }
1120  }
1121  StoreValue(rl_dest, rl_result);
1122  return true;
1123}
1124
1125bool Mir2Lir::GenInlinedReverseBytes(CallInfo* info, OpSize size) {
1126  if (cu_->instruction_set == kMips) {
1127    // TODO - add Mips implementation.
1128    return false;
1129  }
1130  RegLocation rl_src_i = info->args[0];
1131  RegLocation rl_i = IsWide(size) ? LoadValueWide(rl_src_i, kCoreReg) : LoadValue(rl_src_i, kCoreReg);
1132  RegLocation rl_dest = IsWide(size) ? InlineTargetWide(info) : InlineTarget(info);  // result reg
1133  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1134  if (IsWide(size)) {
1135    if (cu_->instruction_set == kArm64 || cu_->instruction_set == kX86_64) {
1136      OpRegReg(kOpRev, rl_result.reg, rl_i.reg);
1137      StoreValueWide(rl_dest, rl_result);
1138      return true;
1139    }
1140    RegStorage r_i_low = rl_i.reg.GetLow();
1141    if (rl_i.reg.GetLowReg() == rl_result.reg.GetLowReg()) {
1142      // First REV shall clobber rl_result.reg.GetReg(), save the value in a temp for the second REV.
1143      r_i_low = AllocTemp();
1144      OpRegCopy(r_i_low, rl_i.reg);
1145    }
1146    OpRegReg(kOpRev, rl_result.reg.GetLow(), rl_i.reg.GetHigh());
1147    OpRegReg(kOpRev, rl_result.reg.GetHigh(), r_i_low);
1148    if (rl_i.reg.GetLowReg() == rl_result.reg.GetLowReg()) {
1149      FreeTemp(r_i_low);
1150    }
1151    StoreValueWide(rl_dest, rl_result);
1152  } else {
1153    DCHECK(size == k32 || size == kSignedHalf);
1154    OpKind op = (size == k32) ? kOpRev : kOpRevsh;
1155    OpRegReg(op, rl_result.reg, rl_i.reg);
1156    StoreValue(rl_dest, rl_result);
1157  }
1158  return true;
1159}
1160
1161bool Mir2Lir::GenInlinedAbsInt(CallInfo* info) {
1162  if (cu_->instruction_set == kMips) {
1163    // TODO - add Mips implementation
1164    return false;
1165  }
1166  RegLocation rl_src = info->args[0];
1167  rl_src = LoadValue(rl_src, kCoreReg);
1168  RegLocation rl_dest = InlineTarget(info);
1169  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1170  RegStorage sign_reg = AllocTemp();
1171  // abs(x) = y<=x>>31, (x+y)^y.
1172  OpRegRegImm(kOpAsr, sign_reg, rl_src.reg, 31);
1173  OpRegRegReg(kOpAdd, rl_result.reg, rl_src.reg, sign_reg);
1174  OpRegReg(kOpXor, rl_result.reg, sign_reg);
1175  StoreValue(rl_dest, rl_result);
1176  return true;
1177}
1178
1179bool Mir2Lir::GenInlinedAbsLong(CallInfo* info) {
1180  if (cu_->instruction_set == kMips) {
1181    // TODO - add Mips implementation
1182    return false;
1183  }
1184  RegLocation rl_src = info->args[0];
1185  rl_src = LoadValueWide(rl_src, kCoreReg);
1186  RegLocation rl_dest = InlineTargetWide(info);
1187  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1188
1189  // If on x86 or if we would clobber a register needed later, just copy the source first.
1190  if (cu_->instruction_set != kX86_64 &&
1191      (cu_->instruction_set == kX86 ||
1192       rl_result.reg.GetLowReg() == rl_src.reg.GetHighReg())) {
1193    OpRegCopyWide(rl_result.reg, rl_src.reg);
1194    if (rl_result.reg.GetLowReg() != rl_src.reg.GetLowReg() &&
1195        rl_result.reg.GetLowReg() != rl_src.reg.GetHighReg() &&
1196        rl_result.reg.GetHighReg() != rl_src.reg.GetLowReg() &&
1197        rl_result.reg.GetHighReg() != rl_src.reg.GetHighReg()) {
1198      // Reuse source registers to avoid running out of temps.
1199      FreeTemp(rl_src.reg);
1200    }
1201    rl_src = rl_result;
1202  }
1203
1204  // abs(x) = y<=x>>31, (x+y)^y.
1205  RegStorage sign_reg;
1206  if (cu_->instruction_set == kX86_64) {
1207    sign_reg = AllocTempWide();
1208    OpRegRegImm(kOpAsr, sign_reg, rl_src.reg, 63);
1209    OpRegRegReg(kOpAdd, rl_result.reg, rl_src.reg, sign_reg);
1210    OpRegReg(kOpXor, rl_result.reg, sign_reg);
1211  } else {
1212    sign_reg = AllocTemp();
1213    OpRegRegImm(kOpAsr, sign_reg, rl_src.reg.GetHigh(), 31);
1214    OpRegRegReg(kOpAdd, rl_result.reg.GetLow(), rl_src.reg.GetLow(), sign_reg);
1215    OpRegRegReg(kOpAdc, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), sign_reg);
1216    OpRegReg(kOpXor, rl_result.reg.GetLow(), sign_reg);
1217    OpRegReg(kOpXor, rl_result.reg.GetHigh(), sign_reg);
1218  }
1219  FreeTemp(sign_reg);
1220  StoreValueWide(rl_dest, rl_result);
1221  return true;
1222}
1223
1224bool Mir2Lir::GenInlinedReverseBits(CallInfo* info, OpSize size) {
1225  // Currently implemented only for ARM64.
1226  UNUSED(info, size);
1227  return false;
1228}
1229
1230bool Mir2Lir::GenInlinedMinMaxFP(CallInfo* info, bool is_min, bool is_double) {
1231  // Currently implemented only for ARM64.
1232  UNUSED(info, is_min, is_double);
1233  return false;
1234}
1235
1236bool Mir2Lir::GenInlinedCeil(CallInfo* info) {
1237  UNUSED(info);
1238  return false;
1239}
1240
1241bool Mir2Lir::GenInlinedFloor(CallInfo* info) {
1242  UNUSED(info);
1243  return false;
1244}
1245
1246bool Mir2Lir::GenInlinedRint(CallInfo* info) {
1247  UNUSED(info);
1248  return false;
1249}
1250
1251bool Mir2Lir::GenInlinedRound(CallInfo* info, bool is_double) {
1252  UNUSED(info, is_double);
1253  return false;
1254}
1255
1256bool Mir2Lir::GenInlinedFloatCvt(CallInfo* info) {
1257  if (cu_->instruction_set == kMips) {
1258    // TODO - add Mips implementation
1259    return false;
1260  }
1261  RegLocation rl_src = info->args[0];
1262  RegLocation rl_dest = InlineTarget(info);
1263  StoreValue(rl_dest, rl_src);
1264  return true;
1265}
1266
1267bool Mir2Lir::GenInlinedDoubleCvt(CallInfo* info) {
1268  if (cu_->instruction_set == kMips) {
1269    // TODO - add Mips implementation
1270    return false;
1271  }
1272  RegLocation rl_src = info->args[0];
1273  RegLocation rl_dest = InlineTargetWide(info);
1274  StoreValueWide(rl_dest, rl_src);
1275  return true;
1276}
1277
1278bool Mir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) {
1279  UNUSED(info);
1280  return false;
1281}
1282
1283
1284/*
1285 * Fast String.indexOf(I) & (II).  Tests for simple case of char <= 0xFFFF,
1286 * otherwise bails to standard library code.
1287 */
1288bool Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
1289  if (cu_->instruction_set == kMips) {
1290    // TODO - add Mips implementation
1291    return false;
1292  }
1293  if (cu_->instruction_set == kX86_64) {
1294    // TODO - add kX86_64 implementation
1295    return false;
1296  }
1297  RegLocation rl_obj = info->args[0];
1298  RegLocation rl_char = info->args[1];
1299  if (rl_char.is_const && (mir_graph_->ConstantValue(rl_char) & ~0xFFFF) != 0) {
1300    // Code point beyond 0xFFFF. Punt to the real String.indexOf().
1301    return false;
1302  }
1303
1304  ClobberCallerSave();
1305  LockCallTemps();  // Using fixed registers
1306  RegStorage reg_ptr = TargetReg(kArg0, kRef);
1307  RegStorage reg_char = TargetReg(kArg1, kNotWide);
1308  RegStorage reg_start = TargetReg(kArg2, kNotWide);
1309
1310  LoadValueDirectFixed(rl_obj, reg_ptr);
1311  LoadValueDirectFixed(rl_char, reg_char);
1312  if (zero_based) {
1313    LoadConstant(reg_start, 0);
1314  } else {
1315    RegLocation rl_start = info->args[2];     // 3rd arg only present in III flavor of IndexOf.
1316    LoadValueDirectFixed(rl_start, reg_start);
1317  }
1318  RegStorage r_tgt = LoadHelper(kQuickIndexOf);
1319  GenExplicitNullCheck(reg_ptr, info->opt_flags);
1320  LIR* high_code_point_branch =
1321      rl_char.is_const ? nullptr : OpCmpImmBranch(kCondGt, reg_char, 0xFFFF, nullptr);
1322  // NOTE: not a safepoint
1323  OpReg(kOpBlx, r_tgt);
1324  if (!rl_char.is_const) {
1325    // Add the slow path for code points beyond 0xFFFF.
1326    DCHECK(high_code_point_branch != nullptr);
1327    LIR* resume_tgt = NewLIR0(kPseudoTargetLabel);
1328    info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've null checked.
1329    AddIntrinsicSlowPath(info, high_code_point_branch, resume_tgt);
1330    ClobberCallerSave();  // We must clobber everything because slow path will return here
1331  } else {
1332    DCHECK_EQ(mir_graph_->ConstantValue(rl_char) & ~0xFFFF, 0);
1333    DCHECK(high_code_point_branch == nullptr);
1334  }
1335  RegLocation rl_return = GetReturn(kCoreReg);
1336  RegLocation rl_dest = InlineTarget(info);
1337  StoreValue(rl_dest, rl_return);
1338  return true;
1339}
1340
1341/* Fast string.compareTo(Ljava/lang/string;)I. */
1342bool Mir2Lir::GenInlinedStringCompareTo(CallInfo* info) {
1343  if (cu_->instruction_set == kMips) {
1344    // TODO - add Mips implementation
1345    return false;
1346  }
1347  ClobberCallerSave();
1348  LockCallTemps();  // Using fixed registers
1349  RegStorage reg_this = TargetReg(kArg0, kRef);
1350  RegStorage reg_cmp = TargetReg(kArg1, kRef);
1351
1352  RegLocation rl_this = info->args[0];
1353  RegLocation rl_cmp = info->args[1];
1354  LoadValueDirectFixed(rl_this, reg_this);
1355  LoadValueDirectFixed(rl_cmp, reg_cmp);
1356  RegStorage r_tgt;
1357  if (cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64) {
1358    r_tgt = LoadHelper(kQuickStringCompareTo);
1359  } else {
1360    r_tgt = RegStorage::InvalidReg();
1361  }
1362  GenExplicitNullCheck(reg_this, info->opt_flags);
1363  info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've null checked.
1364  // TUNING: check if rl_cmp.s_reg_low is already null checked
1365  LIR* cmp_null_check_branch = OpCmpImmBranch(kCondEq, reg_cmp, 0, nullptr);
1366  AddIntrinsicSlowPath(info, cmp_null_check_branch);
1367  // NOTE: not a safepoint
1368  CallHelper(r_tgt, kQuickStringCompareTo, false, true);
1369  RegLocation rl_return = GetReturn(kCoreReg);
1370  RegLocation rl_dest = InlineTarget(info);
1371  StoreValue(rl_dest, rl_return);
1372  return true;
1373}
1374
1375bool Mir2Lir::GenInlinedCurrentThread(CallInfo* info) {
1376  RegLocation rl_dest = InlineTarget(info);
1377
1378  // Early exit if the result is unused.
1379  if (rl_dest.orig_sreg < 0) {
1380    return true;
1381  }
1382
1383  RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
1384
1385  switch (cu_->instruction_set) {
1386    case kArm:
1387      // Fall-through.
1388    case kThumb2:
1389      // Fall-through.
1390    case kMips:
1391      Load32Disp(TargetPtrReg(kSelf), Thread::PeerOffset<4>().Int32Value(), rl_result.reg);
1392      break;
1393
1394    case kArm64:
1395      LoadRefDisp(TargetPtrReg(kSelf), Thread::PeerOffset<8>().Int32Value(), rl_result.reg,
1396                  kNotVolatile);
1397      break;
1398
1399    default:
1400      LOG(FATAL) << "Unexpected isa " << cu_->instruction_set;
1401  }
1402  StoreValue(rl_dest, rl_result);
1403  return true;
1404}
1405
1406bool Mir2Lir::GenInlinedUnsafeGet(CallInfo* info,
1407                                  bool is_long, bool is_volatile) {
1408  if (cu_->instruction_set == kMips) {
1409    // TODO - add Mips implementation
1410    return false;
1411  }
1412  // Unused - RegLocation rl_src_unsafe = info->args[0];
1413  RegLocation rl_src_obj = info->args[1];  // Object
1414  RegLocation rl_src_offset = info->args[2];  // long low
1415  rl_src_offset = NarrowRegLoc(rl_src_offset);  // ignore high half in info->args[3]
1416  RegLocation rl_dest = is_long ? InlineTargetWide(info) : InlineTarget(info);  // result reg
1417
1418  RegLocation rl_object = LoadValue(rl_src_obj, kRefReg);
1419  RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
1420  RegLocation rl_result = EvalLoc(rl_dest, LocToRegClass(rl_dest), true);
1421  if (is_long) {
1422    if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64
1423        || cu_->instruction_set == kArm64) {
1424      LoadBaseIndexed(rl_object.reg, rl_offset.reg, rl_result.reg, 0, k64);
1425    } else {
1426      RegStorage rl_temp_offset = AllocTemp();
1427      OpRegRegReg(kOpAdd, rl_temp_offset, rl_object.reg, rl_offset.reg);
1428      LoadBaseDisp(rl_temp_offset, 0, rl_result.reg, k64, kNotVolatile);
1429      FreeTemp(rl_temp_offset);
1430    }
1431  } else {
1432    if (rl_result.ref) {
1433      LoadRefIndexed(rl_object.reg, rl_offset.reg, rl_result.reg, 0);
1434    } else {
1435      LoadBaseIndexed(rl_object.reg, rl_offset.reg, rl_result.reg, 0, k32);
1436    }
1437  }
1438
1439  if (is_volatile) {
1440    GenMemBarrier(kLoadAny);
1441  }
1442
1443  if (is_long) {
1444    StoreValueWide(rl_dest, rl_result);
1445  } else {
1446    StoreValue(rl_dest, rl_result);
1447  }
1448  return true;
1449}
1450
1451bool Mir2Lir::GenInlinedUnsafePut(CallInfo* info, bool is_long,
1452                                  bool is_object, bool is_volatile, bool is_ordered) {
1453  if (cu_->instruction_set == kMips) {
1454    // TODO - add Mips implementation
1455    return false;
1456  }
1457  // Unused - RegLocation rl_src_unsafe = info->args[0];
1458  RegLocation rl_src_obj = info->args[1];  // Object
1459  RegLocation rl_src_offset = info->args[2];  // long low
1460  rl_src_offset = NarrowRegLoc(rl_src_offset);  // ignore high half in info->args[3]
1461  RegLocation rl_src_value = info->args[4];  // value to store
1462  if (is_volatile || is_ordered) {
1463    GenMemBarrier(kAnyStore);
1464  }
1465  RegLocation rl_object = LoadValue(rl_src_obj, kRefReg);
1466  RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
1467  RegLocation rl_value;
1468  if (is_long) {
1469    rl_value = LoadValueWide(rl_src_value, kCoreReg);
1470    if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64
1471        || cu_->instruction_set == kArm64) {
1472      StoreBaseIndexed(rl_object.reg, rl_offset.reg, rl_value.reg, 0, k64);
1473    } else {
1474      RegStorage rl_temp_offset = AllocTemp();
1475      OpRegRegReg(kOpAdd, rl_temp_offset, rl_object.reg, rl_offset.reg);
1476      StoreBaseDisp(rl_temp_offset, 0, rl_value.reg, k64, kNotVolatile);
1477      FreeTemp(rl_temp_offset);
1478    }
1479  } else {
1480    rl_value = LoadValue(rl_src_value, LocToRegClass(rl_src_value));
1481    if (rl_value.ref) {
1482      StoreRefIndexed(rl_object.reg, rl_offset.reg, rl_value.reg, 0);
1483    } else {
1484      StoreBaseIndexed(rl_object.reg, rl_offset.reg, rl_value.reg, 0, k32);
1485    }
1486  }
1487
1488  // Free up the temp early, to ensure x86 doesn't run out of temporaries in MarkGCCard.
1489  FreeTemp(rl_offset.reg);
1490
1491  if (is_volatile) {
1492    // Prevent reordering with a subsequent volatile load.
1493    // May also be needed to address store atomicity issues.
1494    GenMemBarrier(kAnyAny);
1495  }
1496  if (is_object) {
1497    MarkGCCard(0, rl_value.reg, rl_object.reg);
1498  }
1499  return true;
1500}
1501
1502void Mir2Lir::GenInvoke(CallInfo* info) {
1503  DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
1504  if (cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(cu_->dex_file)
1505      ->GenIntrinsic(this, info)) {
1506    return;
1507  }
1508  GenInvokeNoInline(info);
1509}
1510
1511void Mir2Lir::GenInvokeNoInline(CallInfo* info) {
1512  int call_state = 0;
1513  LIR* null_ck;
1514  LIR** p_null_ck = NULL;
1515  NextCallInsn next_call_insn;
1516  FlushAllRegs();  /* Everything to home location */
1517  // Explicit register usage
1518  LockCallTemps();
1519
1520  const MirMethodLoweringInfo& method_info = mir_graph_->GetMethodLoweringInfo(info->mir);
1521  cu_->compiler_driver->ProcessedInvoke(method_info.GetInvokeType(), method_info.StatsFlags());
1522  InvokeType original_type = static_cast<InvokeType>(method_info.GetInvokeType());
1523  info->type = method_info.GetSharpType();
1524  bool fast_path = method_info.FastPath();
1525  bool skip_this;
1526  if (info->type == kInterface) {
1527    next_call_insn = fast_path ? NextInterfaceCallInsn : NextInterfaceCallInsnWithAccessCheck;
1528    skip_this = fast_path;
1529  } else if (info->type == kDirect) {
1530    if (fast_path) {
1531      p_null_ck = &null_ck;
1532    }
1533    next_call_insn = fast_path ? GetNextSDCallInsn() : NextDirectCallInsnSP;
1534    skip_this = false;
1535  } else if (info->type == kStatic) {
1536    next_call_insn = fast_path ? GetNextSDCallInsn() : NextStaticCallInsnSP;
1537    skip_this = false;
1538  } else if (info->type == kSuper) {
1539    DCHECK(!fast_path);  // Fast path is a direct call.
1540    next_call_insn = NextSuperCallInsnSP;
1541    skip_this = false;
1542  } else {
1543    DCHECK_EQ(info->type, kVirtual);
1544    next_call_insn = fast_path ? NextVCallInsn : NextVCallInsnSP;
1545    skip_this = fast_path;
1546  }
1547  MethodReference target_method = method_info.GetTargetMethod();
1548  call_state = GenDalvikArgs(info, call_state, p_null_ck,
1549                             next_call_insn, target_method, method_info.VTableIndex(),
1550                             method_info.DirectCode(), method_info.DirectMethod(),
1551                             original_type, skip_this);
1552  // Finish up any of the call sequence not interleaved in arg loading
1553  while (call_state >= 0) {
1554    call_state = next_call_insn(cu_, info, call_state, target_method, method_info.VTableIndex(),
1555                                method_info.DirectCode(), method_info.DirectMethod(), original_type);
1556  }
1557  LIR* call_insn = GenCallInsn(method_info);
1558  MarkSafepointPC(call_insn);
1559
1560  FreeCallTemps();
1561  if (info->result.location != kLocInvalid) {
1562    // We have a following MOVE_RESULT - do it now.
1563    if (info->result.wide) {
1564      RegLocation ret_loc = GetReturnWide(LocToRegClass(info->result));
1565      StoreValueWide(info->result, ret_loc);
1566    } else {
1567      RegLocation ret_loc = GetReturn(LocToRegClass(info->result));
1568      StoreValue(info->result, ret_loc);
1569    }
1570  }
1571}
1572
1573NextCallInsn Mir2Lir::GetNextSDCallInsn() {
1574  return NextSDCallInsn;
1575}
1576
1577LIR* Mir2Lir::GenCallInsn(const MirMethodLoweringInfo& method_info) {
1578  UNUSED(method_info);
1579  DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64 &&
1580         cu_->instruction_set != kThumb2 && cu_->instruction_set != kArm &&
1581         cu_->instruction_set != kArm64);
1582  return OpReg(kOpBlx, TargetPtrReg(kInvokeTgt));
1583}
1584
1585}  // namespace art
1586