1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
18#define ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
19
20#include "base/arena_allocator.h"
21#include "base/arena_containers.h"
22#include "base/arena_object.h"
23#include "compiled_method.h"
24#include "dex/compiler_enums.h"
25#include "dex/dex_flags.h"
26#include "dex/dex_types.h"
27#include "dex/reg_location.h"
28#include "dex/reg_storage.h"
29#include "dex/quick/resource_mask.h"
30#include "entrypoints/quick/quick_entrypoints_enum.h"
31#include "invoke_type.h"
32#include "lazy_debug_frame_opcode_writer.h"
33#include "leb128.h"
34#include "primitive.h"
35#include "safe_map.h"
36#include "utils/array_ref.h"
37#include "utils/dex_cache_arrays_layout.h"
38#include "utils/stack_checks.h"
39
40namespace art {
41
42// Set to 1 to measure cost of suspend check.
43#define NO_SUSPEND 0
44
45#define IS_BINARY_OP         (1ULL << kIsBinaryOp)
46#define IS_BRANCH            (1ULL << kIsBranch)
47#define IS_IT                (1ULL << kIsIT)
48#define IS_MOVE              (1ULL << kIsMoveOp)
49#define IS_LOAD              (1ULL << kMemLoad)
50#define IS_QUAD_OP           (1ULL << kIsQuadOp)
51#define IS_QUIN_OP           (1ULL << kIsQuinOp)
52#define IS_SEXTUPLE_OP       (1ULL << kIsSextupleOp)
53#define IS_STORE             (1ULL << kMemStore)
54#define IS_TERTIARY_OP       (1ULL << kIsTertiaryOp)
55#define IS_UNARY_OP          (1ULL << kIsUnaryOp)
56#define IS_VOLATILE          (1ULL << kMemVolatile)
57#define NEEDS_FIXUP          (1ULL << kPCRelFixup)
58#define NO_OPERAND           (1ULL << kNoOperand)
59#define REG_DEF0             (1ULL << kRegDef0)
60#define REG_DEF1             (1ULL << kRegDef1)
61#define REG_DEF2             (1ULL << kRegDef2)
62#define REG_DEFA             (1ULL << kRegDefA)
63#define REG_DEFD             (1ULL << kRegDefD)
64#define REG_DEF_FPCS_LIST0   (1ULL << kRegDefFPCSList0)
65#define REG_DEF_FPCS_LIST2   (1ULL << kRegDefFPCSList2)
66#define REG_DEF_LIST0        (1ULL << kRegDefList0)
67#define REG_DEF_LIST1        (1ULL << kRegDefList1)
68#define REG_DEF_LR           (1ULL << kRegDefLR)
69#define REG_DEF_SP           (1ULL << kRegDefSP)
70#define REG_USE0             (1ULL << kRegUse0)
71#define REG_USE1             (1ULL << kRegUse1)
72#define REG_USE2             (1ULL << kRegUse2)
73#define REG_USE3             (1ULL << kRegUse3)
74#define REG_USE4             (1ULL << kRegUse4)
75#define REG_USEA             (1ULL << kRegUseA)
76#define REG_USEC             (1ULL << kRegUseC)
77#define REG_USED             (1ULL << kRegUseD)
78#define REG_USEB             (1ULL << kRegUseB)
79#define REG_USE_FPCS_LIST0   (1ULL << kRegUseFPCSList0)
80#define REG_USE_FPCS_LIST2   (1ULL << kRegUseFPCSList2)
81#define REG_USE_LIST0        (1ULL << kRegUseList0)
82#define REG_USE_LIST1        (1ULL << kRegUseList1)
83#define REG_USE_LR           (1ULL << kRegUseLR)
84#define REG_USE_PC           (1ULL << kRegUsePC)
85#define REG_USE_SP           (1ULL << kRegUseSP)
86#define SETS_CCODES          (1ULL << kSetsCCodes)
87#define USES_CCODES          (1ULL << kUsesCCodes)
88#define USE_FP_STACK         (1ULL << kUseFpStack)
89#define REG_USE_LO           (1ULL << kUseLo)
90#define REG_USE_HI           (1ULL << kUseHi)
91#define REG_DEF_LO           (1ULL << kDefLo)
92#define REG_DEF_HI           (1ULL << kDefHi)
93#define SCALED_OFFSET_X0     (1ULL << kMemScaledx0)
94#define SCALED_OFFSET_X2     (1ULL << kMemScaledx2)
95#define SCALED_OFFSET_X4     (1ULL << kMemScaledx4)
96
97// Special load/stores
98#define IS_LOADX             (IS_LOAD | IS_VOLATILE)
99#define IS_LOAD_OFF          (IS_LOAD | SCALED_OFFSET_X0)
100#define IS_LOAD_OFF2         (IS_LOAD | SCALED_OFFSET_X2)
101#define IS_LOAD_OFF4         (IS_LOAD | SCALED_OFFSET_X4)
102
103#define IS_STOREX            (IS_STORE | IS_VOLATILE)
104#define IS_STORE_OFF         (IS_STORE | SCALED_OFFSET_X0)
105#define IS_STORE_OFF2        (IS_STORE | SCALED_OFFSET_X2)
106#define IS_STORE_OFF4        (IS_STORE | SCALED_OFFSET_X4)
107
108// Common combo register usage patterns.
109#define REG_DEF01            (REG_DEF0 | REG_DEF1)
110#define REG_DEF012           (REG_DEF0 | REG_DEF1 | REG_DEF2)
111#define REG_DEF01_USE2       (REG_DEF0 | REG_DEF1 | REG_USE2)
112#define REG_DEF0_USE01       (REG_DEF0 | REG_USE01)
113#define REG_DEF0_USE0        (REG_DEF0 | REG_USE0)
114#define REG_DEF0_USE12       (REG_DEF0 | REG_USE12)
115#define REG_DEF0_USE123      (REG_DEF0 | REG_USE123)
116#define REG_DEF0_USE1        (REG_DEF0 | REG_USE1)
117#define REG_DEF0_USE2        (REG_DEF0 | REG_USE2)
118#define REG_DEFAD_USEAD      (REG_DEFAD_USEA | REG_USED)
119#define REG_DEFAD_USEA       (REG_DEFA_USEA | REG_DEFD)
120#define REG_DEFA_USEA        (REG_DEFA | REG_USEA)
121#define REG_USE012           (REG_USE01 | REG_USE2)
122#define REG_USE014           (REG_USE01 | REG_USE4)
123#define REG_USE01            (REG_USE0 | REG_USE1)
124#define REG_USE02            (REG_USE0 | REG_USE2)
125#define REG_USE12            (REG_USE1 | REG_USE2)
126#define REG_USE23            (REG_USE2 | REG_USE3)
127#define REG_USE123           (REG_USE1 | REG_USE2 | REG_USE3)
128
129/*
130 * Assembly is an iterative process, and usually terminates within
131 * two or three passes.  This should be high enough to handle bizarre
132 * cases, but detect an infinite loop bug.
133 */
134#define MAX_ASSEMBLER_RETRIES 50
135
136class BasicBlock;
137class BitVector;
138struct CallInfo;
139struct CompilationUnit;
140struct CompilerTemp;
141struct InlineMethod;
142class MIR;
143struct LIR;
144struct RegisterInfo;
145class DexFileMethodInliner;
146class MIRGraph;
147class MirMethodLoweringInfo;
148class MirSFieldLoweringInfo;
149
150typedef int (*NextCallInsn)(CompilationUnit*, CallInfo*, int,
151                            const MethodReference& target_method,
152                            uint32_t method_idx, uintptr_t direct_code,
153                            uintptr_t direct_method, InvokeType type);
154
155typedef ArenaVector<uint8_t> CodeBuffer;
156typedef uint32_t CodeOffset;           // Native code offset in bytes.
157
158struct UseDefMasks {
159  const ResourceMask* use_mask;        // Resource mask for use.
160  const ResourceMask* def_mask;        // Resource mask for def.
161};
162
163struct AssemblyInfo {
164  LIR* pcrel_next;           // Chain of LIR nodes needing pc relative fixups.
165};
166
167struct LIR {
168  CodeOffset offset;             // Offset of this instruction.
169  NarrowDexOffset dalvik_offset;   // Offset of Dalvik opcode in code units (16-bit words).
170  int16_t opcode;
171  LIR* next;
172  LIR* prev;
173  LIR* target;
174  struct {
175    unsigned int alias_info:17;  // For Dalvik register disambiguation.
176    bool is_nop:1;               // LIR is optimized away.
177    unsigned int size:4;         // Note: size of encoded instruction is in bytes.
178    bool use_def_invalid:1;      // If true, masks should not be used.
179    unsigned int generation:1;   // Used to track visitation state during fixup pass.
180    unsigned int fixup:8;        // Fixup kind.
181  } flags;
182  union {
183    UseDefMasks m;               // Use & Def masks used during optimization.
184    AssemblyInfo a;              // Instruction info used during assembly phase.
185  } u;
186  int32_t operands[5];           // [0..4] = [dest, src1, src2, extra, extra2].
187};
188
189// Utility macros to traverse the LIR list.
190#define NEXT_LIR(lir) (lir->next)
191#define PREV_LIR(lir) (lir->prev)
192
193// Defines for alias_info (tracks Dalvik register references).
194#define DECODE_ALIAS_INFO_REG(X)        (X & 0xffff)
195#define DECODE_ALIAS_INFO_WIDE_FLAG     (0x10000)
196#define DECODE_ALIAS_INFO_WIDE(X)       ((X & DECODE_ALIAS_INFO_WIDE_FLAG) ? 1 : 0)
197#define ENCODE_ALIAS_INFO(REG, ISWIDE)  (REG | (ISWIDE ? DECODE_ALIAS_INFO_WIDE_FLAG : 0))
198
199#define ENCODE_REG_PAIR(low_reg, high_reg) ((low_reg & 0xff) | ((high_reg & 0xff) << 8))
200#define DECODE_REG_PAIR(both_regs, low_reg, high_reg) \
201  do { \
202    low_reg = both_regs & 0xff; \
203    high_reg = (both_regs >> 8) & 0xff; \
204  } while (false)
205
206// Mask to denote sreg as the start of a 64-bit item.  Must not interfere with low 16 bits.
207#define STARTING_WIDE_SREG 0x10000
208
209class Mir2Lir {
210  public:
211    static constexpr bool kFailOnSizeError = true && kIsDebugBuild;
212    static constexpr bool kReportSizeError = true && kIsDebugBuild;
213
214    // TODO: If necessary, this could be made target-dependent.
215    static constexpr uint16_t kSmallSwitchThreshold = 5;
216
217    /*
218     * Auxiliary information describing the location of data embedded in the Dalvik
219     * byte code stream.
220     */
221    struct EmbeddedData {
222      CodeOffset offset;        // Code offset of data block.
223      const uint16_t* table;      // Original dex data.
224      DexOffset vaddr;            // Dalvik offset of parent opcode.
225    };
226
227    struct FillArrayData : EmbeddedData {
228      int32_t size;
229    };
230
231    struct SwitchTable : EmbeddedData {
232      LIR* anchor;                // Reference instruction for relative offsets.
233      MIR* switch_mir;            // The switch mir.
234    };
235
236    /* Static register use counts */
237    struct RefCounts {
238      int count;
239      int s_reg;
240    };
241
242    /*
243     * Data structure tracking the mapping detween a Dalvik value (32 or 64 bits)
244     * and native register storage.  The primary purpose is to reuse previuosly
245     * loaded values, if possible, and otherwise to keep the value in register
246     * storage as long as possible.
247     *
248     * NOTE 1: wide_value refers to the width of the Dalvik value contained in
249     * this register (or pair).  For example, a 64-bit register containing a 32-bit
250     * Dalvik value would have wide_value==false even though the storage container itself
251     * is wide.  Similarly, a 32-bit register containing half of a 64-bit Dalvik value
252     * would have wide_value==true (and additionally would have its partner field set to the
253     * other half whose wide_value field would also be true.
254     *
255     * NOTE 2: In the case of a register pair, you can determine which of the partners
256     * is the low half by looking at the s_reg names.  The high s_reg will equal low_sreg + 1.
257     *
258     * NOTE 3: In the case of a 64-bit register holding a Dalvik wide value, wide_value
259     * will be true and partner==self.  s_reg refers to the low-order word of the Dalvik
260     * value, and the s_reg of the high word is implied (s_reg + 1).
261     *
262     * NOTE 4: The reg and is_temp fields should always be correct.  If is_temp is false no
263     * other fields have meaning. [perhaps not true, wide should work for promoted regs?]
264     * If is_temp==true and live==false, no other fields have
265     * meaning.  If is_temp==true and live==true, wide_value, partner, dirty, s_reg, def_start
266     * and def_end describe the relationship between the temp register/register pair and
267     * the Dalvik value[s] described by s_reg/s_reg+1.
268     *
269     * The fields used_storage, master_storage and storage_mask are used to track allocation
270     * in light of potential aliasing.  For example, consider Arm's d2, which overlaps s4 & s5.
271     * d2's storage mask would be 0x00000003, the two low-order bits denoting 64 bits of
272     * storage use.  For s4, it would be 0x0000001; for s5 0x00000002.  These values should not
273     * change once initialized.  The "used_storage" field tracks current allocation status.
274     * Although each record contains this field, only the field from the largest member of
275     * an aliased group is used.  In our case, it would be d2's.  The master_storage pointer
276     * of d2, s4 and s5 would all point to d2's used_storage field.  Each bit in a used_storage
277     * represents 32 bits of storage.  d2's used_storage would be initialized to 0xfffffffc.
278     * Then, if we wanted to determine whether s4 could be allocated, we would "and"
279     * s4's storage_mask with s4's *master_storage.  If the result is zero, s4 is free and
280     * to allocate: *master_storage |= storage_mask.  To free, *master_storage &= ~storage_mask.
281     *
282     * For an X86 vector register example, storage_mask would be:
283     *    0x00000001 for 32-bit view of xmm1
284     *    0x00000003 for 64-bit view of xmm1
285     *    0x0000000f for 128-bit view of xmm1
286     *    0x000000ff for 256-bit view of ymm1   // future expansion, if needed
287     *    0x0000ffff for 512-bit view of ymm1   // future expansion, if needed
288     *    0xffffffff for 1024-bit view of ymm1  // future expansion, if needed
289     *
290     * The "liveness" of a register is handled in a similar way.  The liveness_ storage is
291     * held in the widest member of an aliased set.  Note, though, that for a temp register to
292     * reused as live, it must both be marked live and the associated SReg() must match the
293     * desired s_reg.  This gets a little complicated when dealing with aliased registers.  All
294     * members of an aliased set will share the same liveness flags, but each will individually
295     * maintain s_reg_.  In this way we can know that at least one member of an
296     * aliased set is live, but will only fully match on the appropriate alias view.  For example,
297     * if Arm d1 is live as a double and has s_reg_ set to Dalvik v8 (which also implies v9
298     * because it is wide), its aliases s2 and s3 will show as live, but will have
299     * s_reg_ == INVALID_SREG.  An attempt to later AllocLiveReg() of v9 with a single-precision
300     * view will fail because although s3's liveness bit is set, its s_reg_ will not match v9.
301     * This will cause all members of the aliased set to be clobbered and AllocLiveReg() will
302     * report that v9 is currently not live as a single (which is what we want).
303     *
304     * NOTE: the x86 usage is still somewhat in flux.  There are competing notions of how
305     * to treat xmm registers:
306     *     1. Treat them all as 128-bits wide, but denote how much data used via bytes field.
307     *         o This more closely matches reality, but means you'd need to be able to get
308     *           to the associated RegisterInfo struct to figure out how it's being used.
309     *         o This is how 64-bit core registers will be used - always 64 bits, but the
310     *           "bytes" field will be 4 for 32-bit usage and 8 for 64-bit usage.
311     *     2. View the xmm registers based on contents.
312     *         o A single in a xmm2 register would be k32BitVector, while a double in xmm2 would
313     *           be a k64BitVector.
314     *         o Note that the two uses above would be considered distinct registers (but with
315     *           the aliasing mechanism, we could detect interference).
316     *         o This is how aliased double and single float registers will be handled on
317     *           Arm and MIPS.
318     * Working plan is, for all targets, to follow mechanism 1 for 64-bit core registers, and
319     * mechanism 2 for aliased float registers and x86 vector registers.
320     */
321    class RegisterInfo : public ArenaObject<kArenaAllocRegAlloc> {
322     public:
323      RegisterInfo(RegStorage r, const ResourceMask& mask = kEncodeAll);
324      ~RegisterInfo() {}
325
326      static const uint32_t k32SoloStorageMask     = 0x00000001;
327      static const uint32_t kLowSingleStorageMask  = 0x00000001;
328      static const uint32_t kHighSingleStorageMask = 0x00000002;
329      static const uint32_t k64SoloStorageMask     = 0x00000003;
330      static const uint32_t k128SoloStorageMask    = 0x0000000f;
331      static const uint32_t k256SoloStorageMask    = 0x000000ff;
332      static const uint32_t k512SoloStorageMask    = 0x0000ffff;
333      static const uint32_t k1024SoloStorageMask   = 0xffffffff;
334
335      bool InUse() { return (storage_mask_ & master_->used_storage_) != 0; }
336      void MarkInUse() { master_->used_storage_ |= storage_mask_; }
337      void MarkFree() { master_->used_storage_ &= ~storage_mask_; }
338      // No part of the containing storage is live in this view.
339      bool IsDead() { return (master_->liveness_ & storage_mask_) == 0; }
340      // Liveness of this view matches.  Note: not equivalent to !IsDead().
341      bool IsLive() { return (master_->liveness_ & storage_mask_) == storage_mask_; }
342      void MarkLive(int s_reg) {
343        // TODO: Anything useful to assert here?
344        s_reg_ = s_reg;
345        master_->liveness_ |= storage_mask_;
346      }
347      void MarkDead() {
348        if (SReg() != INVALID_SREG) {
349          s_reg_ = INVALID_SREG;
350          master_->liveness_ &= ~storage_mask_;
351          ResetDefBody();
352        }
353      }
354      RegStorage GetReg() { return reg_; }
355      void SetReg(RegStorage reg) { reg_ = reg; }
356      bool IsTemp() { return is_temp_; }
357      void SetIsTemp(bool val) { is_temp_ = val; }
358      bool IsWide() { return wide_value_; }
359      void SetIsWide(bool val) {
360        wide_value_ = val;
361        if (!val) {
362          // If not wide, reset partner to self.
363          SetPartner(GetReg());
364        }
365      }
366      bool IsDirty() { return dirty_; }
367      void SetIsDirty(bool val) { dirty_ = val; }
368      RegStorage Partner() { return partner_; }
369      void SetPartner(RegStorage partner) { partner_ = partner; }
370      int SReg() { return (!IsTemp() || IsLive()) ? s_reg_ : INVALID_SREG; }
371      const ResourceMask& DefUseMask() { return def_use_mask_; }
372      void SetDefUseMask(const ResourceMask& def_use_mask) { def_use_mask_ = def_use_mask; }
373      RegisterInfo* Master() { return master_; }
374      void SetMaster(RegisterInfo* master) {
375        master_ = master;
376        if (master != this) {
377          master_->aliased_ = true;
378          DCHECK(alias_chain_ == nullptr);
379          alias_chain_ = master_->alias_chain_;
380          master_->alias_chain_ = this;
381        }
382      }
383      bool IsAliased() { return aliased_; }
384      RegisterInfo* GetAliasChain() { return alias_chain_; }
385      uint32_t StorageMask() { return storage_mask_; }
386      void SetStorageMask(uint32_t storage_mask) { storage_mask_ = storage_mask; }
387      LIR* DefStart() { return def_start_; }
388      void SetDefStart(LIR* def_start) { def_start_ = def_start; }
389      LIR* DefEnd() { return def_end_; }
390      void SetDefEnd(LIR* def_end) { def_end_ = def_end; }
391      void ResetDefBody() { def_start_ = def_end_ = nullptr; }
392      // Find member of aliased set matching storage_used; return null if none.
393      RegisterInfo* FindMatchingView(uint32_t storage_used) {
394        RegisterInfo* res = Master();
395        for (; res != nullptr; res = res->GetAliasChain()) {
396          if (res->StorageMask() == storage_used)
397            break;
398        }
399        return res;
400      }
401
402     private:
403      RegStorage reg_;
404      bool is_temp_;               // Can allocate as temp?
405      bool wide_value_;            // Holds a Dalvik wide value (either itself, or part of a pair).
406      bool dirty_;                 // If live, is it dirty?
407      bool aliased_;               // Is this the master for other aliased RegisterInfo's?
408      RegStorage partner_;         // If wide_value, other reg of pair or self if 64-bit register.
409      int s_reg_;                  // Name of live value.
410      ResourceMask def_use_mask_;  // Resources for this element.
411      uint32_t used_storage_;      // 1 bit per 4 bytes of storage. Unused by aliases.
412      uint32_t liveness_;          // 1 bit per 4 bytes of storage. Unused by aliases.
413      RegisterInfo* master_;       // Pointer to controlling storage mask.
414      uint32_t storage_mask_;      // Track allocation of sub-units.
415      LIR *def_start_;             // Starting inst in last def sequence.
416      LIR *def_end_;               // Ending inst in last def sequence.
417      RegisterInfo* alias_chain_;  // Chain of aliased registers.
418    };
419
420    class RegisterPool : public DeletableArenaObject<kArenaAllocRegAlloc> {
421     public:
422      RegisterPool(Mir2Lir* m2l, ArenaAllocator* arena,
423                   const ArrayRef<const RegStorage>& core_regs,
424                   const ArrayRef<const RegStorage>& core64_regs,
425                   const ArrayRef<const RegStorage>& sp_regs,
426                   const ArrayRef<const RegStorage>& dp_regs,
427                   const ArrayRef<const RegStorage>& reserved_regs,
428                   const ArrayRef<const RegStorage>& reserved64_regs,
429                   const ArrayRef<const RegStorage>& core_temps,
430                   const ArrayRef<const RegStorage>& core64_temps,
431                   const ArrayRef<const RegStorage>& sp_temps,
432                   const ArrayRef<const RegStorage>& dp_temps);
433      ~RegisterPool() {}
434      void ResetNextTemp() {
435        next_core_reg_ = 0;
436        next_sp_reg_ = 0;
437        next_dp_reg_ = 0;
438      }
439      ArenaVector<RegisterInfo*> core_regs_;
440      int next_core_reg_;
441      ArenaVector<RegisterInfo*> core64_regs_;
442      int next_core64_reg_;
443      ArenaVector<RegisterInfo*> sp_regs_;    // Single precision float.
444      int next_sp_reg_;
445      ArenaVector<RegisterInfo*> dp_regs_;    // Double precision float.
446      int next_dp_reg_;
447      ArenaVector<RegisterInfo*>* ref_regs_;  // Points to core_regs_ or core64_regs_
448      int* next_ref_reg_;
449
450     private:
451      Mir2Lir* const m2l_;
452    };
453
454    struct PromotionMap {
455      RegLocationType core_location:3;
456      uint8_t core_reg;
457      RegLocationType fp_location:3;
458      uint8_t fp_reg;
459      bool first_in_pair;
460    };
461
462    //
463    // Slow paths.  This object is used generate a sequence of code that is executed in the
464    // slow path.  For example, resolving a string or class is slow as it will only be executed
465    // once (after that it is resolved and doesn't need to be done again).  We want slow paths
466    // to be placed out-of-line, and not require a (mispredicted, probably) conditional forward
467    // branch over them.
468    //
469    // If you want to create a slow path, declare a class derived from LIRSlowPath and provide
470    // the Compile() function that will be called near the end of the code generated by the
471    // method.
472    //
473    // The basic flow for a slow path is:
474    //
475    //     CMP reg, #value
476    //     BEQ fromfast
477    //   cont:
478    //     ...
479    //     fast path code
480    //     ...
481    //     more code
482    //     ...
483    //     RETURN
484    ///
485    //   fromfast:
486    //     ...
487    //     slow path code
488    //     ...
489    //     B cont
490    //
491    // So you see we need two labels and two branches.  The first branch (called fromfast) is
492    // the conditional branch to the slow path code.  The second label (called cont) is used
493    // as an unconditional branch target for getting back to the code after the slow path
494    // has completed.
495    //
496
497    class LIRSlowPath : public ArenaObject<kArenaAllocSlowPaths> {
498     public:
499      LIRSlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont = nullptr)
500          : m2l_(m2l), cu_(m2l->cu_),
501            current_dex_pc_(m2l->current_dalvik_offset_), current_mir_(m2l->current_mir_),
502            fromfast_(fromfast), cont_(cont) {
503      }
504      virtual ~LIRSlowPath() {}
505      virtual void Compile() = 0;
506
507      LIR *GetContinuationLabel() {
508        return cont_;
509      }
510
511      LIR *GetFromFast() {
512        return fromfast_;
513      }
514
515     protected:
516      LIR* GenerateTargetLabel(int opcode = kPseudoTargetLabel);
517
518      Mir2Lir* const m2l_;
519      CompilationUnit* const cu_;
520      const DexOffset current_dex_pc_;
521      MIR* current_mir_;
522      LIR* const fromfast_;
523      LIR* const cont_;
524    };
525
526    class SuspendCheckSlowPath;
527    class SpecialSuspendCheckSlowPath;
528
529    // Helper class for changing mem_ref_type_ until the end of current scope. See mem_ref_type_.
530    class ScopedMemRefType {
531     public:
532      ScopedMemRefType(Mir2Lir* m2l, ResourceMask::ResourceBit new_mem_ref_type)
533          : m2l_(m2l),
534            old_mem_ref_type_(m2l->mem_ref_type_) {
535        m2l_->mem_ref_type_ = new_mem_ref_type;
536      }
537
538      ~ScopedMemRefType() {
539        m2l_->mem_ref_type_ = old_mem_ref_type_;
540      }
541
542     private:
543      Mir2Lir* const m2l_;
544      ResourceMask::ResourceBit old_mem_ref_type_;
545
546      DISALLOW_COPY_AND_ASSIGN(ScopedMemRefType);
547    };
548
549    virtual ~Mir2Lir() {}
550
551    /**
552     * @brief Decodes the LIR offset.
553     * @return Returns the scaled offset of LIR.
554     */
555    virtual size_t GetInstructionOffset(LIR* lir);
556
557    int32_t s4FromSwitchData(const void* switch_data) {
558      return *reinterpret_cast<const int32_t*>(switch_data);
559    }
560
561    /*
562     * TODO: this is a trace JIT vestige, and its use should be reconsidered.  At the time
563     * it was introduced, it was intended to be a quick best guess of type without having to
564     * take the time to do type analysis.  Currently, though, we have a much better idea of
565     * the types of Dalvik virtual registers.  Instead of using this for a best guess, why not
566     * just use our knowledge of type to select the most appropriate register class?
567     */
568    RegisterClass RegClassBySize(OpSize size) {
569      if (size == kReference) {
570        return kRefReg;
571      } else {
572        return (size == kUnsignedHalf || size == kSignedHalf || size == kUnsignedByte ||
573                size == kSignedByte) ? kCoreReg : kAnyReg;
574      }
575    }
576
577    size_t CodeBufferSizeInBytes() {
578      return code_buffer_.size() / sizeof(code_buffer_[0]);
579    }
580
581    static bool IsPseudoLirOp(int opcode) {
582      return (opcode < 0);
583    }
584
585    /*
586     * LIR operands are 32-bit integers.  Sometimes, (especially for managing
587     * instructions which require PC-relative fixups), we need the operands to carry
588     * pointers.  To do this, we assign these pointers an index in pointer_storage_, and
589     * hold that index in the operand array.
590     * TUNING: If use of these utilities becomes more common on 32-bit builds, it
591     * may be worth conditionally-compiling a set of identity functions here.
592     */
593    template <typename T>
594    uint32_t WrapPointer(const T* pointer) {
595      uint32_t res = pointer_storage_.size();
596      pointer_storage_.push_back(pointer);
597      return res;
598    }
599
600    template <typename T>
601    const T* UnwrapPointer(size_t index) {
602      return reinterpret_cast<const T*>(pointer_storage_[index]);
603    }
604
605    // strdup(), but allocates from the arena.
606    char* ArenaStrdup(const char* str) {
607      size_t len = strlen(str) + 1;
608      char* res = arena_->AllocArray<char>(len, kArenaAllocMisc);
609      if (res != nullptr) {
610        strncpy(res, str, len);
611      }
612      return res;
613    }
614
615    // Shared by all targets - implemented in codegen_util.cc
616    void AppendLIR(LIR* lir);
617    void InsertLIRBefore(LIR* current_lir, LIR* new_lir);
618    void InsertLIRAfter(LIR* current_lir, LIR* new_lir);
619
620    /**
621     * @brief Provides the maximum number of compiler temporaries that the backend can/wants
622     * to place in a frame.
623     * @return Returns the maximum number of compiler temporaries.
624     */
625    size_t GetMaxPossibleCompilerTemps() const;
626
627    /**
628     * @brief Provides the number of bytes needed in frame for spilling of compiler temporaries.
629     * @return Returns the size in bytes for space needed for compiler temporary spill region.
630     */
631    size_t GetNumBytesForCompilerTempSpillRegion();
632
633    DexOffset GetCurrentDexPc() const {
634      return current_dalvik_offset_;
635    }
636
637    RegisterClass ShortyToRegClass(char shorty_type);
638    int ComputeFrameSize();
639    void Materialize();
640    virtual CompiledMethod* GetCompiledMethod();
641    void MarkSafepointPC(LIR* inst);
642    void MarkSafepointPCAfter(LIR* after);
643    void SetupResourceMasks(LIR* lir);
644    void SetMemRefType(LIR* lir, bool is_load, int mem_type);
645    void AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load, bool is64bit);
646    void SetupRegMask(ResourceMask* mask, int reg);
647    void ClearRegMask(ResourceMask* mask, int reg);
648    void DumpLIRInsn(LIR* arg, unsigned char* base_addr);
649    void EliminateLoad(LIR* lir, int reg_id);
650    void DumpDependentInsnPair(LIR* check_lir, LIR* this_lir, const char* type);
651    void DumpPromotionMap();
652    void CodegenDump();
653    LIR* RawLIR(DexOffset dalvik_offset, int opcode, int op0 = 0, int op1 = 0,
654                int op2 = 0, int op3 = 0, int op4 = 0, LIR* target = nullptr);
655    LIR* NewLIR0(int opcode);
656    LIR* NewLIR1(int opcode, int dest);
657    LIR* NewLIR2(int opcode, int dest, int src1);
658    LIR* NewLIR2NoDest(int opcode, int src, int info);
659    LIR* NewLIR3(int opcode, int dest, int src1, int src2);
660    LIR* NewLIR4(int opcode, int dest, int src1, int src2, int info);
661    LIR* NewLIR5(int opcode, int dest, int src1, int src2, int info1, int info2);
662    LIR* ScanLiteralPool(LIR* data_target, int value, unsigned int delta);
663    LIR* ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi);
664    LIR* ScanLiteralPoolMethod(LIR* data_target, const MethodReference& method);
665    LIR* ScanLiteralPoolClass(LIR* data_target, const DexFile& dex_file, uint32_t type_idx);
666    LIR* AddWordData(LIR* *constant_list_p, int value);
667    LIR* AddWideData(LIR* *constant_list_p, int val_lo, int val_hi);
668    void DumpSparseSwitchTable(const uint16_t* table);
669    void DumpPackedSwitchTable(const uint16_t* table);
670    void MarkBoundary(DexOffset offset, const char* inst_str);
671    void NopLIR(LIR* lir);
672    void UnlinkLIR(LIR* lir);
673    bool IsInexpensiveConstant(RegLocation rl_src);
674    ConditionCode FlipComparisonOrder(ConditionCode before);
675    ConditionCode NegateComparison(ConditionCode before);
676    virtual void InstallLiteralPools();
677    void InstallSwitchTables();
678    void InstallFillArrayData();
679    bool VerifyCatchEntries();
680    void CreateMappingTables();
681    void CreateNativeGcMap();
682    void CreateNativeGcMapWithoutRegisterPromotion();
683    int AssignLiteralOffset(CodeOffset offset);
684    int AssignSwitchTablesOffset(CodeOffset offset);
685    int AssignFillArrayDataOffset(CodeOffset offset);
686    LIR* InsertCaseLabel(uint32_t bbid, int keyVal);
687
688    // Handle bookkeeping to convert a wide RegLocation to a narrow RegLocation.  No code generated.
689    virtual RegLocation NarrowRegLoc(RegLocation loc);
690
691    // Shared by all targets - implemented in local_optimizations.cc
692    void ConvertMemOpIntoMove(LIR* orig_lir, RegStorage dest, RegStorage src);
693    void ApplyLoadStoreElimination(LIR* head_lir, LIR* tail_lir);
694    void ApplyLoadHoisting(LIR* head_lir, LIR* tail_lir);
695    virtual void ApplyLocalOptimizations(LIR* head_lir, LIR* tail_lir);
696
697    // Shared by all targets - implemented in ralloc_util.cc
698    int GetSRegHi(int lowSreg);
699    bool LiveOut(int s_reg);
700    void SimpleRegAlloc();
701    void ResetRegPool();
702    void CompilerInitPool(RegisterInfo* info, RegStorage* regs, int num);
703    void DumpRegPool(ArenaVector<RegisterInfo*>* regs);
704    void DumpCoreRegPool();
705    void DumpFpRegPool();
706    void DumpRegPools();
707    /* Mark a temp register as dead.  Does not affect allocation state. */
708    void Clobber(RegStorage reg);
709    void ClobberSReg(int s_reg);
710    void ClobberAliases(RegisterInfo* info, uint32_t clobber_mask);
711    int SRegToPMap(int s_reg);
712    void RecordCorePromotion(RegStorage reg, int s_reg);
713    RegStorage AllocPreservedCoreReg(int s_reg);
714    void RecordFpPromotion(RegStorage reg, int s_reg);
715    RegStorage AllocPreservedFpReg(int s_reg);
716    virtual RegStorage AllocPreservedSingle(int s_reg);
717    virtual RegStorage AllocPreservedDouble(int s_reg);
718    RegStorage AllocTempBody(ArenaVector<RegisterInfo*>& regs, int* next_temp, bool required);
719    virtual RegStorage AllocTemp(bool required = true);
720    virtual RegStorage AllocTempWide(bool required = true);
721    virtual RegStorage AllocTempRef(bool required = true);
722    virtual RegStorage AllocTempSingle(bool required = true);
723    virtual RegStorage AllocTempDouble(bool required = true);
724    virtual RegStorage AllocTypedTemp(bool fp_hint, int reg_class, bool required = true);
725    virtual RegStorage AllocTypedTempWide(bool fp_hint, int reg_class, bool required = true);
726    void FlushReg(RegStorage reg);
727    void FlushRegWide(RegStorage reg);
728    RegStorage AllocLiveReg(int s_reg, int reg_class, bool wide);
729    RegStorage FindLiveReg(ArenaVector<RegisterInfo*>& regs, int s_reg);
730    virtual void FreeTemp(RegStorage reg);
731    virtual void FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free);
732    virtual bool IsLive(RegStorage reg);
733    virtual bool IsTemp(RegStorage reg);
734    bool IsPromoted(RegStorage reg);
735    bool IsDirty(RegStorage reg);
736    virtual void LockTemp(RegStorage reg);
737    void ResetDef(RegStorage reg);
738    void NullifyRange(RegStorage reg, int s_reg);
739    void MarkDef(RegLocation rl, LIR *start, LIR *finish);
740    void MarkDefWide(RegLocation rl, LIR *start, LIR *finish);
741    void ResetDefLoc(RegLocation rl);
742    void ResetDefLocWide(RegLocation rl);
743    void ResetDefTracking();
744    void ClobberAllTemps();
745    void FlushSpecificReg(RegisterInfo* info);
746    void FlushAllRegs();
747    bool RegClassMatches(int reg_class, RegStorage reg);
748    void MarkLive(RegLocation loc);
749    void MarkTemp(RegStorage reg);
750    void UnmarkTemp(RegStorage reg);
751    void MarkWide(RegStorage reg);
752    void MarkNarrow(RegStorage reg);
753    void MarkClean(RegLocation loc);
754    void MarkDirty(RegLocation loc);
755    void MarkInUse(RegStorage reg);
756    bool CheckCorePoolSanity();
757    virtual RegLocation UpdateLoc(RegLocation loc);
758    virtual RegLocation UpdateLocWide(RegLocation loc);
759    RegLocation UpdateRawLoc(RegLocation loc);
760
761    /**
762     * @brief Used to prepare a register location to receive a wide value.
763     * @see EvalLoc
764     * @param loc the location where the value will be stored.
765     * @param reg_class Type of register needed.
766     * @param update Whether the liveness information should be updated.
767     * @return Returns the properly typed temporary in physical register pairs.
768     */
769    virtual RegLocation EvalLocWide(RegLocation loc, int reg_class, bool update);
770
771    /**
772     * @brief Used to prepare a register location to receive a value.
773     * @param loc the location where the value will be stored.
774     * @param reg_class Type of register needed.
775     * @param update Whether the liveness information should be updated.
776     * @return Returns the properly typed temporary in physical register.
777     */
778    virtual RegLocation EvalLoc(RegLocation loc, int reg_class, bool update);
779
780    virtual void AnalyzeMIR(RefCounts* core_counts, MIR* mir, uint32_t weight);
781    virtual void CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs);
782    void DumpCounts(const RefCounts* arr, int size, const char* msg);
783    virtual void DoPromotion();
784    int VRegOffset(int v_reg);
785    int SRegOffset(int s_reg);
786    RegLocation GetReturnWide(RegisterClass reg_class);
787    RegLocation GetReturn(RegisterClass reg_class);
788    RegisterInfo* GetRegInfo(RegStorage reg);
789
790    // Shared by all targets - implemented in gen_common.cc.
791    void AddIntrinsicSlowPath(CallInfo* info, LIR* branch, LIR* resume = nullptr);
792    virtual bool HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
793                                  RegLocation rl_src, RegLocation rl_dest, int lit);
794    bool HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit);
795    bool HandleEasyFloatingPointDiv(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2);
796    virtual void HandleSlowPaths();
797    void GenBarrier();
798    void GenDivZeroException();
799    // c_code holds condition code that's generated from testing divisor against 0.
800    void GenDivZeroCheck(ConditionCode c_code);
801    // reg holds divisor.
802    void GenDivZeroCheck(RegStorage reg);
803    void GenArrayBoundsCheck(RegStorage index, RegStorage length);
804    void GenArrayBoundsCheck(int32_t index, RegStorage length);
805    LIR* GenNullCheck(RegStorage reg);
806    void MarkPossibleNullPointerException(int opt_flags);
807    void MarkPossibleNullPointerExceptionAfter(int opt_flags, LIR* after);
808    void MarkPossibleStackOverflowException();
809    void ForceImplicitNullCheck(RegStorage reg, int opt_flags);
810    LIR* GenNullCheck(RegStorage m_reg, int opt_flags);
811    LIR* GenExplicitNullCheck(RegStorage m_reg, int opt_flags);
812    virtual void GenImplicitNullCheck(RegStorage reg, int opt_flags);
813    void GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1, RegLocation rl_src2,
814                             LIR* taken);
815    void GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, LIR* taken);
816    virtual void GenIntToLong(RegLocation rl_dest, RegLocation rl_src);
817    virtual void GenLongToInt(RegLocation rl_dest, RegLocation rl_src);
818    void GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
819                         RegLocation rl_src);
820    void GenNewArray(uint32_t type_idx, RegLocation rl_dest,
821                     RegLocation rl_src);
822    void GenFilledNewArray(CallInfo* info);
823    void GenFillArrayData(MIR* mir, DexOffset table_offset, RegLocation rl_src);
824    void GenSput(MIR* mir, RegLocation rl_src, OpSize size);
825    // Get entrypoints are specific for types, size alone is not sufficient to safely infer
826    // entrypoint.
827    void GenSget(MIR* mir, RegLocation rl_dest, OpSize size, Primitive::Type type);
828    void GenIGet(MIR* mir, int opt_flags, OpSize size, Primitive::Type type,
829                 RegLocation rl_dest, RegLocation rl_obj);
830    void GenIPut(MIR* mir, int opt_flags, OpSize size,
831                 RegLocation rl_src, RegLocation rl_obj);
832    void GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
833                        RegLocation rl_src);
834
835    void GenConstClass(uint32_t type_idx, RegLocation rl_dest);
836    void GenConstString(uint32_t string_idx, RegLocation rl_dest);
837    void GenNewInstance(uint32_t type_idx, RegLocation rl_dest);
838    void GenThrow(RegLocation rl_src);
839    void GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src);
840    void GenCheckCast(int opt_flags, uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src);
841    void GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
842                      RegLocation rl_src1, RegLocation rl_src2);
843    virtual void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
844                        RegLocation rl_src1, RegLocation rl_shift);
845    void GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest,
846                          RegLocation rl_src, int lit);
847    virtual void GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
848                                RegLocation rl_src1, RegLocation rl_src2, int flags);
849    void GenConversionCall(QuickEntrypointEnum trampoline, RegLocation rl_dest, RegLocation rl_src,
850                           RegisterClass return_reg_class);
851    void GenSuspendTest(int opt_flags);
852    void GenSuspendTestAndBranch(int opt_flags, LIR* target);
853
854    // This will be overridden by x86 implementation.
855    virtual void GenConstWide(RegLocation rl_dest, int64_t value);
856    virtual void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
857                       RegLocation rl_src1, RegLocation rl_src2, int flags);
858
859    // Shared by all targets - implemented in gen_invoke.cc.
860    LIR* CallHelper(RegStorage r_tgt, QuickEntrypointEnum trampoline, bool safepoint_pc,
861                    bool use_link = true);
862    RegStorage CallHelperSetup(QuickEntrypointEnum trampoline);
863
864    void CallRuntimeHelper(QuickEntrypointEnum trampoline, bool safepoint_pc);
865    void CallRuntimeHelperImm(QuickEntrypointEnum trampoline, int arg0, bool safepoint_pc);
866    void CallRuntimeHelperReg(QuickEntrypointEnum trampoline, RegStorage arg0, bool safepoint_pc);
867    void CallRuntimeHelperRegLocation(QuickEntrypointEnum trampoline, RegLocation arg0,
868                                      bool safepoint_pc);
869    void CallRuntimeHelperImmImm(QuickEntrypointEnum trampoline, int arg0, int arg1,
870                                 bool safepoint_pc);
871    void CallRuntimeHelperImmRegLocation(QuickEntrypointEnum trampoline, int arg0, RegLocation arg1,
872                                         bool safepoint_pc);
873    void CallRuntimeHelperRegLocationImm(QuickEntrypointEnum trampoline, RegLocation arg0, int arg1,
874                                         bool safepoint_pc);
875    void CallRuntimeHelperImmReg(QuickEntrypointEnum trampoline, int arg0, RegStorage arg1,
876                                 bool safepoint_pc);
877    void CallRuntimeHelperRegImm(QuickEntrypointEnum trampoline, RegStorage arg0, int arg1,
878                                 bool safepoint_pc);
879    void CallRuntimeHelperImmMethod(QuickEntrypointEnum trampoline, int arg0, bool safepoint_pc);
880    void CallRuntimeHelperRegMethod(QuickEntrypointEnum trampoline, RegStorage arg0,
881                                    bool safepoint_pc);
882    void CallRuntimeHelperRegRegLocationMethod(QuickEntrypointEnum trampoline, RegStorage arg0,
883                                               RegLocation arg1, bool safepoint_pc);
884    void CallRuntimeHelperRegLocationRegLocation(QuickEntrypointEnum trampoline, RegLocation arg0,
885                                                 RegLocation arg1, bool safepoint_pc);
886    void CallRuntimeHelperRegReg(QuickEntrypointEnum trampoline, RegStorage arg0, RegStorage arg1,
887                                 bool safepoint_pc);
888    void CallRuntimeHelperRegRegImm(QuickEntrypointEnum trampoline, RegStorage arg0,
889                                    RegStorage arg1, int arg2, bool safepoint_pc);
890    void CallRuntimeHelperImmRegLocationMethod(QuickEntrypointEnum trampoline, int arg0,
891                                               RegLocation arg1, bool safepoint_pc);
892    void CallRuntimeHelperImmImmMethod(QuickEntrypointEnum trampoline, int arg0, int arg1,
893                                       bool safepoint_pc);
894    void CallRuntimeHelperImmRegLocationRegLocation(QuickEntrypointEnum trampoline, int arg0,
895                                                    RegLocation arg1, RegLocation arg2,
896                                                    bool safepoint_pc);
897    void CallRuntimeHelperRegLocationRegLocationRegLocation(QuickEntrypointEnum trampoline,
898                                                            RegLocation arg0, RegLocation arg1,
899                                                            RegLocation arg2,
900                                                            bool safepoint_pc);
901    void CallRuntimeHelperRegLocationRegLocationRegLocationRegLocation(
902        QuickEntrypointEnum trampoline, RegLocation arg0, RegLocation arg1,
903        RegLocation arg2, RegLocation arg3, bool safepoint_pc);
904
905    void GenInvoke(CallInfo* info);
906    void GenInvokeNoInline(CallInfo* info);
907    virtual NextCallInsn GetNextSDCallInsn() = 0;
908
909    /*
910     * @brief Generate the actual call insn based on the method info.
911     * @param method_info the lowering info for the method call.
912     * @returns Call instruction
913     */
914    virtual LIR* GenCallInsn(const MirMethodLoweringInfo& method_info) = 0;
915
916    virtual void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
917    virtual int GenDalvikArgs(CallInfo* info, int call_state, LIR** pcrLabel,
918                      NextCallInsn next_call_insn,
919                      const MethodReference& target_method,
920                      uint32_t vtable_idx,
921                      uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
922                      bool skip_this);
923    virtual int GenDalvikArgsBulkCopy(CallInfo* info, int first, int count);
924    virtual void GenDalvikArgsFlushPromoted(CallInfo* info, int start);
925    /**
926     * @brief Used to determine the register location of destination.
927     * @details This is needed during generation of inline intrinsics because it finds destination
928     *  of return,
929     * either the physical register or the target of move-result.
930     * @param info Information about the invoke.
931     * @return Returns the destination location.
932     */
933    RegLocation InlineTarget(CallInfo* info);
934
935    /**
936     * @brief Used to determine the wide register location of destination.
937     * @see InlineTarget
938     * @param info Information about the invoke.
939     * @return Returns the destination location.
940     */
941    RegLocation InlineTargetWide(CallInfo* info);
942
943    bool GenInlinedReferenceGetReferent(CallInfo* info);
944    virtual bool GenInlinedCharAt(CallInfo* info);
945    bool GenInlinedStringGetCharsNoCheck(CallInfo* info);
946    bool GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty);
947    bool GenInlinedStringFactoryNewStringFromBytes(CallInfo* info);
948    bool GenInlinedStringFactoryNewStringFromChars(CallInfo* info);
949    bool GenInlinedStringFactoryNewStringFromString(CallInfo* info);
950    virtual bool GenInlinedReverseBits(CallInfo* info, OpSize size);
951    bool GenInlinedReverseBytes(CallInfo* info, OpSize size);
952    virtual bool GenInlinedAbsInt(CallInfo* info);
953    virtual bool GenInlinedAbsLong(CallInfo* info);
954    virtual bool GenInlinedAbsFloat(CallInfo* info) = 0;
955    virtual bool GenInlinedAbsDouble(CallInfo* info) = 0;
956    bool GenInlinedFloatCvt(CallInfo* info);
957    bool GenInlinedDoubleCvt(CallInfo* info);
958    virtual bool GenInlinedCeil(CallInfo* info);
959    virtual bool GenInlinedFloor(CallInfo* info);
960    virtual bool GenInlinedRint(CallInfo* info);
961    virtual bool GenInlinedRound(CallInfo* info, bool is_double);
962    virtual bool GenInlinedArrayCopyCharArray(CallInfo* info);
963    virtual bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
964    bool GenInlinedStringCompareTo(CallInfo* info);
965    virtual bool GenInlinedCurrentThread(CallInfo* info);
966    bool GenInlinedUnsafeGet(CallInfo* info, bool is_long, bool is_object, bool is_volatile);
967    bool GenInlinedUnsafePut(CallInfo* info, bool is_long, bool is_object,
968                             bool is_volatile, bool is_ordered);
969
970    // Shared by all targets - implemented in gen_loadstore.cc.
971    RegLocation LoadCurrMethod();
972    void LoadCurrMethodDirect(RegStorage r_tgt);
973    RegStorage LoadCurrMethodWithHint(RegStorage r_hint);
974    virtual LIR* LoadConstant(RegStorage r_dest, int value);
975    // Natural word size.
976    LIR* LoadWordDisp(RegStorage r_base, int displacement, RegStorage r_dest) {
977      return LoadBaseDisp(r_base, displacement, r_dest, kWord, kNotVolatile);
978    }
979    // Load 32 bits, regardless of target.
980    LIR* Load32Disp(RegStorage r_base, int displacement, RegStorage r_dest)  {
981      return LoadBaseDisp(r_base, displacement, r_dest, k32, kNotVolatile);
982    }
983    // Load a reference at base + displacement and decompress into register.
984    LIR* LoadRefDisp(RegStorage r_base, int displacement, RegStorage r_dest,
985                     VolatileKind is_volatile) {
986      return LoadBaseDisp(r_base, displacement, r_dest, kReference, is_volatile);
987    }
988    // Load a reference at base + index and decompress into register.
989    LIR* LoadRefIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest, int scale) {
990      return LoadBaseIndexed(r_base, r_index, r_dest, scale, kReference);
991    }
992    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
993    virtual RegLocation LoadValue(RegLocation rl_src, RegisterClass op_kind);
994    // Load Dalvik value with 64-bit memory storage.
995    virtual RegLocation LoadValueWide(RegLocation rl_src, RegisterClass op_kind);
996    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
997    virtual void LoadValueDirect(RegLocation rl_src, RegStorage r_dest);
998    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
999    virtual void LoadValueDirectFixed(RegLocation rl_src, RegStorage r_dest);
1000    // Load Dalvik value with 64-bit memory storage.
1001    virtual void LoadValueDirectWide(RegLocation rl_src, RegStorage r_dest);
1002    // Load Dalvik value with 64-bit memory storage.
1003    virtual void LoadValueDirectWideFixed(RegLocation rl_src, RegStorage r_dest);
1004    // Store an item of natural word size.
1005    LIR* StoreWordDisp(RegStorage r_base, int displacement, RegStorage r_src) {
1006      return StoreBaseDisp(r_base, displacement, r_src, kWord, kNotVolatile);
1007    }
1008    // Store an uncompressed reference into a compressed 32-bit container.
1009    LIR* StoreRefDisp(RegStorage r_base, int displacement, RegStorage r_src,
1010                      VolatileKind is_volatile) {
1011      return StoreBaseDisp(r_base, displacement, r_src, kReference, is_volatile);
1012    }
1013    // Store an uncompressed reference into a compressed 32-bit container by index.
1014    LIR* StoreRefIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src, int scale) {
1015      return StoreBaseIndexed(r_base, r_index, r_src, scale, kReference);
1016    }
1017    // Store 32 bits, regardless of target.
1018    LIR* Store32Disp(RegStorage r_base, int displacement, RegStorage r_src) {
1019      return StoreBaseDisp(r_base, displacement, r_src, k32, kNotVolatile);
1020    }
1021
1022    /**
1023     * @brief Used to do the final store in the destination as per bytecode semantics.
1024     * @param rl_dest The destination dalvik register location.
1025     * @param rl_src The source register location. Can be either physical register or dalvik register.
1026     */
1027    virtual void StoreValue(RegLocation rl_dest, RegLocation rl_src);
1028
1029    /**
1030     * @brief Used to do the final store in a wide destination as per bytecode semantics.
1031     * @see StoreValue
1032     * @param rl_dest The destination dalvik register location.
1033     * @param rl_src The source register location. Can be either physical register or dalvik
1034     *  register.
1035     */
1036    virtual void StoreValueWide(RegLocation rl_dest, RegLocation rl_src);
1037
1038    /**
1039     * @brief Used to do the final store to a destination as per bytecode semantics.
1040     * @see StoreValue
1041     * @param rl_dest The destination dalvik register location.
1042     * @param rl_src The source register location. It must be kLocPhysReg
1043     *
1044     * This is used for x86 two operand computations, where we have computed the correct
1045     * register value that now needs to be properly registered.  This is used to avoid an
1046     * extra register copy that would result if StoreValue was called.
1047     */
1048    virtual void StoreFinalValue(RegLocation rl_dest, RegLocation rl_src);
1049
1050    /**
1051     * @brief Used to do the final store in a wide destination as per bytecode semantics.
1052     * @see StoreValueWide
1053     * @param rl_dest The destination dalvik register location.
1054     * @param rl_src The source register location. It must be kLocPhysReg
1055     *
1056     * This is used for x86 two operand computations, where we have computed the correct
1057     * register values that now need to be properly registered.  This is used to avoid an
1058     * extra pair of register copies that would result if StoreValueWide was called.
1059     */
1060    virtual void StoreFinalValueWide(RegLocation rl_dest, RegLocation rl_src);
1061
1062    // Shared by all targets - implemented in mir_to_lir.cc.
1063    void CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list);
1064    virtual void HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir);
1065    bool MethodBlockCodeGen(BasicBlock* bb);
1066    bool SpecialMIR2LIR(const InlineMethod& special);
1067    virtual void MethodMIR2LIR();
1068    // Update LIR for verbose listings.
1069    void UpdateLIROffsets();
1070
1071    /**
1072     * @brief Mark a garbage collection card. Skip if the stored value is null.
1073     * @param val_reg the register holding the stored value to check against null.
1074     * @param tgt_addr_reg the address of the object or array where the value was stored.
1075     * @param opt_flags the optimization flags which may indicate that the value is non-null.
1076     */
1077    void MarkGCCard(int opt_flags, RegStorage val_reg, RegStorage tgt_addr_reg);
1078
1079    /*
1080     * @brief Load the address of the dex method into the register.
1081     * @param target_method The MethodReference of the method to be invoked.
1082     * @param type How the method will be invoked.
1083     * @param register that will contain the code address.
1084     * @note register will be passed to TargetReg to get physical register.
1085     */
1086    void LoadCodeAddress(const MethodReference& target_method, InvokeType type,
1087                         SpecialTargetRegister symbolic_reg);
1088
1089    /*
1090     * @brief Load the Method* of a dex method into the register.
1091     * @param target_method The MethodReference of the method to be invoked.
1092     * @param type How the method will be invoked.
1093     * @param register that will contain the code address.
1094     * @note register will be passed to TargetReg to get physical register.
1095     */
1096    virtual void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
1097                                   SpecialTargetRegister symbolic_reg);
1098
1099    /*
1100     * @brief Load the Class* of a Dex Class type into the register.
1101     * @param dex DexFile that contains the class type.
1102     * @param type How the method will be invoked.
1103     * @param register that will contain the code address.
1104     * @note register will be passed to TargetReg to get physical register.
1105     */
1106    virtual void LoadClassType(const DexFile& dex_file, uint32_t type_idx,
1107                               SpecialTargetRegister symbolic_reg);
1108
1109    // TODO: Support PC-relative dex cache array loads on all platforms and
1110    // replace CanUseOpPcRelDexCacheArrayLoad() with dex_cache_arrays_layout_.Valid().
1111    virtual bool CanUseOpPcRelDexCacheArrayLoad() const;
1112
1113    /*
1114     * @brief Load an element of one of the dex cache arrays.
1115     * @param dex_file the dex file associated with the target dex cache.
1116     * @param offset the offset of the element in the fixed dex cache arrays' layout.
1117     * @param r_dest the register where to load the element.
1118     * @param wide, load 64 bits if true, otherwise 32 bits.
1119     */
1120    virtual void OpPcRelDexCacheArrayLoad(const DexFile* dex_file, int offset, RegStorage r_dest,
1121                                          bool wide);
1122
1123    // Routines that work for the generic case, but may be overriden by target.
1124    /*
1125     * @brief Compare memory to immediate, and branch if condition true.
1126     * @param cond The condition code that when true will branch to the target.
1127     * @param temp_reg A temporary register that can be used if compare to memory is not
1128     * supported by the architecture.
1129     * @param base_reg The register holding the base address.
1130     * @param offset The offset from the base.
1131     * @param check_value The immediate to compare to.
1132     * @param target branch target (or null)
1133     * @param compare output for getting LIR for comparison (or null)
1134     * @returns The branch instruction that was generated.
1135     */
1136    virtual LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
1137                                   int offset, int check_value, LIR* target, LIR** compare);
1138
1139    // Required for target - codegen helpers.
1140    virtual bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
1141                                    RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
1142    virtual bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
1143    virtual void GenMultiplyByConstantFloat(RegLocation rl_dest, RegLocation rl_src1,
1144                                            int32_t constant) = 0;
1145    virtual void GenMultiplyByConstantDouble(RegLocation rl_dest, RegLocation rl_src1,
1146                                             int64_t constant) = 0;
1147    virtual LIR* CheckSuspendUsingLoad() = 0;
1148
1149    virtual RegStorage LoadHelper(QuickEntrypointEnum trampoline) = 0;
1150
1151    virtual LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
1152                              OpSize size, VolatileKind is_volatile) = 0;
1153    virtual LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
1154                                 int scale, OpSize size) = 0;
1155    virtual LIR* LoadConstantNoClobber(RegStorage r_dest, int value) = 0;
1156    virtual LIR* LoadConstantWide(RegStorage r_dest, int64_t value) = 0;
1157    virtual LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
1158                               OpSize size, VolatileKind is_volatile) = 0;
1159    virtual LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
1160                                  int scale, OpSize size) = 0;
1161
1162    /**
1163     * @brief Unconditionally mark a garbage collection card.
1164     * @param tgt_addr_reg the address of the object or array where the value was stored.
1165     */
1166    virtual void UnconditionallyMarkGCCard(RegStorage tgt_addr_reg) = 0;
1167
1168    // Required for target - register utilities.
1169
1170    bool IsSameReg(RegStorage reg1, RegStorage reg2) {
1171      RegisterInfo* info1 = GetRegInfo(reg1);
1172      RegisterInfo* info2 = GetRegInfo(reg2);
1173      return (info1->Master() == info2->Master() &&
1174             (info1->StorageMask() & info2->StorageMask()) != 0);
1175    }
1176
1177    static constexpr bool IsWide(OpSize size) {
1178      return size == k64 || size == kDouble;
1179    }
1180
1181    static constexpr bool IsRef(OpSize size) {
1182      return size == kReference;
1183    }
1184
1185    /**
1186     * @brief Portable way of getting special registers from the backend.
1187     * @param reg Enumeration describing the purpose of the register.
1188     * @return Return the #RegStorage corresponding to the given purpose @p reg.
1189     * @note This function is currently allowed to return any suitable view of the registers
1190     *   (e.g. this could be 64-bit solo or 32-bit solo for 64-bit backends).
1191     */
1192    virtual RegStorage TargetReg(SpecialTargetRegister reg) = 0;
1193
1194    /**
1195     * @brief Portable way of getting special registers from the backend.
1196     * @param reg Enumeration describing the purpose of the register.
1197     * @param wide_kind What kind of view of the special register is required.
1198     * @return Return the #RegStorage corresponding to the given purpose @p reg.
1199     *
1200     * @note For 32b system, wide (kWide) views only make sense for the argument registers and the
1201     *       return. In that case, this function should return a pair where the first component of
1202     *       the result will be the indicated special register.
1203     */
1204    virtual RegStorage TargetReg(SpecialTargetRegister reg, WideKind wide_kind) {
1205      if (wide_kind == kWide) {
1206        DCHECK((kArg0 <= reg && reg < kArg7) || (kFArg0 <= reg && reg < kFArg15) || (kRet0 == reg));
1207        static_assert((kArg1 == kArg0 + 1) && (kArg2 == kArg1 + 1) && (kArg3 == kArg2 + 1) &&
1208                      (kArg4 == kArg3 + 1) && (kArg5 == kArg4 + 1) && (kArg6 == kArg5 + 1) &&
1209                      (kArg7 == kArg6 + 1), "kargs range unexpected");
1210        static_assert((kFArg1 == kFArg0 + 1) && (kFArg2 == kFArg1 + 1) && (kFArg3 == kFArg2 + 1) &&
1211                      (kFArg4 == kFArg3 + 1) && (kFArg5 == kFArg4 + 1) && (kFArg6 == kFArg5 + 1) &&
1212                      (kFArg7 == kFArg6 + 1) && (kFArg8 == kFArg7 + 1) && (kFArg9 == kFArg8 + 1) &&
1213                      (kFArg10 == kFArg9 + 1) && (kFArg11 == kFArg10 + 1) &&
1214                      (kFArg12 == kFArg11 + 1) && (kFArg13 == kFArg12 + 1) &&
1215                      (kFArg14 == kFArg13 + 1) && (kFArg15 == kFArg14 + 1),
1216                      "kfargs range unexpected");
1217        static_assert(kRet1 == kRet0 + 1, "kret range unexpected");
1218        return RegStorage::MakeRegPair(TargetReg(reg),
1219                                       TargetReg(static_cast<SpecialTargetRegister>(reg + 1)));
1220      } else {
1221        return TargetReg(reg);
1222      }
1223    }
1224
1225    /**
1226     * @brief Portable way of getting a special register for storing a pointer.
1227     * @see TargetReg()
1228     */
1229    virtual RegStorage TargetPtrReg(SpecialTargetRegister reg) {
1230      return TargetReg(reg);
1231    }
1232
1233    // Get a reg storage corresponding to the wide & ref flags of the reg location.
1234    virtual RegStorage TargetReg(SpecialTargetRegister reg, RegLocation loc) {
1235      if (loc.ref) {
1236        return TargetReg(reg, kRef);
1237      } else {
1238        return TargetReg(reg, loc.wide ? kWide : kNotWide);
1239      }
1240    }
1241
1242    void EnsureInitializedArgMappingToPhysicalReg();
1243    virtual RegLocation GetReturnAlt() = 0;
1244    virtual RegLocation GetReturnWideAlt() = 0;
1245    virtual RegLocation LocCReturn() = 0;
1246    virtual RegLocation LocCReturnRef() = 0;
1247    virtual RegLocation LocCReturnDouble() = 0;
1248    virtual RegLocation LocCReturnFloat() = 0;
1249    virtual RegLocation LocCReturnWide() = 0;
1250    virtual ResourceMask GetRegMaskCommon(const RegStorage& reg) const = 0;
1251    virtual void AdjustSpillMask() = 0;
1252    virtual void ClobberCallerSave() = 0;
1253    virtual void FreeCallTemps() = 0;
1254    virtual void LockCallTemps() = 0;
1255    virtual void CompilerInitializeRegAlloc() = 0;
1256
1257    // Required for target - miscellaneous.
1258    virtual void AssembleLIR() = 0;
1259    virtual void DumpResourceMask(LIR* lir, const ResourceMask& mask, const char* prefix) = 0;
1260    virtual void SetupTargetResourceMasks(LIR* lir, uint64_t flags,
1261                                          ResourceMask* use_mask, ResourceMask* def_mask) = 0;
1262    virtual const char* GetTargetInstFmt(int opcode) = 0;
1263    virtual const char* GetTargetInstName(int opcode) = 0;
1264    virtual std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) = 0;
1265
1266    // Note: This may return kEncodeNone on architectures that do not expose a PC. The caller must
1267    //       take care of this.
1268    virtual ResourceMask GetPCUseDefEncoding() const = 0;
1269    virtual uint64_t GetTargetInstFlags(int opcode) = 0;
1270    virtual size_t GetInsnSize(LIR* lir) = 0;
1271    virtual bool IsUnconditionalBranch(LIR* lir) = 0;
1272
1273    // Get the register class for load/store of a field.
1274    virtual RegisterClass RegClassForFieldLoadStore(OpSize size, bool is_volatile) = 0;
1275
1276    // Required for target - Dalvik-level generators.
1277    virtual void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1278                                   RegLocation rl_src1, RegLocation rl_src2, int flags) = 0;
1279    virtual void GenArithOpDouble(Instruction::Code opcode,
1280                                  RegLocation rl_dest, RegLocation rl_src1,
1281                                  RegLocation rl_src2) = 0;
1282    virtual void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest,
1283                                 RegLocation rl_src1, RegLocation rl_src2) = 0;
1284    virtual void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest,
1285                          RegLocation rl_src1, RegLocation rl_src2) = 0;
1286    virtual void GenConversion(Instruction::Code opcode, RegLocation rl_dest,
1287                               RegLocation rl_src) = 0;
1288    virtual bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object) = 0;
1289
1290    /**
1291     * @brief Used to generate code for intrinsic java\.lang\.Math methods min and max.
1292     * @details This is also applicable for java\.lang\.StrictMath since it is a simple algorithm
1293     * that applies on integers. The generated code will write the smallest or largest value
1294     * directly into the destination register as specified by the invoke information.
1295     * @param info Information about the invoke.
1296     * @param is_min If true generates code that computes minimum. Otherwise computes maximum.
1297     * @param is_long If true the value value is Long. Otherwise the value is Int.
1298     * @return Returns true if successfully generated
1299     */
1300    virtual bool GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long) = 0;
1301    virtual bool GenInlinedMinMaxFP(CallInfo* info, bool is_min, bool is_double);
1302
1303    virtual bool GenInlinedSqrt(CallInfo* info) = 0;
1304    virtual bool GenInlinedPeek(CallInfo* info, OpSize size) = 0;
1305    virtual bool GenInlinedPoke(CallInfo* info, OpSize size) = 0;
1306    virtual RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi,
1307                                  bool is_div) = 0;
1308    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit,
1309                                     bool is_div) = 0;
1310    /*
1311     * @brief Generate an integer div or rem operation by a literal.
1312     * @param rl_dest Destination Location.
1313     * @param rl_src1 Numerator Location.
1314     * @param rl_src2 Divisor Location.
1315     * @param is_div 'true' if this is a division, 'false' for a remainder.
1316     * @param flags The instruction optimization flags. It can include information
1317     * if exception check can be elided.
1318     */
1319    virtual RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
1320                                  RegLocation rl_src2, bool is_div, int flags) = 0;
1321    /*
1322     * @brief Generate an integer div or rem operation by a literal.
1323     * @param rl_dest Destination Location.
1324     * @param rl_src Numerator Location.
1325     * @param lit Divisor.
1326     * @param is_div 'true' if this is a division, 'false' for a remainder.
1327     */
1328    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1, int lit,
1329                                     bool is_div) = 0;
1330    virtual void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) = 0;
1331
1332    /**
1333     * @brief Used for generating code that throws ArithmeticException if both registers are zero.
1334     * @details This is used for generating DivideByZero checks when divisor is held in two
1335     *  separate registers.
1336     * @param reg The register holding the pair of 32-bit values.
1337     */
1338    virtual void GenDivZeroCheckWide(RegStorage reg) = 0;
1339
1340    virtual void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) = 0;
1341    virtual void GenExitSequence() = 0;
1342    virtual void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double) = 0;
1343    virtual void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) = 0;
1344
1345    /*
1346     * @brief Handle Machine Specific MIR Extended opcodes.
1347     * @param bb The basic block in which the MIR is from.
1348     * @param mir The MIR whose opcode is not standard extended MIR.
1349     * @note Base class implementation will abort for unknown opcodes.
1350     */
1351    virtual void GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir);
1352
1353    /**
1354     * @brief Lowers the kMirOpSelect MIR into LIR.
1355     * @param bb The basic block in which the MIR is from.
1356     * @param mir The MIR whose opcode is kMirOpSelect.
1357     */
1358    virtual void GenSelect(BasicBlock* bb, MIR* mir) = 0;
1359
1360    /**
1361     * @brief Generates code to select one of the given constants depending on the given opcode.
1362     */
1363    virtual void GenSelectConst32(RegStorage left_op, RegStorage right_op, ConditionCode code,
1364                                  int32_t true_val, int32_t false_val, RegStorage rs_dest,
1365                                  RegisterClass dest_reg_class) = 0;
1366
1367    /**
1368     * @brief Used to generate a memory barrier in an architecture specific way.
1369     * @details The last generated LIR will be considered for use as barrier. Namely,
1370     * if the last LIR can be updated in a way where it will serve the semantics of
1371     * barrier, then it will be used as such. Otherwise, a new LIR will be generated
1372     * that can keep the semantics.
1373     * @param barrier_kind The kind of memory barrier to generate.
1374     * @return whether a new instruction was generated.
1375     */
1376    virtual bool GenMemBarrier(MemBarrierKind barrier_kind) = 0;
1377
1378    virtual void GenMoveException(RegLocation rl_dest) = 0;
1379    virtual void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
1380                                               int first_bit, int second_bit) = 0;
1381    virtual void GenNegDouble(RegLocation rl_dest, RegLocation rl_src) = 0;
1382    virtual void GenNegFloat(RegLocation rl_dest, RegLocation rl_src) = 0;
1383
1384    // Create code for switch statements. Will decide between short and long versions below.
1385    void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
1386    void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
1387
1388    // Potentially backend-specific versions of switch instructions for shorter switch statements.
1389    // The default implementation will create a chained compare-and-branch.
1390    virtual void GenSmallPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
1391    virtual void GenSmallSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
1392    // Backend-specific versions of switch instructions for longer switch statements.
1393    virtual void GenLargePackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
1394    virtual void GenLargeSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
1395
1396    virtual void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
1397                             RegLocation rl_index, RegLocation rl_dest, int scale) = 0;
1398    virtual void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
1399                             RegLocation rl_index, RegLocation rl_src, int scale,
1400                             bool card_mark) = 0;
1401    virtual void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1402                                   RegLocation rl_src1, RegLocation rl_shift, int flags) = 0;
1403
1404    // Required for target - single operation generators.
1405    virtual LIR* OpUnconditionalBranch(LIR* target) = 0;
1406    virtual LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) = 0;
1407    virtual LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value,
1408                                LIR* target) = 0;
1409    virtual LIR* OpCondBranch(ConditionCode cc, LIR* target) = 0;
1410    virtual LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) = 0;
1411    virtual LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1412    virtual LIR* OpIT(ConditionCode cond, const char* guide) = 0;
1413    virtual void OpEndIT(LIR* it) = 0;
1414    virtual LIR* OpMem(OpKind op, RegStorage r_base, int disp) = 0;
1415    virtual void OpPcRelLoad(RegStorage reg, LIR* target) = 0;
1416    virtual LIR* OpReg(OpKind op, RegStorage r_dest_src) = 0;
1417    virtual void OpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1418    virtual LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) = 0;
1419    virtual LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value) = 0;
1420    virtual LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) = 0;
1421
1422    /**
1423     * @brief Used to generate an LIR that does a load from mem to reg.
1424     * @param r_dest The destination physical register.
1425     * @param r_base The base physical register for memory operand.
1426     * @param offset The displacement for memory operand.
1427     * @param move_type Specification on the move desired (size, alignment, register kind).
1428     * @return Returns the generate move LIR.
1429     */
1430    virtual LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset,
1431                             MoveType move_type) = 0;
1432
1433    /**
1434     * @brief Used to generate an LIR that does a store from reg to mem.
1435     * @param r_base The base physical register for memory operand.
1436     * @param offset The displacement for memory operand.
1437     * @param r_src The destination physical register.
1438     * @param bytes_to_move The number of bytes to move.
1439     * @param is_aligned Whether the memory location is known to be aligned.
1440     * @return Returns the generate move LIR.
1441     */
1442    virtual LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src,
1443                             MoveType move_type) = 0;
1444
1445    /**
1446     * @brief Used for generating a conditional register to register operation.
1447     * @param op The opcode kind.
1448     * @param cc The condition code that when true will perform the opcode.
1449     * @param r_dest The destination physical register.
1450     * @param r_src The source physical register.
1451     * @return Returns the newly created LIR or null in case of creation failure.
1452     */
1453    virtual LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) = 0;
1454
1455    virtual LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value) = 0;
1456    virtual LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
1457                             RegStorage r_src2) = 0;
1458    virtual LIR* OpTestSuspend(LIR* target) = 0;
1459    virtual LIR* OpVldm(RegStorage r_base, int count) = 0;
1460    virtual LIR* OpVstm(RegStorage r_base, int count) = 0;
1461    virtual void OpRegCopyWide(RegStorage dest, RegStorage src) = 0;
1462    virtual bool InexpensiveConstantInt(int32_t value) = 0;
1463    virtual bool InexpensiveConstantFloat(int32_t value) = 0;
1464    virtual bool InexpensiveConstantLong(int64_t value) = 0;
1465    virtual bool InexpensiveConstantDouble(int64_t value) = 0;
1466    virtual bool InexpensiveConstantInt(int32_t value, Instruction::Code opcode) {
1467      UNUSED(opcode);
1468      return InexpensiveConstantInt(value);
1469    }
1470
1471    // May be optimized by targets.
1472    virtual void GenMonitorEnter(int opt_flags, RegLocation rl_src);
1473    virtual void GenMonitorExit(int opt_flags, RegLocation rl_src);
1474
1475    virtual LIR* InvokeTrampoline(OpKind op, RegStorage r_tgt, QuickEntrypointEnum trampoline) = 0;
1476
1477    // Queries for backend support for vectors
1478    /*
1479     * Return the number of bits in a vector register.
1480     * @return 0 if vector registers are not supported, or the
1481     * number of bits in the vector register if supported.
1482     */
1483    virtual int VectorRegisterSize() {
1484      return 0;
1485    }
1486
1487    /*
1488     * Return the number of reservable vector registers supported
1489     * @param long_or_fp, true if floating point computations will be
1490     * executed or the operations will be long type while vector
1491     * registers are reserved.
1492     * @return the number of vector registers that are available
1493     * @note The backend should ensure that sufficient vector registers
1494     * are held back to generate scalar code without exhausting vector
1495     * registers, if scalar code also uses the vector registers.
1496     */
1497    virtual int NumReservableVectorRegisters(bool long_or_fp ATTRIBUTE_UNUSED) {
1498      return 0;
1499    }
1500
1501    /**
1502     * @brief Buffer of DWARF's Call Frame Information opcodes.
1503     * @details It is used by debuggers and other tools to unwind the call stack.
1504     */
1505    dwarf::LazyDebugFrameOpCodeWriter& cfi() { return cfi_; }
1506
1507  protected:
1508    Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
1509
1510    CompilationUnit* GetCompilationUnit() {
1511      return cu_;
1512    }
1513    /*
1514     * @brief Do these SRs overlap?
1515     * @param rl_op1 One RegLocation
1516     * @param rl_op2 The other RegLocation
1517     * @return 'true' if the VR pairs overlap
1518     *
1519     * Check to see if a result pair has a misaligned overlap with an operand pair.  This
1520     * is not usual for dx to generate, but it is legal (for now).  In a future rev of
1521     * dex, we'll want to make this case illegal.
1522     */
1523    bool PartiallyIntersects(RegLocation rl_op1, RegLocation rl_op2);
1524
1525    /*
1526     * @brief Do these SRs intersect?
1527     * @param rl_op1 One RegLocation
1528     * @param rl_op2 The other RegLocation
1529     * @return 'true' if the VR pairs intersect
1530     *
1531     * Check to see if a result pair has misaligned overlap or
1532     * full overlap with an operand pair.
1533     */
1534    bool Intersects(RegLocation rl_op1, RegLocation rl_op2);
1535
1536    /*
1537     * @brief Force a location (in a register) into a temporary register
1538     * @param loc location of result
1539     * @returns update location
1540     */
1541    virtual RegLocation ForceTemp(RegLocation loc);
1542
1543    /*
1544     * @brief Force a wide location (in registers) into temporary registers
1545     * @param loc location of result
1546     * @returns update location
1547     */
1548    virtual RegLocation ForceTempWide(RegLocation loc);
1549
1550    virtual void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1551                                    RegLocation rl_dest, RegLocation rl_src);
1552
1553    void AddSlowPath(LIRSlowPath* slowpath);
1554
1555    /*
1556     *
1557     * @brief Implement Set up instanceof a class.
1558     * @param needs_access_check 'true' if we must check the access.
1559     * @param type_known_final 'true' if the type is known to be a final class.
1560     * @param type_known_abstract 'true' if the type is known to be an abstract class.
1561     * @param use_declaring_class 'true' if the type can be loaded off the current Method*.
1562     * @param can_assume_type_is_in_dex_cache 'true' if the type is known to be in the cache.
1563     * @param type_idx Type index to use if use_declaring_class is 'false'.
1564     * @param rl_dest Result to be set to 0 or 1.
1565     * @param rl_src Object to be tested.
1566     */
1567    void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1568                                    bool type_known_abstract, bool use_declaring_class,
1569                                    bool can_assume_type_is_in_dex_cache,
1570                                    uint32_t type_idx, RegLocation rl_dest,
1571                                    RegLocation rl_src);
1572
1573    /**
1574     * @brief Used to insert marker that can be used to associate MIR with LIR.
1575     * @details Only inserts marker if verbosity is enabled.
1576     * @param mir The mir that is currently being generated.
1577     */
1578    void GenPrintLabel(MIR* mir);
1579
1580    /**
1581     * @brief Used to generate return sequence when there is no frame.
1582     * @details Assumes that the return registers have already been populated.
1583     */
1584    virtual void GenSpecialExitSequence() = 0;
1585
1586    /**
1587     * @brief Used to generate stack frame for suspend path of special methods.
1588     */
1589    virtual void GenSpecialEntryForSuspend() = 0;
1590
1591    /**
1592     * @brief Used to pop the stack frame for suspend path of special methods.
1593     */
1594    virtual void GenSpecialExitForSuspend() = 0;
1595
1596    /**
1597     * @brief Used to generate code for special methods that are known to be
1598     * small enough to work in frameless mode.
1599     * @param bb The basic block of the first MIR.
1600     * @param mir The first MIR of the special method.
1601     * @param special Information about the special method.
1602     * @return Returns whether or not this was handled successfully. Returns false
1603     * if caller should punt to normal MIR2LIR conversion.
1604     */
1605    virtual bool GenSpecialCase(BasicBlock* bb, MIR* mir, const InlineMethod& special);
1606
1607    void ClobberBody(RegisterInfo* p);
1608    void SetCurrentDexPc(DexOffset dexpc) {
1609      current_dalvik_offset_ = dexpc;
1610    }
1611
1612    /**
1613     * @brief Used to lock register if argument at in_position was passed that way.
1614     * @details Does nothing if the argument is passed via stack.
1615     * @param in_position The argument number whose register to lock.
1616     */
1617    void LockArg(size_t in_position);
1618
1619    /**
1620     * @brief Used to load VR argument to a physical register.
1621     * @details The load is only done if the argument is not already in physical register.
1622     * LockArg must have been previously called.
1623     * @param in_position The argument number to load.
1624     * @param wide Whether the argument is 64-bit or not.
1625     * @return Returns the register (or register pair) for the loaded argument.
1626     */
1627    RegStorage LoadArg(size_t in_position, RegisterClass reg_class, bool wide = false);
1628
1629    /**
1630     * @brief Used to load a VR argument directly to a specified register location.
1631     * @param in_position The argument number to place in register.
1632     * @param rl_dest The register location where to place argument.
1633     */
1634    void LoadArgDirect(size_t in_position, RegLocation rl_dest);
1635
1636    /**
1637     * @brief Used to spill register if argument at in_position was passed that way.
1638     * @details Does nothing if the argument is passed via stack.
1639     * @param in_position The argument number whose register to spill.
1640     */
1641    void SpillArg(size_t in_position);
1642
1643    /**
1644     * @brief Used to unspill register if argument at in_position was passed that way.
1645     * @details Does nothing if the argument is passed via stack.
1646     * @param in_position The argument number whose register to spill.
1647     */
1648    void UnspillArg(size_t in_position);
1649
1650    /**
1651     * @brief Generate suspend test in a special method.
1652     */
1653    SpecialSuspendCheckSlowPath* GenSpecialSuspendTest();
1654
1655    /**
1656     * @brief Used to generate LIR for special getter method.
1657     * @param mir The mir that represents the iget.
1658     * @param special Information about the special getter method.
1659     * @return Returns whether LIR was successfully generated.
1660     */
1661    bool GenSpecialIGet(MIR* mir, const InlineMethod& special);
1662
1663    /**
1664     * @brief Used to generate LIR for special setter method.
1665     * @param mir The mir that represents the iput.
1666     * @param special Information about the special setter method.
1667     * @return Returns whether LIR was successfully generated.
1668     */
1669    bool GenSpecialIPut(MIR* mir, const InlineMethod& special);
1670
1671    /**
1672     * @brief Used to generate LIR for special return-args method.
1673     * @param mir The mir that represents the return of argument.
1674     * @param special Information about the special return-args method.
1675     * @return Returns whether LIR was successfully generated.
1676     */
1677    bool GenSpecialIdentity(MIR* mir, const InlineMethod& special);
1678
1679    /**
1680     * @brief Generate code to check if result is null and, if it is, call helper to load it.
1681     * @param r_result the result register.
1682     * @param trampoline the helper to call in slow path.
1683     * @param imm the immediate passed to the helper.
1684     */
1685    void GenIfNullUseHelperImm(RegStorage r_result, QuickEntrypointEnum trampoline, int imm);
1686
1687    /**
1688     * @brief Generate code to retrieve Class* for another type to be used by SGET/SPUT.
1689     * @param field_info information about the field to be accessed.
1690     * @param opt_flags the optimization flags of the MIR.
1691     */
1692    RegStorage GenGetOtherTypeForSgetSput(const MirSFieldLoweringInfo& field_info, int opt_flags);
1693
1694    void AddDivZeroCheckSlowPath(LIR* branch);
1695
1696    // Copy arg0 and arg1 to kArg0 and kArg1 safely, possibly using
1697    // kArg2 as temp.
1698    virtual void CopyToArgumentRegs(RegStorage arg0, RegStorage arg1);
1699
1700    /**
1701     * @brief Load Constant into RegLocation
1702     * @param rl_dest Destination RegLocation
1703     * @param value Constant value
1704     */
1705    virtual void GenConst(RegLocation rl_dest, int value);
1706
1707    /**
1708     * Returns true iff wide GPRs are just different views on the same physical register.
1709     */
1710    virtual bool WideGPRsAreAliases() const = 0;
1711
1712    /**
1713     * Returns true iff wide FPRs are just different views on the same physical register.
1714     */
1715    virtual bool WideFPRsAreAliases() const = 0;
1716
1717
1718    enum class WidenessCheck {  // private
1719      kIgnoreWide,
1720      kCheckWide,
1721      kCheckNotWide
1722    };
1723
1724    enum class RefCheck {  // private
1725      kIgnoreRef,
1726      kCheckRef,
1727      kCheckNotRef
1728    };
1729
1730    enum class FPCheck {  // private
1731      kIgnoreFP,
1732      kCheckFP,
1733      kCheckNotFP
1734    };
1735
1736    /**
1737     * Check whether a reg storage seems well-formed, that is, if a reg storage is valid,
1738     * that it has the expected form for the flags.
1739     * A flag value of 0 means ignore. A flag value of -1 means false. A flag value of 1 means true.
1740     */
1741    void CheckRegStorageImpl(RegStorage rs, WidenessCheck wide, RefCheck ref, FPCheck fp, bool fail,
1742                             bool report)
1743        const;
1744
1745    /**
1746     * Check whether a reg location seems well-formed, that is, if a reg storage is encoded,
1747     * that it has the expected size.
1748     */
1749    void CheckRegLocationImpl(RegLocation rl, bool fail, bool report) const;
1750
1751    // See CheckRegStorageImpl. Will print or fail depending on kFailOnSizeError and
1752    // kReportSizeError.
1753    void CheckRegStorage(RegStorage rs, WidenessCheck wide, RefCheck ref, FPCheck fp) const;
1754    // See CheckRegLocationImpl.
1755    void CheckRegLocation(RegLocation rl) const;
1756
1757    // Find the references at the beginning of a basic block (for generating GC maps).
1758    void InitReferenceVRegs(BasicBlock* bb, BitVector* references);
1759
1760    // Update references from prev_mir to mir in the same BB. If mir is null or before
1761    // prev_mir, report failure (return false) and update references to the end of the BB.
1762    bool UpdateReferenceVRegsLocal(MIR* mir, MIR* prev_mir, BitVector* references);
1763
1764    // Update references from prev_mir to mir.
1765    void UpdateReferenceVRegs(MIR* mir, MIR* prev_mir, BitVector* references);
1766
1767    /**
1768     * Returns true if the frame spills the given core register.
1769     */
1770    bool CoreSpillMaskContains(int reg) {
1771      return (core_spill_mask_ & (1u << reg)) != 0;
1772    }
1773
1774  public:
1775    // TODO: add accessors for these.
1776    LIR* literal_list_;                        // Constants.
1777    LIR* method_literal_list_;                 // Method literals requiring patching.
1778    LIR* class_literal_list_;                  // Class literals requiring patching.
1779    LIR* code_literal_list_;                   // Code literals requiring patching.
1780    LIR* first_fixup_;                         // Doubly-linked list of LIR nodes requiring fixups.
1781
1782  protected:
1783    ArenaAllocator* const arena_;
1784    CompilationUnit* const cu_;
1785    MIRGraph* const mir_graph_;
1786    ArenaVector<SwitchTable*> switch_tables_;
1787    ArenaVector<FillArrayData*> fill_array_data_;
1788    ArenaVector<RegisterInfo*> tempreg_info_;
1789    ArenaVector<RegisterInfo*> reginfo_map_;
1790    ArenaVector<const void*> pointer_storage_;
1791    CodeOffset data_offset_;            // starting offset of literal pool.
1792    size_t total_size_;                   // header + code size.
1793    LIR* block_label_list_;
1794    PromotionMap* promotion_map_;
1795    /*
1796     * TODO: The code generation utilities don't have a built-in
1797     * mechanism to propagate the original Dalvik opcode address to the
1798     * associated generated instructions.  For the trace compiler, this wasn't
1799     * necessary because the interpreter handled all throws and debugging
1800     * requests.  For now we'll handle this by placing the Dalvik offset
1801     * in the CompilationUnit struct before codegen for each instruction.
1802     * The low-level LIR creation utilites will pull it from here.  Rework this.
1803     */
1804    DexOffset current_dalvik_offset_;
1805    MIR* current_mir_;
1806    size_t estimated_native_code_size_;     // Just an estimate; used to reserve code_buffer_ size.
1807    std::unique_ptr<RegisterPool> reg_pool_;
1808    /*
1809     * Sanity checking for the register temp tracking.  The same ssa
1810     * name should never be associated with one temp register per
1811     * instruction compilation.
1812     */
1813    int live_sreg_;
1814    CodeBuffer code_buffer_;
1815    // The source mapping table data (pc -> dex). More entries than in encoded_mapping_table_
1816    DefaultSrcMap src_mapping_table_;
1817    // The encoding mapping table data (dex -> pc offset and pc offset -> dex) with a size prefix.
1818    ArenaVector<uint8_t> encoded_mapping_table_;
1819    ArenaVector<uint32_t> core_vmap_table_;
1820    ArenaVector<uint32_t> fp_vmap_table_;
1821    ArenaVector<uint8_t> native_gc_map_;
1822    ArenaVector<LinkerPatch> patches_;
1823    int num_core_spills_;
1824    int num_fp_spills_;
1825    int frame_size_;
1826    unsigned int core_spill_mask_;
1827    unsigned int fp_spill_mask_;
1828    LIR* first_lir_insn_;
1829    LIR* last_lir_insn_;
1830
1831    ArenaVector<LIRSlowPath*> slow_paths_;
1832
1833    // The memory reference type for new LIRs.
1834    // NOTE: Passing this as an explicit parameter by all functions that directly or indirectly
1835    // invoke RawLIR() would clutter the code and reduce the readability.
1836    ResourceMask::ResourceBit mem_ref_type_;
1837
1838    // Each resource mask now takes 16-bytes, so having both use/def masks directly in a LIR
1839    // would consume 32 bytes per LIR. Instead, the LIR now holds only pointers to the masks
1840    // (i.e. 8 bytes on 32-bit arch, 16 bytes on 64-bit arch) and we use ResourceMaskCache
1841    // to deduplicate the masks.
1842    ResourceMaskCache mask_cache_;
1843
1844    // Record the MIR that generated a given safepoint (null for prologue safepoints).
1845    ArenaVector<std::pair<LIR*, MIR*>> safepoints_;
1846
1847    // The layout of the cu_->dex_file's dex cache arrays for PC-relative addressing.
1848    const DexCacheArraysLayout dex_cache_arrays_layout_;
1849
1850    // For architectures that don't have true PC-relative addressing, we can promote
1851    // a PC of an instruction (or another PC-relative address such as a pointer to
1852    // the dex cache arrays if supported) to a register. This is indicated to the
1853    // register promotion by allocating a backend temp.
1854    CompilerTemp* pc_rel_temp_;
1855
1856    // For architectures that don't have true PC-relative addressing (see pc_rel_temp_
1857    // above) and also have a limited range of offsets for loads, it's be useful to
1858    // know the minimum offset into the dex cache arrays, so we calculate that as well
1859    // if pc_rel_temp_ isn't null.
1860    uint32_t dex_cache_arrays_min_offset_;
1861
1862    dwarf::LazyDebugFrameOpCodeWriter cfi_;
1863
1864    // ABI support
1865    class ShortyArg {
1866      public:
1867        explicit ShortyArg(char type) : type_(type) { }
1868        bool IsFP() { return type_ == 'F' || type_ == 'D'; }
1869        bool IsWide() { return type_ == 'J' || type_ == 'D'; }
1870        bool IsRef() { return type_ == 'L'; }
1871        char GetType() { return type_; }
1872      private:
1873        char type_;
1874    };
1875
1876    class ShortyIterator {
1877      public:
1878        ShortyIterator(const char* shorty, bool is_static);
1879        bool Next();
1880        ShortyArg GetArg() { return ShortyArg(pending_this_ ? 'L' : *cur_); }
1881      private:
1882        const char* cur_;
1883        bool pending_this_;
1884        bool initialized_;
1885    };
1886
1887    class InToRegStorageMapper {
1888     public:
1889      virtual RegStorage GetNextReg(ShortyArg arg) = 0;
1890      virtual ~InToRegStorageMapper() {}
1891      virtual void Reset() = 0;
1892    };
1893
1894    class InToRegStorageMapping {
1895     public:
1896      explicit InToRegStorageMapping(ArenaAllocator* arena)
1897          : mapping_(arena->Adapter()),
1898            end_mapped_in_(0u), has_arguments_on_stack_(false),  initialized_(false) {}
1899      void Initialize(ShortyIterator* shorty, InToRegStorageMapper* mapper);
1900      /**
1901       * @return the past-the-end index of VRs mapped to physical registers.
1902       * In other words any VR starting from this index is mapped to memory.
1903       */
1904      size_t GetEndMappedIn() { return end_mapped_in_; }
1905      bool HasArgumentsOnStack() { return has_arguments_on_stack_; }
1906      RegStorage GetReg(size_t in_position);
1907      ShortyArg GetShorty(size_t in_position);
1908      bool IsInitialized() { return initialized_; }
1909     private:
1910      static constexpr char kInvalidShorty = '-';
1911      ArenaVector<std::pair<ShortyArg, RegStorage>> mapping_;
1912      size_t end_mapped_in_;
1913      bool has_arguments_on_stack_;
1914      bool initialized_;
1915    };
1916
1917  // Cached mapping of method input to reg storage according to ABI.
1918  InToRegStorageMapping in_to_reg_storage_mapping_;
1919  virtual InToRegStorageMapper* GetResetedInToRegStorageMapper() = 0;
1920
1921  private:
1922    static bool SizeMatchesTypeForEntrypoint(OpSize size, Primitive::Type type);
1923
1924    friend class QuickCFITest;
1925};  // Class Mir2Lir
1926
1927}  // namespace art
1928
1929#endif  // ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
1930